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Fig. 9. The displays of the DEVIATION case study using EventFlow [41], before (a) and after (b) applying analytic focusing strategies. From the
simplified display (b), analysts could see that approximately half of the records contained events in the correct order (shown at the top), and the
common deviations were clearly visible below.
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M. Pohl, and N. Suchy. TimeCleanser: A visual analytics approach
for data cleansing of time-oriented data. In Proceedings of the 14th
International Conference on Knowledge Technologies and Data-driven
Business, pages 18:1–18:8, 2014.
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Fig. 10. The displays of the DRUG case study using EventFlow [41], before (a) and after (b) applying analytic focusing strategies. In (a), green
and purple bars represent the prescriptions of two drugs. In (b), bars in light blue represent the use of a single drug, in dark blue represent the
concurrent use of the two drugs, and in gray represent interruptions.
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