

 1

CrossY
A crossing based drawing application

Georg Apitz François Guimbretière

Department of Computer Science
Human-Computer Interaction Lab

University of Maryland,
College Park, MD, 20742

{apitz, francois}@cs.umd.edu

ABSTRACT
We introduce CrossY, a simple drawing application we

used as a benchmark to demonstrate the feasibility of using
goal crossing as the basis for a graphical user interface. We
show that crossing is not only as expressive as the current
point-and-click interface, but also offers more flexibility in
interaction design. In particular, crossing encourages the
fluid composition of commands making it easier to create
more fluid interfaces.

While crossing was previously identified as a potential
substitute for the classic point-and-click interaction, this
work is the first to report on the practical aspects of
implementing an interface based on goal crossing as the
fundamental building block.

INTRODUCTION
The recent introduction of portable, pen-based computers

has demonstrated that, while very powerful, the standard
WIMP-interface (Windows, Icons, Menus and Pointing
device) is not very well adapted to direct pen interaction.
Many WIMP interactions that were originally developed
for the mouse are difficult to perform with a pen on a tablet
computer. A prime example is the double click: while easy
to perform in a mouse environment (since the pointer is
stable), it proves to be quite difficult in pen-based
interfaces. Other difficulties that arise in pen-based
interfaces include occlusions created by the user’s hand due
to the direct setting, difficulties in using modifier keys
(such as pressing shift to extend the current selection), and
reduced access to keyboard shortcuts which are crucial for
expert performance.

Several solutions have been proposed to address these
problems. However, by its very nature, the design paradigm

of current Graphical User Interfaces (GUI) is not well
adapted to the pen's natural affordance: stroking.
Traditional point-and-click interfaces insist on segmenting
user interactions in a sequence of point-and-click
interactions. This makes using the current interface with a
pen a frustrating experience as users alternate between a
very natural and fluid input mode for sketching or taking
notes and a very rigid and segmented interaction while
using the GUI elements.

At the same time, recent experimental results by Accot et
al. [3] have suggested that steering through goals is at least
as efficient as pointing and clicking and could be a viable
substitute to pointing and clicking. Yet, with a few
exceptions limited in scope (e.g. Lotus Notes and Baudish’s
toggle maps [4]), designers have not explored the potential
of crossing as building block for GUIs.

In this paper we present the first attempt of a systematic
exploration of crossing as a fundamental building block of
graphical interface interactions. We developed CrossY
(Figure 1) a simple sketching application for which all
interface elements, (including menus, buttons, scrollbars,

Figure 1 The CrossY interface showing the brush-palette
and the palette with the find/replace dialogue open.

 2

and dialog boxes) rely solely on crossing. Our work not
only demonstrates the feasibility of crossing as an
interaction paradigm in a real life application, it also
provides initial feedback on the challenges one faces when
developing such a crossing interface. We found that
crossing is well adapted to both pen-based and mouse-
based interactions, it is more expressive than the equivalent
point-and-click interfaces, and it encourages a fluid
composition of commands. We also found that, to leverage
this latter advantage, special consideration of the interface's
layout is required that is not as important in tradional
interfaces; designers must acknowledge that the
arrangment of the widgets decides which commands can be
combined.

MOTIVATION AND DESIGN GOALS
While the point-and-click interface has been very

successful for desktop computers, many Tablet-PC users
find that it is not well adapted to pen-based interactions. In
part the problem rises from the mismatch between interface
and the interaction device: while the current interfaces were
designed in an indirect pointing configuration with a stable
pointer controller, the tablet computing focuses on a direct
setting, with a pen, a noisy input device. We believe that
these complaints have a deeper root: pen use encourages a
fluid, continuous style of interactions based on strokes,
whereas point-and-click interfaces insist on segmenting the
users interaction in a series of pointing steps.

