Snap-Together Visualization:
A User Interface for Coordinating Visualizations via

Relational Schemata

Chris North and Ben Shneiderman
Human-Computer Interaction Lab &
Department of Computer Science
University of Maryland, College Park, MD 20742 USA
http://mww.cs.umd.edu/hcil

north@cs.umd.edu, ben@cs.umd.edu

ABSTRACT

Multiple coordinated visualizations enable users to rapidly
explore complex information. However, users often need
unforeseen combinations of coordinated visualizations that are
appropriate for their data. Snap-Together Visualization enables
data users to rapidly and dynamically mix and match
visualizations and coordinations to construct custom exploration
interfaces without programming. Snap’s conceptual model is
based on the relational database model. Users load relations into
visualizations then coordinate them based on the relational joins
between them. Users can create different types of coordinations
such as: brushing, drill down, overview and detail view, and
synchronized scrolling. Visualization developers can make their
independent visualizations snap-able with asimple API.

Evaluation of Snap revealed benefits, cognitive issues, and
usability concerns. Data savvy users were very capable and
thrilled to rapidly construct powerful coordinated visualizations.
A snapped overview and detail-view coordination improved user
performance by 30-80%, depending on task.

Keywords
User interface, information visualization, multiple views,
coordination, tight coupling, relational database, user study.

1. INTRODUCTION

In exploring information, two or more coordinated visualizations
are often required to adequately display and browse the data
[BWKOQ]. For example, Microsoft's Windows Explorer employs
3 visualizations to browse hierarchical file systems: an outliner
view of the folders, a tabular view of the files in the selected
folder, and a quick view of details of the selected file. In
Spotfire [AW95], a commercial scatterplot visualization tool,
selecting a record in the plot displays its attribute values in a
web browser.

While these combinations of coordinated views are very helpful
for some tasks, what about other combinations? What if, in

Windows Explorer, users want to view their folders as a
scatterplot instead of an outliner? Then they could quickly spot
large old folders, and select them to see contents in the tabular
view. If browsing a census database, why can’t users click on a
state in a Spotfire visualization to display its counties in a
Treemap [Shn92] visualization? (See Figure 1)

These adternate combinations typically require custom
development. In our lab, researchers stumble over this problem
often, and must constantly re-implement coordinations between
new unforeseen combinations of views. Unfortunately, thisis a
poor solution to the problem. Even with good component-based
design, these hard-coded combinations are inflexible and
difficult to construct.

A lightweight mechanism is needed to alow end-users to easily
“snap” individual visualizations together into custom
combinations. These combinations can exploit simple
relationships in the data to support browsing. This must not be a
toolkit that requires programming, but a user interface.

Specifically, users should be able to choose and coordinate
visualizations so that: selecting or navigating to a data item in
one view causes another view to select or navigate to
corresponding items or load and display data related to that item.
The “load” capability is particularly potent. For example, users
can drill down through hierarchical levels in a database using
different visualizations at each level, asin the states and counties
example.

1.1 Related Work

Systems for information visualization via multiple coordinated

views can be classified by their level of flexibility in data, views,

and coordinations:

1. Data: users can load their own different data sets into the
visualizations.

2. Views. users can choose different sets of visuaizations as
appropriate for the data.

3. Coordinations: users can choose different types of
coordinations between pairs of views as needed for
exploring or navigating relationships in the data.

Level 0 systems are not intended for flexibility. For example,
Windows Explorer always displays the same data set (the hard
drive file structure), with the same views and coordinations.

Most visudization tools are level 1, flexible for data but not
views or coordinations. For example, the Treemap tool can load
and display any hierarchical data set of users’ choosing, but
remains constant in its pair of views (the treemap view and the

details pane) and the coordination between them (selecting a
node in the treemap displays associated data in the details pane).

Level 2 systems include flexibility in choice of views. For
example, systems such as Datadesk [Vel88], SAS JMP, EDV/
Advizor [EW95], and Spotfire, can display a single data table in
many different types of views of users' choosing such as scatter
plots or bar charts. All the views are coordinated for brushing-
and-linking [BC87], alowing users to relate data points across
views. When users paint points in one view, the system auto-
matically paints the corresponding points in the other views in
the same manner. This approach is useful for statistical data
analysis.

In databases, Visage [RLS96] extends the brushing coordination
to multiple tables by brushing across relational joins. However,
users cannot establish a different type of coordination between
two views with these systems.

Level 3 systems include flexibility in the coordinations between
views. The Apple Dylan programming environment [DP95] lets
users choose which pairs of views to coordinate. Users browse
hierarchical object-oriented programs by splitting and linking
frames so that selecting a folder in one frame displays its
contents in the other frame (e.g. generalized Windows Explorer).
Spreadsheet Visualization [CBR97] arranges many small 3D

views as cellsin a 2D grid. Then, users can select a whole row
or column of views to synchronize their 3D navigation.

