Skip to main content


Bederson, B., Shneiderman, B., Wattenberg, M. (July 2001)
Ordered and Quantum Treemaps: Making Effective Use of 2D Space to Display Hierarchies
ACM Transactions on Graphics (TOG), 21, (4), October 2002, 833-854. [Published Version]
HCIL-2001-18, CS-TR-4277, UMIACS-TR-2001-57, ISR-TR-2005-22

Treemaps, a space-filling method of visualizing large hierarchical data sets, are receiving increasing attention. Several algorithms have been proposed to create more useful displays by controlling the aspect ratios of the rectangles that make up a treemap. While these algorithms do improve visibility of small items in a single layout, they introduce instability over time in the display of dynamically changing data, fail to preserve order of the underlying data, and create layouts that are difficult to visually search. In addition, continuous treemap algorithms are not suitable for displaying quantum-sized objects within them, such as images. This paper introduces several new treemap algorithms, which address these shortcomings. In addition, we show a new application of these treemaps, using them to present groups of images. The ordered treemap algorithms ensure that items near each other in the given order will be near each other in the treemap layout. Using experimental evidence from Monte Carlo trials, we show that compared to other layout algorithms ordered treemaps are more stable while maintaining relatively favorable aspect ratios of the constituent rectangles. A second test set uses stock market data. The quantum treemap algorithms modify the layout of the continuous treemap algorithms to generate rectangles that are integral multiples of an input object size. The quantum treemap algorithm has been applied to PhotoMesa, an application that supports browsing of large numbers of images.


NetCHI Lab
More information

Tech Reports
Video Reports
Annual Symposium

Seminars + Events
HCIL Seminar Series
Annual Symposium
HCIL Service Grants
Events Archives
HCIL Conference Travel Award
Job Openings
For the Press
HCIL Overview
Become a Member
Collaborating Groups + People
Academic Visitors
Join our Mailing List
Contact Us
Visit Us
HCIL Store
Give the HCIL a Hand
HCIL T-shirts for Sale
Our Lighter Side
HCIL Memories Page
Faculty/ Staff
Ph.D. Alumni
Past Members
Research Areas
Design Process
Digital Libraries
Physical Devices
Public Access
Research Histories
Faculty Listed by Research
Project Highlights
Project Screenshots
Publications and TRs
Studying HCI
Masters in HCI
PhD in HCI
Visiting Scholars
Class Websites
Sponsor our Research
Sponsor our Annual Symposium
Active Sponsorship
Industrial Visitors

Web Accessibility