To address this fundamental issue, we decided to explore
using crossing instead of pointing as suggested by Accot
[3]. We developed CrossY, a simple drawing application to
examine the strengths and weaknesses of crossing as the
building block of interaction design. We decided to use a
drawing application since it supports the fact that a pen is
rather used to draw strokes than to type.

In designing a new interaction language, one is presented
with many choices. Therefore, we decided to limit the
scope of this early exploration by focusing on the following
key aspects:

• Expressiveness. One of the most important question
to be addressed is: If the new language can express
as rich a set of features as the language it means to
replace? To answer this question, we decided to
examine how the key elements of a basic WIMP
interaction could be implemented using crossing. As
a starting point we decided to implement standard
buttons, scrollbar, menu systems, dialog boxes
(including selecting an item in a list) and a simple
set of window management tools (Figure 2). In each
case, our goal was first to mimic existing capabilities
before moving to new features.

• Fluid composition of commands. As illustrated by
Lotus Notes and the toggle maps system [4], goal
crossing-based interfaces have great potential to

promote a fluid composition of commands. This
composition allows users to issue several actions
(such as selecting among a group of toggle switches)
in one single stroke. Our goal was to determine if
this feature could be extended to a wider set of
interactions such as a search and replace task. We
also examined if the advantage of transitioning from
a visual interface to a gesture based interface, as
developed in the Marking Menu [11], could be
extended to the selection of several commands
inside a dialog box.

Functionality Standard Crossing

Normal

Radio

B
ut

to
ns

Checkbox

Pull-down

M
en

u

Pop-up

Scrollbar

 Dialog

Figure 2 The correspondence table showing traditional
elements of GUIs and their CrossY counterparts.

 3

• Efficiency. Reaching the goals above will have little
impact if the price to pay is an inefficient interface.
Therefore, efficiency was an important consideration
during the design process.

• Visual footprint. Screen real estate is a valuable
resource and the new interaction language should be
efficient in that perspective. The case of the crossing
interface is unique, since this aspect is interacting
with both the composition of commands and the
efficiency goals, as we discovered early during the
implementation.

It is important to note that in contrast to previous
conceptual explorations (such as Winograd and
Guimbretière [23]), we did not focus on the creation of
new, application-specific interactions. This is a deliberate
choice, as focusing on standard widgets gives us a
reference point against which our design might be
evaluated.

PREVIOUS WORK
Several systems have departed from the strict point-and-

click interface in the past. One example is Lotus Notes
which lets users select several emails by pointing and
clicking on the first one and then crossing through adjacent
emails to select them in the same stroke. Another example
is the toggle map system [4] in which users can draw on
top of a set of toggle buttons to trigger them instead of
being forced to click on each of them individually. Yet few
have conducted a systematic exploration of crossing as a
general interface design tool. A notable exception is the
conceptual prototype described by Winograd and
Guimbretière [23]. While Winograd presents a conceptual
prototype of visual instruments, a full implementation of
the system was never reported.

The theoretical foundation of crossing as a fundamental
aspect of interface design was laid by Accot who first
developed the steering law [1, 2], and then presented a
more detailed analysis on how it might lead to a new
interaction paradigm [3]. The work presented here
leverages this theoretical basis and shows the practical
aspects of developing such an interface.

Several menu systems such as Control Menu [18] and
FlowMenu [7] use crossing as a way to select commands.
Similar systems such as Pie Menu [10] and Marking Menu
[11] use direction and pen-up transition to select
commands. Our system leverages this contribution and we
are using FlowMenu as our primary pop-up menu system.

 In the recent years, many systems also challenged the
use of a point-and-click interface for pen computing, either
in whiteboard environments such as Tivoli [17], FlatLand
[15] and PostBrainstorm [8], on the desktop [20], or for
pen computing [21]. These systems are in general tuned to
a certain class of applications (such as brainstorming for
example) and did not focus on crossing as the sole
interaction paradigm. They were nevertheless influential to
us.

Finally several authors such as [9] have explored gesture-
based interactions. While gestures are important to crossing
interfaces, in general the gestures are very simple and the
crossing requirement simply ambiguity detection.