Devise [LRB97] alows users to select some different types of
coordinations between views. Users can synchronize panning
and zooming of plots with common axes, and establish set
operations between views so that data in one view can be
combined with data in another.

In scientific visualization, data-flow systems such as ConMan
[Hae88], AVS, and IBM Data Explorer, also employ a form of
dynamic linking, but for a different purpose. Userslink a variety
of modules to create custom data processing and viewing
pipelines, much like pipes on the Unix command line.
Linkwinds [JBO94] extends the dataflov model for data
filtering. Upstream widgets can filter the data that is displayed
downstream.

Multiple coordinated visualization approaches have become an
important and diverse topic. For a comprehensive review of
many systems, see [Nor00].

2. SNAP TOGETHER VISUALIZATION

Snap-Together Visualization enables data users to rapidly and
dynamically mix and match visualizations and coordinations to
construct custom exploration interfaces without programming.

< UutinerDivi- BT 3 [SIS EO IO UDEE DS SIS PO =IET|
_ Losd [ienen | 8 Fie Edt view Tods window Help Losd | Svap | Load || Sng
= United States = — = = = [[Mame Population 1995 Population 1990 Population 1980 Housing Urits 1990] « |
1 East Morth Central o . Baltimore, MD 715360 592134 BE5E1E 268280
-5 East South Cantral ki Calvert MD 54598 51372 34638 16386
21 Middle Allantic | —— Caroline, MD 24072 7035 23143 5083 | ||
£ Mountain 2 O Caral, MD 140203 173372 36356 42248
.3 MewEngland E Cecil MD 76174 71347 60430 24725
& Padific 1D - Charles, MD 111633 101154 72751 32950
& South Aaniic =) @ Darchester, MD 30170 30236 30623 12117
B DELAWARE @ Frederick, MD 175309 150208 114792 52570
8 oieTreT oF colu | o ® Garret, MD 20451 26138 26430 10110
B FLORIDA o ® Harford, MD 205367 182132 145930 53193
B GEORGIA ‘ [] Howard, MD 2191256 187328 116672 65337
BEIARYLAND 20000 ‘ ® bl S . - 9
g :851& gﬁﬁgbﬁﬁ !... ’ . Frince Geun?e's, wD EBB071 258011
B VIRGINIA 17500’ Queen Anne's, MD 36592 25508 12489
B WEST VIRGINIA * Somerset, MO | . 168 ?9??_l;[
5 West Norh Central [KV CO u ntl es 0
-B3 West South Central 15000 _[Of=
File View Options Help
10000 20000 30000 e [Load 1l sran |
q States TR Popuiation 1995 = | | [imme ArntdBaltinere T onart | Montgomery Frince Geoge ||
(Constra]| [Construction
/3 United States of T ——loreT (O] x|

JEiIe Edit Yiew Go Favoites Help Load Shay

United States of America

[1995 1994 [1995 1998
[Fetail Trade

il

5|
[Services

1233

Retail Trade

1234 1325|1994

1935

Transportation =

[Transportation and Public Utilit:

[Wholesale Trade

Figure 1: A coordinated visualization environment for exploring Census data of U.S. states and counties, dynamically constructed using
Snap-Together Visualization. Users can explore states from nominal, geographic, and numeric perspectives using the outliner, map, and
scatter plot. Selecting a state displays detailed county and industry information for that state in the table and Treemap on the right.
Selecting Maryland on the map reveals a fairly high ranking in Per Capita Income in the plot, and immediately reveals in the Treemap
that the Services industry in Montgomery County is responsible for amajor portion of that income.

Snap is flexible in data, views and coordinations. Snap focuses
on (@) interconnecting the visualization tools created by
researchers and developers in the field to (b) construct
coordinated browsers for rapid exploration and navigation of data
and rel ationships.

2.1 Modd

Snap’'s conceptual model is based on the relational database
model. To explore a database, users can construct interfaces
composed of coordinated visualizations based on the database
schema. Users load relations into visualizations then coordinate
the visualizations based on the join relationships between their
relations. There is a direct correspondence between relational
concepts and Snap concepts: (see also Figure 2)

Relational Concept Snap Concept
Relation = Visualization

Tuple = Itemin avisualization
Primary key = Item ID

Join = Coordination

Hence, a graph of coordinations between visualizations
corresponds to the graph of joins between the relations in the
database schema diagram. This was inspired in part by RMM
[1SB95], a system for constructing web site navigational structure
from underlying relational databases. In RMM, database
relationships correspond to hyperlinks, whereas, in Snap they
correspond to coordinations.

2.2 Relationsinto Visualizations

When using Snap, users first load relations into visualizations.
In Snap, a visualization displays a single relation. Generally,
each tuple is depicted as an individual item in the visualization.
For example, a scatter plot displays each tuple as adot using 2 of
its attributes as the coordinates. A table displays each tuple as a
row.

