Skip to main content

Carlea Holl-Jensen||cholljen@umd.edu


HCIL-2008-29

Aris, A. (August 2008)
Visualizing and Exploring Networks Using Semantic Substrates
Ph.D. Dissertation from the Department of Computer Science
HCIL-2008-29

Visualizing and exploring network data has been a challenging problem for HCI (Human-Computer Interaction) Information Visualization researchers due to the complexity of representing networks (graphs). Research in this area has concentrated on improving the visual organization of nodes and links according to graph drawing aesthetics criteria, such as minimizing link crossings and the longest link length. Semantic substrates offer a different approach by which node locations represent node attributes. Users define semantic substrates for a given dataset according to the dataset characteristics and the questions, needs, and tasks of users. The substrates are typically 2-5 non-overlapping rectangular regions that meaningfully lay out the nodes of the network, based on the node attributes. Link visibility filters are provided to enable users to limit link visibility to those within or across regions. The reduced clutter and visibility of only selected links are designed to help users find meaningful relationships. This dissertation presents 5 detailed case studies (3 long-term and 2 short-term) that report on sessions with professional users working on their own datasets using successive versions of the NVSS (Network Visualization by Semantic Substrates, http://www.cs.umd.edu/hcil/nvss) software tool. Applications include legal precedent (with court cases citing one another), food-web (predator-prey relationships) data, scholarly paper citations, and U. S. Senate voting patterns. These case studies, which had networks of up to 4,296 nodes and 16,385 links, helped refine NVSS and the semantic substrate approach, as well as understand its limitations. The case study approach enabled users to gain insights and form hypotheses about their data, while providing guidance for NVSS revisions. The proposed guidelines for semantic substrate definitions are potentially applicable to other datasets such as social networks, business networks, and email communication. NVSS appears to be an effective tool because it offers a user-controlled and understandable method of exploring networks. The main contributions of this dissertation include the extensive exploration of semantic substrates, implementation of software to define substrates, guidelines to design good substrates, and case studies to illustrate the applicability of the approach to various domains and its benefits.



Community Analysis and Visualization Screenshot

Community Analysis and Visualization
More information

Tech Reports
Video Reports
Annual Symposium

News
Seminars + Events
Calendar
HCIL Seminar Series
Annual Symposium
HCIL Service Grants
Events Archives
Awards
HCIL Conference Travel Award
Job Openings
For the Press
HCIL Overview
Become a Member
Collaborators
Collaborating Groups + People
Academic Visitors
Join our Mailing List
Contact Us
Visit Us
HCIL Store
Give the HCIL a Hand
HCIL T-shirts for Sale
Our Lighter Side
HCIL Memories Page
Faculty/ Staff
Students
Ph.D. Alumni
Past Members
Research Areas
Communities
Design Process
Digital Libraries
Education
Physical Devices
Public Access
Visualization
Research Histories
Faculty Listed by Research
Project Highlights
Project Screenshots
Publications and TRs
Videos
Books
Products
Presentations
Studying HCI
Masters in HCI
PhD in HCI
Visiting Scholars
Class Websites
Sponsor our Research
Sponsor our Annual Symposium
Active Sponsorship
Industrial Visitors