CROSSY
CrossY is a simple sketching program offering several

tools (such as a pen, a highlighter, and an eraser). The
parameters for both the pen and the highlighter can be
modified by the user. CrossY also offers a simple search-
and-replace feature which lets users find strokes based on
their attributes (color and thickness) and replace them.
Although this drawing system is primitive, this application
demonstrates how most of the standard widgets of point-
and-click interfaces (Figure 2) can be implemented in a
goal crossing framework. CrossY was designed to run on
the Tablet-PC platform and does not require a keyboard.

Command selection
Like many applications today, the CrossY interface

implements two kinds of menu systems. Common tools are
accessed through the use of a tool palette (Figure 3 left)
placed on the right of the display (Figure 1). CrossY offers
five basic tool choices: a pen, an eraser, a lasso, a
highlighter and a search tool. Each of these tools can be
selected by simply crossing the icon from right to left.
Since our design places the first item to cross on the
farmost right side of the display, hand occlusion can be
avoided (see Figure 4). The palette can also be moved
around to a more convenient place for the user. To move
the palette, users cross the center of the title bar between
the two black marks from left to right and then the palette
is attached to the pen and can be dragged around. Crossing
the same area from right to left brings the palette back in its

Figure 3 (left) The CrossY-palette with the feedback that
CrossY is in pen-mode (highlighted pen). (right) The
brush-palette and one stroke which selects color and width.
Two small lines in the title bars show the crossing position
to move the widgets.

 4

original position. This behavior is present for all palettes. In
addition, CrossY uses FlowMenu as the primary command
selection mechanism to control the application. This
includes commands for lasso, open a file, save the current
file and quit the application

Navigating within the document
Users navigate the document with a crossbar, the

equivalent of the standard scrollbar shown in Figure 5. The
crossbar looks like a simple bar spanning the length of the
document viewport. It shows the beginning, the end, and
the current location inside the document. To interact with it,
users perform gestures crossing the bar. We provide several
standard features such as page up and page down. These
commands are triggered by open triangles drawn on top of
the crossbar in the direction of the desired movement (see
Figure 5). To issue a repeat of a previous command the user
simply crosses the bar again and is now in continuous
scroll mode wh ich ends when the pen is lifted. It is
important to note that, because gestures can be issued
anywhere on the scrolling area, the system reduces the
distance users need to travel during the preparation phase
of the scrolling operation. This makes the scrolling process
faster and reduces the reliance on visual feedback. To jump
to a specific position inside the document, the user crosses
the bar in the vicinity of the target location and then finely
adjusts the position by simple dragging motions on the
right side of the bar. Note that because absolute access and
adjustment are now two different parts of the same
interaction it is possible to provide a different gain for both
phases. While the gain in the first phase is imposed by the
ratio of the document length to the scrollbar length, during
the adjustment phase, the gain can be reduced so that finer
adjustments are possible. While some experimental
scrollbars such as the FineSlider [13] provide similar
aspects, this fluid integration is in general difficult to
achieve in a click only interface. Another advantage of the

crossbar is that users do not need to acquire the cursor
before moving to a given position in the document. Again
this simplifies the overall interaction making it easier and
faster to use the system.

Selecting pen attributes
In CrossY, users can select the pen attribute either by

using the pen attribute dialog box or the brush palette.
Pen attribute dialog box

The Pen attribute dialog box is opened by crossing the
pen tool button and extending the stroke towards the left.

Figure 4 (left) The CrossY palette with the pen-panel opened and a single stroke which opens the pen-palette, selects width
and color of the strokes and validates the selection. By convention, the left and bottom edges of each dialog box are
validation edges [shown in green] and the top and right edges are cancelelation edges [shown in red]. (middle) The
checkbox to set the stroke-rendering attributes and one stroke selecting all items. (right). The checkbox to set the stroke-
rendering attributes and one stroke selecting only two items

Figure 5 Comparison of the traditional scrollbar to our
scrollbar. The dots indicate a click or the touching of the
screen with the pen, the strokes show the gesture which
triggers the action.