Visualizations typically allow users to select a tuple, navigate to
a tuple, or somehow indicate interest in a tuple. We will call
these primary-key actions, because the tuples can be identified
by their primary-key values. Users initiate the action via input,
and the visualization responds with visual feedback. For
example, users might select a tuple in a scatter plot by clicking
on or mousing over the dot, and the system might respond by
highlighting the dot in yellow. We extend this slightly to enable
primary-key actions to be invoked programmatically. For
example, the Snap system can also select a tuple in the scatter
plot to cause the same yellow-highlight visual feedback as if the
user had clicked on the dot. Hence, we can model primary-key
actions as unary functions that take a tuple's primary-key value
as argument: e.g. Viz.Sdect(<id>). Each visualization publishes
the set of actions it supports to Snap.

Visualizations also have a foreign-key action that is managed by
Snap: the Load action queries the visualization’s original relation
for tuples that are joined (by a foreign key) to the tuple given as
the argument (primary key) and loads them into the visualization.

In the Snap user interface, users load relations into visualizations
using the Snap Main Menu (Figure 3). It displays a menu of the
tables and queries in the database and a menu of the available
visualization tools.

States |

Statell

State

Division Caunky
Population industry
Average Age year

emplovees
annual payroll ($10007)
establishments

Awerage Commute Time
Per Capita Income
Median Household Income

Median Rent
Scatter Plot Viz
States 1
State Sel ect
Division
Population
Average Age

Average Commute Time

annual payroll ($1000)

Per Capita Income

Figure 2: Top: A schema diagram for a database of Census
information for U.S. states and counties (using Microsoft
Access). Bottom: The data tables are loaded into visualizations
and coordinated according to the join relationship between them.
This example models a drill-down interface for States to
Counties.

2.3 Coordinating Visualizations

After loading relations into visualizations, users can then
coordinate the visualizations (‘snap them together’). When
coordinating a pair of visualizations, users choose the actions in
each view to coordinate. A Snap coordination tightly couples the
actions between the two visualizations on tuples related by the
join between the relations. Users coordinate the visualizations
based on the join relationships between their relations. There
are 4 cases:

1. Oneto-One: This is a primary-key to primary-key
relationship. Users coordinate a primary-key action in one view
to a primary-key action in the other. Then, when users invoke
the former action on a tuple in the former view, the system
automatically invokes the latter action on the corresponding tuple
in the latter view, and vice versa.

This is often used to relate different perspectives on a single
relation. For example, in Figure 1 different projections of the
States table are displayed in a scatter plot and a map.
Coordinating the select action in the plot to the select action in
the map creates a brushing-and-linking coordination. When

. Snap-Together Visualization Menu [B[E] B4 D&
I ——— - 2 - New Delete
Open Database... Edit |Update|
G husershohishdiscovDataBlasesicenst Visualzations: Ve -OEEs
E— e ve— List Query: States
Counties —]
States Page Astiart [Select] stateld
e Ui oo — I~ Senll
Table | <none>
ScatterPlot
— Spotfire - counties of a stats [23)
Outliner
Query: counties of a state
TreeMap acion T
ction: Select
‘b " Serol] CountylD
- ¥ Load [param statelD]
0 Parameters
Relation between [Ds:
Save Gioup | | =l |
Histary | Basket | Search | Exit | Shap Cancel

Figure 3: Snap’s Main Menu (left) and Snap Specification
dialog (right).

users click on Maryland in either view, it will aso be highlighted
in the other view.

2. Oneto-Many: This is a primary-key to foreign-key
relationship. Therefore, users can coordinate a primary-key
action in the view on the One side of the relationship with a
foreign-key action on the Many side. (See Figure 2)

This relationship indicates a hierarchical relationship between
the relations. For example, in Figure 1 the States are displayed
in a scatter plot and Counties in a Treemap. Coordinating the
select action in the plot to the Load action in the Treemap creates
adrill-down coordination. Clicking on Maryland in the plot loads
and displays only Maryland’ s counties in the Treemap.

3. Many-to-Many: This relationship is generally composed of 2
one-to-many relationships. Therefore, users employ the one-to-
many case in the desired direction.

4. No relationship: If the schema has no relationship between
the relations, then there is no coordination between the views.
However, if users desire coordination based on more complex or
indirect relationships, then it is probably possible to modify the
schema with queries to specify the desired relationships with
standard joins. Hence, with Snap, advanced coordination is
simply a data-relationship representation problem rather than a
custom user-interface programming problem.

Snap coordinations are bi-directional, so that either action
triggers the other. Users can aso chain coordinations end-to-
end. For example, users can establish brushing across three
views.

In the Snap user interface, users coordinate a pair of
visualizations by dragging the Snap button from one to the other
(similar to [JBO94] and [DP95]). This displays the Snap
Specification dialog (Figure 3). Users select the primary-key or
foreign-key actions for each visualization to coordinate. After
construction, users can save a set of coordinated views as a group
for later re-use or sharing.

2.4 Common Coordinationswith Snap
With Snap, users can quickly construct common coordinations,
such as:

Brushing-and-linking: (Figure 1: outliner, plot, map)
Join relationship: one-to-one
Coordinated actions: select in Vizl and select in Viz2
Usage: Selecting an item in one view highlights the
corresponding item in another view. Typicaly used to identify
like items when a set of items is displayed in different views for
different contexts.

Overview and detail view: (Figure 4)
Join relationship: one-to-one
Coordinated actions: select in Vizl and scrall in Viz2
Usage: Selecting an item in the overview scrolls (or more
generally navigates) the detail view to the details of that item.
Items are represented visually smaller in the overview than in the
detail view. Allows direct access to details, and provides context
for details.

Drill-down: (Figure 1, plot and table)
Join relationship: one-to-many
Coordinated actions: select in Vizl and load in Viz2
Usage: Selecting an item in one view loads related items into
another view. This enables exploring very large-scale data, by
displaying aggregates in one view and the contents of a selected
aggregate in another view [FNP99]. For example, 1 million
‘stars’ may be too much for single plot. Instead, break it down
into 1000 ‘galaxies’, each with 1000 stars. Then display one plot
of galaxies and one of stars with a drill-down coordination
between them.

Synchronized scrolling:
Join relationship: one-to-one
Coordinated actions: scroll in Viz1 and scroll in Viz2
Usage: Scrolling through alist of tuplesin one view aso scrolls
to corresponding items in another view.

Details on demand:
Join relationship: one-to-one
Coordinated actions: select in Vizl and load in Viz2
Usage: Selecting a tuple in a graphical view loads and displays
additional details of that tuple in an adjacent textual view. This
uses load as a primary-key action.

2.5 Snap AP

Snap’'s model of a visualization is intentionally simple. Snap is
designed to be open and easy for researchers and developers to
make their independent visualizations snap-able. Therefore,
Snap minimizes impact on visualization implementation. Snap
uses a simple APl (application programming interface) to
communicate with visualizations. This is analogous to API's in
modern window-management systems for utilities such as cut-
and-paste or drag-and-drop. We propose the Snap APl as a
similar standard, that can be easily added to a visualization tool
by its developers, enabling users to immediately snap it with
many other visualizations. This greatly increases the value and
usefulness of the tool for little cost.

To be snap-able, avisualization must support this API:

Load method. When users load a relation into the
visualization, Snap must be able to send the data to the
visualization via file, memory, or ODBC, which ever is
convenient for the tool. A translation routine may be
needed to trans ate the relational structures to those used by
the toal.

Methods and events for each primary-key action: When
users invoke actions, the visualization must fire an event to
Snap. Likewise, Snap must be able to invoke actions in the
visualization. The primary key value of the tuple acted onis
passed. The visudlization developer determines what
actionsit supports. Sdlect is recommended as a minimum.

Other than these few hooks, visualizations remain independent
software programs, maintaining their own data structures, etc.
For example, Spotfire, a commercial software package, was
integrated using its existing APl and a 10-line VB wrapper to
translate the communication calls.

Snap is currently implemented in the Windows platform. It uses
COM for communication in the APl and ODBC for database

i, Outliner - WebSite Urls [)
Load || Snap | Flle Wiew Options Help

M= || .~ Treemap 97 /

B highlights.him]| heil
- howtoworkwithus. himl K

21 i_jhes-copy
-3 ijhcs.himl
-2 jjhes-copy
-7 jjhes-copy
- indexhtm

B in e himl
-3 indexdwebtoc itml

Bl InvitationToSubmit himl
-3 lab.description.html

21 litelines
-3 new-princ-mem.himl

access. We have used Snap with MS Access and Oracle
databases.

2.6 Scenarios

Snap is useful for rapidly constructing visualization interfaces for
many different types of information. As the following examples
illustrate, Snap makes information visualization capabilities
immediately accessible and applicable for users.

2.6.1 Web-Stelogs

Recently, we have been interested in visualizing data from web
logs [HS99], a database containing information about users
visits to a web site. In this scenario, we are interested in
discovering what internet pages are referring many users, via
hyperlinks, to specific pages on our lab’'s web site. A user
interface to explore this database can be quickly constructed with
Snap (see Figure 5).