 5

Unlike current implementations which present “dual-use”
in a tool palette (such as in Adobe Illustrator), our
implementation does not force the user to dwell over the
button to access the extended features. This increases the
fluidity of the interaction and promotes chunking.

The pen attribute dialog box is presented in Figure 4 left .
It contains a set of radio buttons used to select the size and
color of the stroke. Radio buttons are designed so that
crossing along the horizontal axis of the label (in either
direction) will toggle the button. This feature reinforces the
notion that radio buttons represent exclusive choices
(Figure 4 left). By contrast, check boxes can be crossed
either along their main axis or perpendicular to it. While
only the perpendicular direction is needed (and reinforces
the fact that the buttons are not mutually exclusive, Figure
4 middle), we noticed that it was sometimes difficult to
cross only one item in that direction. Therefore we
provided tilted lines as a convenience to select several
items in a vertical stroke and one item in a horizontal stroke
(Figure 4 right).

An unusual aspect of the dialog boxes presented in
Figure 4 is that they do not seem to include an OK/Cancel
mechanism. This is because the buttons are in fact very
close to the edge of the window. Both the bottom and left
border are validating borders (shown in green in our
implementation), while the top and right border are
cancellation borders (shown in red in our implementation).
This layout lets users select all the options and validate the
selection in one stroke.
Brush palette

The brush palette is used to set the pen attributes when a
wider range of selections is desired or the exact result is not
as important. The brush palette is built by setting two
sliders side by side. To select a new attribute, users simply
cross one of the sliders at the desired position. Again, note
that the user can select different attributes in one stroke,
and can memorize combinations as a certain stroke (see
Figure 3).

Finding and replacing stroke attributes
Our application also provides a simple “find-and-

replace” function which lets users change the attributes of

some strokes on the screen. The function is accessible
through the dialog box seen in Figure 7. This form is
structured around two panels. On the top panel, the user
can select the thickness and color of the target strokes using
a set of radio buttons. On the bottom panel, the user can
select the new color and width for the selected strokes.
After setting the target attributes, the user can find the next
stroke forward by crossing the "find" button from right to
left. In a similar way, replacement is triggered by crossing
the "replace" button from left to right. While this layout
seems somewhat unusual, it has been selected to encourage
command composition. For example a user can in one
gesture: select “medium” and “red”, cross the "find" button
to find the first occurrence of this type of line, cross the
"replace" button to indicate the need for replacement, and
select “blue” and “thin” as the replacement values (Figure 7
middle). The command is executed as the pen is lifted from
the panel. Once the parameters have been correctly
selected, there is no need to reselect them, and a simple
circular motion between the "find" and "replace" button
will trigger the replacement (Figure 7 right). It is also easy
to skip some replacements by only circling around the
"find" button without crossing the "replace" button.
Backwards search is provided by crossing the "find" button
from left to right and an undo for the replace is achieved by
crossing the "replace" button from right to left.

Figure 6 The file dialog box.

Figure 7 (left) Using single strokes on the find and replace panel. (middle) Combining the single strokes into one stroke.
(right) Repeated find-and-replace operations using a continuous stroke.

 6

Loading an existing drawing
The file dialog box (Figure 6) can be called using the

FlowMenu, it allows users to navigate the file system and
to load an existing drawing. At first, using crossing to
navigate the file system hierarchy seems like a challenge as
since current interfaces rely heavily on the use of sequential
point-and-click operations for this function. Using the
current standard navigation system, users first have to
search through the list of files present at the current level,
probably by first using the scrollbar tab for coarse
adjustment, and then by moving line by line using the
arrow at the end of the scrollbar. Then, they have to select
the next directory to go to, (or the file to open) by double
clicking on its name. For directories containing a large
number of items, this method can be quite cumbersome and
is far less efficient than a similar text based interface for
which auto-completion makes it very easy for users to
navigate even through large trees. We believe that the
crossing paradigm provides ways to combine the
convenience of the graphical interface with the speed of the
auto-completion idea.