First, a user interface to explore specific pages on our site is
needed. Opening a table of the pages and their URLs into an
outliner displays a hierarchical view of the site. A web-browser

J File Edit Wiew Favoites Tools Help

5 T = i @ o a E7] Links ;
Back Eanmard Stop Refiesh Home Search Favotes Histary
JAEHIESS I@ http:/ Awvaw. cz.umd. eduheilfindes. himl j i Go

University of Maryland
Human-Computer Interaction Lab

home research publications academics about hcil members part

Research About HCIL
== Summaries Events release of Jazz!
Visualization HCIL Crganization
Education Related Organizations
Digital Libraries Pictures))
Design Process Tt The Dress Ben Shneiderman in Scientific A
Physical Devices Th L= l
Members
Publications Faculty / Staff / Admin))
Otline Tech Reperts Smdents Allison Druin and Ben Bederson
Video Reports Collaborators Sun
Trnla TPast Wemhers A

4

‘@ Done

21 newsf
- none.htrnl
-3 ah
£ ohd? =
455 a
B pack+ Losd | View | Srap
#-2 chif8 [Capama State Maryland
&2 clocur| Alaska Population 4781468
: Arizona Families 1256327
® B downl) Households 1749342
=B downl| catfomia Male % 48.5%
B fag hu| Colorade Female %. 51.5%
B index | Comectient Utban % 81.3%
! | Delaware Average Age 331
- javap | Florida HS Diploma %: 78.4%
B licens| Georgia College Degrec % L%
Hawail English Speaking % 84.3%
Tdaho Average Commute Time: 33
Tlinois Carpool Commute %, 15.2%
Indiana Public Transportation %: 8.1%
Towa Per Capita Income 17730
Kansas Median Family Income: 45034
I Rentucky Median Household Income: 39386 Lood [[Snen |
Louisiana No Tncome Houscholds %: 15.3%
Maine Average Persons per Family: 3.81
5 Average Wotkers per Family: 1.88 1
Massachusetts || Housing Utits 1891917
12 Michigan Vasancy % 8.2
Montana Average Bedrooms 273
% Nebraska Average Persons per Unit. 273
Nevada Median Value 115500
New Hampshire || Median Mortgage 919
- New Jersey Median Rent 548
New Mexico Rent % Houschold Income: 25.4
New Tork Flag Description The Maryland flag contains the Eamily
" North Carolina || crest of the Calvert and Crossland Farmilies. Maryland was founded
Nosth Dakota as an English colony in 1634 by Cecil Calvert, the second Lord
Oio Baltimore. The black and Gold designs belong to the Calvert family.
48 Oldzhoma The red and white design belongs to the Crossland Farily. ers/ben index himl
g;ﬁ:;vma 1__HCI_Anstitutes,
A ;| Bnode Ltana State Massachusetts csumd edu/_ B
m | SouhCaroina | Pepularion 6016425 L]
South Dakota Families 1525198
18 Temnessee Households 2244406 =
W | Texas Male % 48.0% []
| Utah Female %. 52.0% M
a A Vermont Utban % 84.2% L
Virginia Average Age 5
. Washington HS Diploma % 80.0% —
L | West Viginia College Degrec % H.5%
| Wisconsin English Speaking % 79.0% e
Wyoming Average Commute Time: 28 =

J FEile Edit Wiew Favoites Tools Help

e) o Q e
Back. Forward Stop Refiesh Haome Search Faworites Histary
J Address I@ http:/ Awwawe. humanfactors.com/homer/ default. asp j @ Go

° Human Factors I—
‘_/ International We make software usable 800-242-4480
[tome]

Main Fage

“UI Design Training ‘Standards Testing ‘Color ‘Wording

Human Factors International —
the Leader in Software Usability Solutions —

Our Focus
Web/E-Commerce
IntranetExtranet

User-Centered Design
GUI Applications T

VRUMoice

Devices Accuracy
How We Work

Cverview

— NG

Satisfaction

Huran Fartare Infarmational will haln mala wair cofivara neahla =4
il 3
ﬁ Internet A

Wigsion Crifical Projects
Corporate Efforts
One-Time Projects
IRecruitmgIF‘\acemem

l

Safety

‘@ Applet started

Figure 2: Ahisxisiditatfencr lormenidCaxlonimaneireie [og data was quickly constructed using Snap. The outliner, Treemap,
aneuehelowserafibsthe ond SnayR siieobepvisey foretiaf yiseldetveb site. The scatter plot and browser at the bottom display pages that
tefeid s i thearite. This example reveals that Human Factors International referred 110 readers to the HCIL home page that month.

visualization (MS Internet Explorer) can be used with URL data
values to display the actual web pages. Snapping the outliner to
a web-browser, by coordinating the outliner’s select action to the
browser’ s load action, creates arapid site browser. Clicking on a
page in the hierarchy displays the page in the browser (top of
Figure 5).

Now, visualizations to discover referring pages are added. A
table of hits to our site is aggregated by the referring and
referenced pages and loaded into a scatter plot. There is a one-
to-many relationship between the pages table and the hits table.
The outliner is coordinated to the plot with select and load
actions respectively. The plot displays the referrers as a
histogram, with referrer name on the X-axis and number of hits
referred on the Y-axis. Similar to the outliner, the plot is also
coordinated to a web browser to view the actual referring pages
(bottom of Figure 5).

Now, selecting our home page in the outliner displays that page
in the browser and the distribution of referrers to it in the plot.
Selecting a high-ranking referrer in the plot reveals the Human
Factors International page in the other browser. Exploring
reveals other pages that send many users to our home page,
including Ben Shneiderman’s page, the Department page, and

Yahoo's HCI institutes page. Selecting our Visible Human
project page in the outliner shows nearly 1000 hits from the
National Library of Medicine page. Selecting to open this page
indeed reveals a prominent link to our page. Naturaly, lab
members explored to discover referrer patterns to their personal

pages.

2.6.2 Photo Libraries

For a research project on user interfaces for browsing personal
photo libraries, we have been using Snap to explore many
interface variations. Our lab has accumulated a database of
scanned photos of lab members and activities spanning 10 years.
It includes annotations such as members’ names, dates, |ocations,
and other information.

In Figure 6, a thumbnail browser shows a callection of a few
hundred photos. The scatter plot displays a time line of the
photos, with date on the X-axis and members’ names on the Y.
Vertical stripes of dots represent group events, pictures of many
members on the same date. The large stripe in the middle is
many photos from the 1992 Open House. Selecting a photo from
winter '89 displays the full-size photo from a ski trip, a list of
names of members in the photo, and details of photo attributes.

Other interface variations include locating photos by members

i ThumbNail Browser M= E3|| © Spolfire - PhoteDB1 - Imported 0DBC D ata [[PhotoDB1]) - [Scatter Plot] O] x|
Fil= Edit “iew Jptions Tools “Window Hep _|5l|5|
Person ¥ I Lual | Snaé I
Ii falt Gl O ('] .
_ ® [)
Richard .
Kent Mo C:I
@ C
Eoemen T '
Charles F)
e O —
|
Catherin: % ® O
-
87701.01.- gl '01"'89'01'01"'80'0 - 1..-8_ Nk "92'01'01 “qa 1 _01_..94701 '01"'85'01'01 g0l 'm"'s?rm ol

i]i_ Dae vI

i List - Names Ut Peo... [H[=]E3

[View | Ljadl SnaE I

Eodrizo Beafogo
Catherine Plaisant
Richard Potter

Diate: 1/1/3%
Event:Ski
Locaton:
Eeywords:

L]
|@ Done

’_l_ =) Local intranet i | | |

e | |

Figure 6: Exploring a photo library with Snap. The user has displayed a collection of photos in a thumbnail browser to quickly
overview many photos and in a scatter plot to see trends on a time line. These are coordinated to a web browser to display the full-
resol ution picture of a photo when selected. Additional text views display names of people in the picture and other details.

names or locations, selecting a person in a photo to find other
pictures of that person, etc.

3. EMPIRICAL EVALUATION

To determine if Snap’s model and user interface are usable and

beneficial, it is important to empirically evaluate the two phases

of using Snap:

1. Construction: First, can users successfully construct
coordinated exploration interfaces by snapping
visualizations together?

2. Operation: Second, can users then operate the coordinated
interfaces constructed with Snap to explore information
beneficialy?

This section presents a summary of these two studies. For more
details, see [Nor0Q]. Little work has been done to evaluate
systems for coordination. [CS94] and [SSS86] indicate
performance advantages at operation level for the drill-down type
of coordination (e.g. level 1 systems). We are not aware of
studies on coordination construction (level 3 systems).

3.1 Usability of Coordination Construction
The goal of the first study is to determine how difficult it is for
relatively novice users to learn Snap and construct coordinated
interfaces, in terms of success rate and time to completion. This
study reveals cognitive trouble spots in the construction process
and identifies potential Snap user interface improvements.

3.1.1 Procedure

We worked with 6 subjects on a one-on-one basis. Three of the
subjects were data analysts or statisticians at the U.S. Bureau of
the Census. The other three were programmers.

Subjects were first trained on using Snap-Together Visualization.
At the time of this study, the Snap user interface did not have
capability for users to easily create projections, join queries, etc.
Hence, subjects were also trained on using Microsoft Access to
mani pul ate the database, schema and queries.

Testing consisted of 3 exercises. Subjects were asked to
construct coordinated exploration interfaces according to three
provided specifications: two were printed screenshots (a simple
one identical to Figure 4, and a more difficult one similar to
Figure 1), and one a description of the task that the constructed
interface should support. The database consisted of census data
of the U.S. states and counties.

3.1.2 Results

Overall, subjects easily grasped the concept of coordinating
views. All the subjects completed the training in 30-45 minutes,
and were able to complete all three exercises. They accomplished
each exercise in 2-15 minutes, depending on the difficulty.
Much of this time was absorbed by window management (see
[KS97] for areview of potential solutions) and Access. Subjects
had very little previous experience with Access and database
concepts.