In our directory navigation tool, the local directory is
scanned and its contents are parsed into a hierarchy of
display levels. At the first level, we include all the names
which are unambiguous (i.e. which do not share a common
prefix with any other name) as well as the maximum
common prefixes for all other names in the directory. As
we go from one level to the other, for each prefix, we add
the list of unambiguous names and maximum common
prefixes derived from that prefix by adding in turn all
possible letters following this prefix (see Figure 8). It is
important to note that there are only a limited set of
possible characters (256 in theory but far less in practice)
that might follow a given prefix. As a consequence, moving
from one level to the next only adds a small number of new
options for each prefix (often less than ten). Yet, assuming
an average of 10 new words per prefix, after crossing only
3 levels 1000 elements can be accessed.

Once created, this hierarchy can be navigated as follows
(Figure 9): At all times the currently selected item is
presented highlighted at the center of the widget. Users can
change the currently selected item by dragging up and
down from anywhere on the widget. To move one level

down, users simply need to make a left-to-right horizontal
movement in the current gesture. This causes the current
highlighted prefix (represented with ellipsis) to extend one
level. To move one level up the users need to make a small
right-to-left horizontal movement in their gesture. Going
downward, while an unambiguous name is selected, loads
the corresponding directory or file. Going upward at the
root display level loads the parent directory. During
navigation, feedback is provided in several ways: when the
user starts a horizontal segment, a crossing goal is
displayed in form of a little bar indicating the point at
which the transition to the next level will be triggered. This
feedback is mostly useful for the novice. For more expert
users, we also generate a “click” each time a transition
between levels occur and a “select” sound each time a
directory (or a file is selected). To distinguish between files
and directories we display a slash at the end of directory
names.

This system proves to be very efficient to move through
large hierarchies given that the number of levels inside a
given directory is very small. This allows the user to
navigate through several directory levels in the space of a
small window.

Implementation
Our system was implemented on a Tablet-PC using the
Windows XP Ink API and the .NET framework as the basis
for our design, but could easily be ported to any other
language or operating system as it relies only on basic
windowing constructs (with the exception of ink
management).

DISCUSSION
CrossY was implemented as a platform to investigate

how crossing might improve the overall fluidity of pen-
based interaction on tablet computers. While it is missing
many advanced features of today’s graphical applications,
it clearly shows the potential of crossing as a design
paradigm. In this section we are reporting the insights we
gathered while designing CrossY.

Expressiveness
From our experience implementing CrossY it is clear that

the crossing paradigm is at least as expressive as the
standard interface, providing the same level of functionality

Figure 8 The creation of the file hierarchy.

Figure 9 Navigating through a directory name presented in Figure 6 to open
the file Paper04/Crossy,pdf.

 7

as the latter. By letting the designer take into account the
position of the crossing (as in the crossbar or the pen
attribute selection palette), the gesture performed (as in the
crossbar), and/or the direction of the stroke, it becomes
easy to provide many features with a minimal visual
footprint on the screen. Our experience also provided us
with some insights about the trade-offs involved while
designing an interface using crossing.

Overloading versus easy discovery
The ability to overload different functions on top of the

same visual artifact is certainly attractive from the
designer's point of view, but it raises the problem of
discovery. This is not a new problem in interface design
and was identified in many systems such as the Marking
Menu [12]. There are several dimensions to this problem.
First, compared to pure gesture based systems (such as [9]),
the crossing system provides a visual cue that some actions
might be available at a specific location. If we assume the
use of consistent design guidelines (such as the color-coded
borders for dialog boxes), the users will acquire the basic
set of overloading as they become more and more familiar
with the system. This set includes aspects such as the
direction used to perform an action and using the reverse
direction as natural undo for the action. Furthermore, the
most common functions used to manipulate the crossbar
are likely to be memorized rapidly. It is also important to
remember that while the WIMP interfaces provide a lot of
visual feedback, the semantics of this feedback is not
always clear for users. This prompted the introduction of
ToolTips. The same technique might be applied here.