As to subjects’ general reaction to Snap-Together Visualization,
we were impressed by their level of excitement. The subjects
were quick to learn the concepts and usage, and were very
capable to construct their own coordinated interfaces. Several
stated that they had a gratifying sense of satisfaction and power
in being able to both (a) so quickly snap powerful exploration
environments together, and (b) with just a single click effect

exploration across several visualizations and see the many parts
operate as a whole. They commented that it made exploration
seem effortless, especially in comparison to standard tools.

To our surprise, the data analysts performed better than the
programmers did. During the training, they were aready trying
variations of snaps, exploring the data, and pointing out various
anomalies in the data. After finishing the exercises, these
subjects each stayed for an additional hour to play. All the
Census subjects expressed desire to use Snap-Together todls in
their work. In fact, a collaborative effort is underway.

An important result was the creativity and variation evident in
the subjects solutions to the 3 exercise. Subjects designed
interfaces that made sense to their perspective on the data. They
used a mixture of visualizations and coordinations. For example,
while one subject used scatterplots, another subject augmented
this design with lists for state and county names. The subject
stated that this would help to see which state and county was
currently selected in the scatterplots, and allow for accessing
states by name. Another subject who preferred to see the
numerical values used tabular visualizations with sorting.

3.1.3 User Interface

Understanding the basic underlying model of Snap was critical.
However, the Snap user interface apparently did not reflect this
model well due to disparity between the schema management
(Access), the Snap main menu, and the Snap Specification
dialog. For example, to add a projection of a table as an
overview visualization to an interface, users had to generate the
query in Access, load it into a visualization using the Snap main
menu, and coordinate it to other views using the Snap
Specification dialog. In addition, users sometimes forgot which
visualizations were currently coordinated. A ‘debug mode to
show how coordination propagates between visualizations would
have been helpful.

These problems might be solved by redesigning the Snap
interface around a single direct-manipulation visual overview
that merged the schema diagram with a visualization-
coordination graph diagram. This diagram could be used for
schema management, simple querying and loading into
visualizations, and coordination specification and ‘debugging'.
In addition, the need to create queries by hand could be
eliminated for common simple situations. For example, for
projections users could simply select the desired attributes and
drag them directly to a visualization. Snap could also generate
queries for foreign-key loads automatically. These enhancements
would likely reduce users training and construction time
significantly. We are already working on this.

3.2 Usability of Coordination Operation

The goal of the second study is to measure the magnitude of the
benefit of using views coordinated with Snap over alternatives:
independent views or a single view. Benefit is measured in
terms of user task times and subjective satisfaction for browsing
large information spaces. This study reveals whether the visua
feedback across views is distracting or disorienting for users.

While there are many possibilities, this study examines an
overview-and-detail-view coordination constructed with Snap. If
there is a benefit over the single view, then what is the important
factor causing improved performance? Is it () the information

displayed in the overview, or (b) the coordination between the
overview and detail view?

3.2.1 Procedure

18 subjects used 3 different interfaces for browsing Census state

population statistics. They performed 9 different browsing tasks,

ranging from easy to difficult. The 3 interfaces were: (similar to

Figure 4)

1. Detail-Only: Scrolling view of all the states' data.

2. Independent-Views: Adds the overview not coordinated, to
seeif overview or coordination is more important.

3. Snapped-Views: Adds coordination using Snap. This is the
same user interface from the 1% study, 1% exercise.

3.2.2 Results

On average, Snapped-Views achieves an 80% speedup over
Detail-Only for easy tasks and 30-50% for difficult tasks, both
significant. The Independent-Views interface results in a nearly
binary pattern. For easy tasks, where only information in the
overview is needed to accomplish the task, Independent-Views
performs on par with Snapped-Views. Whereas, in difficult
tasks, where subjects needed to access the details, Independent-
Views s as bad as Detail-Only. Hence, when access to details is
important, coordination is critical.

In fact, Snapped-View's performance times for lookup tasks are
in the same extremely fast range as overview-only tasks.
Whereas, Independent-View's times drop to Detail-Only level
performance. When looking up details, perhaps the most
common task, coordination especially excels.

In subjective satisfaction, Snapped-Views gains rankings twice
as high (significant) as Detail-Only and Independent-Views.
Independent-Views average 20% higher than Detail-Only. Users
reported they were not distracted by the coordination, but in fact
expected that functionality. We believe these results indicate
that the Snap capability is indeed beneficial, wanted, and sorely
needed.

3.3 Combined Analysis

Together, these studies indicate the breakpoint at which time
savings during data exploration surpass interface construction
time. The 2" study used the same interface constructed in the 1%
study. The time cost of constructing the interface was 2-5
minutes, while it saved 0.5-1.5 minutes over the Detail-Only
interface for more difficult tasks. Hence, after a few tasks, users
are aready reaping savings with snapping their own interface.
Of course, it is difficult to factor in learning time and effects of
sharing snapped interfaces. Nevertheless, this simple analysisis
revealing. Customized information visualization is within the
grasp of novice users.

4. CONCLUSIONS and FUTURE WORK
Snap-Together Visualization introduces four novel contributions:

(@ Conceptual model: a relational model for visualization
coordination, based on coupling actions across joins.

(b) User interface: a user interface that enables end users to
construct custom coordinated visualization environments,
based on the conceptual model, alowing flexibility in data,
views, and coordinations.

(c) Architecture: an open architecture based on a simple API
that enables visualization developers to easily snap-enable
their visualizations.

(d) Evaluation: data savvy users were very capable at
constructing coordinated visualization environments of their
own using the model and interface. Users of a constructed
interface obtained 30-80% performance speedup for many
browsing tasks.

Snap has already proven useful in a variety of applications,
including: West Group case law, Census Bureau and GIS data
analysis, Maryland State Highway Administration accident data,
research projects on persona photo libraries, web logs, mailing
lists and technical -report databases.

Continued research is needed to explore alternate user interfaces
for coordination overviews, strategies for aggregation and history
keeping, multi-way coordination, window management,
coordination guidelines, and more.

5. ACKNOWLEDGMENTS

This research was partially supported by funding from West
Group and the U.S. Bureau of the Census.

6. REFERENCES

[AW95] Ahlberg, C., Wistrand, E., “IVEE: An Information
Visualization and Exploration Environment”, Proc. |EEE
Information Visualization ' 95, pp. 66-73, (1995).

[BWKO00] Baldonado, M., Woodruff, A., Kuchinsky, A., “ Guide-
lines for using multiple views in information visualization” ,
Proc. ACM Advanced Visual Interfaces ‘00, (May 2000).

[BC87] Becker, R., Cleveland, W., “Brushing scatterplots’,
Technometrics, 29(2), pp. 127-142, (1987).

[CBR97] Chi, E. H., Barry, P, Riedl, J, Konstan, J, “A
spreadsheet approach to information visualization”, Proc.
IEEE Information Visualization ‘97, pp. 17-24, (1997).

[CS94] Chimera, R., Shneiderman B., “An exploratory
evaluation of three interfaces for browsing large hierarchical
tables of contents’, ACM Transactions on Information
Systems, 12(4), pp. 383-406, (Oct. 94).

[DP95] Dumas, J., Parsons, P., “Discovering the way
programmers think about new programming environments’,
Communications of the ACM, 38(6), pp. 45-56, (June 1995).

[EW95] Eick, S., Wills, G., “High Interaction Graphics’,
Euro. Journal of Operations Research, #81, pp. 445-459,
(1995).

[FNP99] Fredrikson, A., North, C., Plaisant, C., Shneiderman,
B., “Temporal, geographical and categorical aggregations
viewed through coordinated displays’, Proc. ACM CIKM '99
Workshop on New Paradigms in Info Vis and Manip.,
(1999).

[HaeB88] Haeberli, P., “ConMan: a visua programming
language for interactive graphics’, Proc. ACM SgGraph ' 88,
pp. 103-111, (1988).

[HS99] Hochheiser, H., Shneiderman, B., “Understanding
patterns of user visits to web sites: interactive starfield
visualizations of WWW log data’, Proceedings ASS '99
Annual Conference, (1999).

[ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P., “ RMM:
a methodology for structured hypermedia design” , Communi-
cations of the ACM, 38(8), pp. 34-44, (August 1995).

[JBO94] Jacobson, A., Berkin, A., Orton, M., “LinkWinds:
interactive scientific data analysis and visualization”,
Communications of the ACM, 37(4), pp. 43-52, (April 1994).

[KS97] Kandogan, E., Shneiderman, B., “Elastic Windows:
evaluation of multi-window operations’, Proc. ACM CHI’ 97,
pp. 250-257, (March 1997).

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen, G,
Donjerkovic, D., Lawande, S., Myllymaki, J., Wenger, K.,
“DEVise: integrated querying and visual exploration of large
datasets’ , Proc. ACM SSGMOD’ 97, pp. 301-312, (1997).

[Nor00] North, C., “ Snap-Together Visualization”, University

of Maryland, Computer Science Dept. Doctoral Dissertation,
(Spring 2000, forthcoming).

[RLS96] Roth, S, Lucas, P., Senn, J., Gomberg, C., Burks, M.,
Stroffolino, P., Kolgjgjchick, J., Dunmire, C., “ Visage: a user
interface environment for exploring information”, Proc.
Information Visualization, IEEE, pp. 3-12, (October 1996).

[Shn92] Shneiderman, B. “ Tree visualization with treemaps: a
2-d space-filling approach” , ACM Transactions on Graphics,
11(2), pp. 92-99, (Jan. 1992).

[SSS86] Shneiderman, B., Shafer, P., Simon, R., Weldon, L.,
“Display strategies for program browsing: concepts and an
experiment” , |EEE Software, 3(3), pp. 7-15, (March 1986).

[Vel88] Velleman, P., The Datadesk Handbook, Odesta Corp.,
(1988).