Fluid composition of commands
Another interesting aspect of the crossing paradigm is the

possible composition of commands in one single stroke. We
see this feature as a fundamental aspect of this approach
since it allows users to smoothly move from novice to
expert. Novice users will perform one command at a time,
while relying heavily on visual feedback. As they become
more and more proficient, they might remember the shape
of the strokes corresponding to a particular dialog box and

rely less and less on visual feedback. While menu systems
such as the Marking Menu were designed to encourage
such transitions in the case of single command selections,
we believe that this work is the first to explore how the
same effect can be obtained for a succession of commands.
Although it is certainly too early to judge the success of
this approach at this point, our initial experience seems to
imply that the natural use of the pen in an interaction
setting with the computer strongly supports such
compositions. For example our implementation shows how
crossing might alleviate the need for dwell time for several
interactions.

Somewhat like the keying system proposed by Zhai [24],
we envision a system in which as novice users discover the
interface, they also train themselves towards generating
accurate gestures for the most commonly used commands.
At some point, users will be able to remember the shape of
the gesture well enough that it can be generated on top of
the dialog box without the need for visual feedback. We
believe that such a system could be implemented by having
two concurrent tracking mechanisms for the user input. The
first will be based on the system described above and will
follow the crossing of each interface element. This
mechanism will probably require visual feedback. The
second tracking mechanism will track the user input and
use a gesture recognition engine to classify the user input
into possible strings of commands. Depending on aspects
such as the start of the stroke, the scale of the stroke, or the
overall speed, the input of both systems can be integrated to
infer the user's commands.

Our implementation of the directory navigation system is
the first step in that direction and shows how relaxing the
strict constraints of goal crossing might help improve
interaction fluidity. As shown in Figure 10, our first design
for the directory navigator was based on a simple but rigid
paradigm: the user will be building the prefix one letter at a
time, from left to right by crossing a virtual crossbar with A
at the top and Z at the bottom. While very simple in
principle, this approach proved to be very difficult to
manipulate. The layout creates abrupt changes in direction
which causes the user to overshoot the path they are
supposed to follow. By providing only one selection and
letting the user create a crossing mark at its current location
our current implementation provides a very similar
conceptual model but simplifies the general interaction
constraints on the user.

Space and time efficiency
In our experience, if one considers novice users, the

space requirement of a crossing interface will be similar to
the equivalent point-and-click interface. This is derived
from the fact that crossing is as efficient as aiming, so one
can simply substitute every standard button with a crossing
button of the same size.

Yet, when one wishes to leverage command composition,
a space speed trade-off will appear because some space will

Figure 10 Original design for the list manipulation.
The system was based on an absolute mapping scheme (A
on top and Z at the bottom) with a transition from one level
to the next on strict boundaries shown as light lines.

 8

be needed due to the sloppiness of rapid gestures. From our
experience, we believe that a slightly larger footprint might
prove to be acceptable as the expected speed benefits from
command composition are substantial. Furthermore, natural
constraints of efficient visual layout (such as the use of
negative space as described in Mullet et al.[14]), might
prove to be all that is needed. Of course, it is too soon to
know for sure and we intend to conduct user experiments to
confirm or disconfirm this conjecture.

Navigation through large lists (or hierarchies)
Our exploration of the crossing interface led us to a novel

way to navigate large lists (and by extension large
hierarchies) which seems more efficient and fluid than the
traditional list box approach. This problem has been
explored before using speed dependent zooming [11],
geometric Fisheye distortion in the FishEye menu [5] and
user's directed pruning of the hierarchy as in Favorite
Folders [12]. By using the prefix hierarchy as the basis for
our progressive disclosure strategy (a fisheye in the general
sense described by Furnas [6]), we create the pen
equivalent of the keyboard based auto-completion system.
This approach (somewhat similar to the Dasher [22]
predictive text entry mechanism) limits the number of
choices to be performed by users and offers a more fluid
way to navigate hierarchies.

While we demonstrated this system for lists, it can be
applied to any data set for which one can define the notion
of an ordered prefix hierarchy. This includes information
such as date (structured by year, month, day, hour…), but
also any tabular data with columns which have a natural
order.

Hardware and software considerations

Tracking limitations
Early Tablet-PCs were unable to track the pen outside the

screen area. This causes problems when a gesture is started
on the screen but extended outside of it. This problem is
common in the direct setting, and could be easily addressed

by extending the tracking area beyond the limit of the
screen. Note that while newer models, such as the Toshiba
Portégé are doing just that, the mouse information provided
to the application framework is still clipped at the boundary
of the screen. We believe that providing the pen coordinates
outside the boundary of the screen (at least for requesting
applications), will significantly improve the usability of
these devices.

Another problem we observed was that sometimes users
start their crossing gesture before landing the pen and land
the pen very close to the crossing threshold (Figure 11).
While this is not a problem for simple widgets such as
buttons, it makes it difficult to recognize the intended
gesture before the line is crossed and feedback needs to be
provided (this might happen for example when setting the
absolute position of a document). To address this problem,
our system keeps a small queue of pen positions when the
pen is flying over the tablet. Values in that queue are used
at pen touchdown as a way to prime the gesture recognition
and increase its reliability.
Other devices

While our interface was developed for pens on a Tablet-
PC, the results presented here can also be applied to other
configurations, such as digital whiteboards and desktop
computers using either a traditional mouse or a pen.

FUTURE WORK
We are planning to develop a richer toolkit of widgets to

extend the scope of this study. We would also like to
develop a set of des ign rules which help to design
applications based on crossing. As part of this effort, we are
planning on an extensive user evaluation program to
investigate both low level interactions (such as crossing a
single goal) as well as the compound commands.
Beyond visual feedback

We are also investigating ways to foster a rapid transition
from visually-oriented interaction to gesture based
interaction. Our current prototype is already using sound in

Figure 11 Leveraging the tracking information during a scrollbar interaction. If the system only uses the information
gathered after the pen touches the screen (shown here as a solid line), it may be difficult to recognize the intended gesture
since the first stroke is very small. Taking into account the information gathered while the pen is in tracking range (shown
here as a dotted line) can greatly improve gesture recognition since the system can observe a longer stroke.

 9

some cases (e.g. during the directory navigation). Tactile
feedback transmitted from the screen through the pen tip
seems another obvious candidate. We are planning to
explore how new haptic techniques simulate the feel of
physical buttons on displays [16, 19] could be extended to
create “haptic channels”. This might help users to navigate
through complex dialog boxes with minimum visual
feedback.

CONCLUSION
We presented the first exploration of crossing as the

primary building block of a graphic user interface. We
found that crossing is as expressive as the more traditional
point-and-click and provides designers with more
flexibility than the other because it takes into account the
shape and direction of the strokes. We also found that a
crossing interface can encourage the fluid composition of
commands in one stroke and illustrated this feature with
several examples such as our find and replace window. We
believe that this fluid composition of commands might lead
to more efficient and natural interfaces for pen-based
computing. We also believe that this finding might be
applied in other domains such as whiteboard environments
and mouse-based desktop computing.

ACKNOWLEDGEMENTS
The authors would like to thank Grecia Lapizco-Encinas

and Alejandro Rodriguez who implemented an early
prototype of a crossing interface as part of a graduate HCI
seminar project. We also wish to thank Corinna
Löckenhoff, Anja Szustak and all other reviewers of early
drafts of this paper for their comments. This work has been
supported in part by Microsoft Research for the Microsoft
Center for Interaction Design and Visualization at the
University of Maryland. Dave Levin was drawing the
screen content in Figure 1.

REFERENCES
1. Accot, J. and S. Zhai. Beyond Fitts' Law: Models for

Trajectory-Based HCI Tasks. Proceedings of CHI'97,
pp. 295 - 302.

2. Accot, J., Les Tâches Trajectorielles en Interaction
Homme-Machine—Cas des tâches de navigation., PhD
thesis, Université de Toulouse 1. 2001

3. Accot, J. and S. Zhai. More than dotting the i's ---
foundations for crossing-based interfaces. Proceedings
of CHI'03, pp. 73 - 80.

4. Baudisch, P. Don't click, paint! Using toggle maps to
manipulate sets of toggle switches. Proceedings of
UIST'98, pp. 65 - 66.

5. Bederson, B.B. Fisheye menus. Proceedings of
UIST'00, pp. 217 - 225.

6. Furnas, G.W. Generalized fisheye views. Proceedings
of CHI'86, pp. 16 - 23.

7. Guimbretière, F. and T. Winograd. FlowMenu:
combining command, text, and data entry. Proceedings
of UIST'00, pp. 213 - 216.

8. Guimbretière, F., M. Stone, and T. Winograd. Fluid
interaction with high-resolution wall-size displays.
Proceedings of UIST'01, pp. 21 - 30.

9. Hong, J.I. and J.A. Landay. SATIN: a toolkit for
informal ink-based applications. Proceedings of
UIST'00, pp. 63 - 72.

10. Hopkins, D., The Design and Implementation of Pie -
Menus. Dr. Dobb's Journal, 1991. 16(12): p. 16 - 26.

11. Kurtenbach, G., The design and Evaluation of Marking
Menus, PhD thesis, University of Toronto. 1993

12. Lee, B. and B. Bederson, Favorite Folders: A
Configurable, Scalable File Browser. 2003, UMD.

13. Masui, T., K. Kashiwagi, and I. George R. Borden.
Elastic graphical interfaces to precise data
manipulation. Proceedings of CHI'95, pp. 143 - 144.

14. Mullet, K. and D. Sano, Designing Visual Interfaces:
Communication Oriented Techniques. 1994: Prentice
Hall.

15. Mynatt, E.D., T. Igarashi, W.K. Edwards, and A.
LaMarca. Flatland: new dimensions in office
whiteboards. Proceedings of CHI'99, pp. 346 - 353.

16. Nashel, A. and S. Razzaque. Tactile virtual buttons for
mobile devices. Proceedings of CHI'03, pp. 854 - 855.

17. Pederson, E.R., K. McCall, T.P. Moran, and F.G. Halas,
Tivoli: an electronic whiteboard for informal
workgroup meetings, in Human Factors in Computing
Systems. INTERCHI '93. 1993, IOS Press: Amsterdam,
Netherlands. p. 391-8.

18. Pook, S., E. Lecolinet, G. Vaysseix, and E. Barillot.
Control menus: excecution and control in a single
interactor. Proceedings of CHI'00 Extended Abstracts,
pp. 263 - 264.

19. Poupyrev, I. and S. Maruyama. Tactile interfaces for
small touch screens. Proceedings of UIST'03, pp. 217 -
220.

20. Ramos, G. and R. Balakrishnan. Fluid interaction
techniques for the control and annotation of digital
video. Proceedings of UIST'03, pp. 105 - 114.

21. Saund, E., D. Fleet, D. Larner, and J. Mahoney.
Perceptually-supported image editing of text and
graphics. Proceedings of UIST'03, pp. 183 - 192.

22. Ward, D.J., A.F. Blackwell, and D.J.C. MacKay.
Dasher—a data entry interface using continuous
gestures and language models. Proceedings of
UIST'00, pp. 129 - 137.

23. Winograd, T. and F. Guimbretière. Visual instruments
for an interactive mural. Proceedings of CHI'99
(Extended Abstracts) , pp. 234 - 235.

24. Zhai, S. and P. -O. Kristensson. Shorthand writing on
stylus keyboard. Proceedings of CHI'03, pp. 97 - 104.

