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Graph as Metaphors

Representation in terms of graphs G = {V ,E}, is a useful
metaphor that allows us to exploit the mathematical
language of graph theory and some relatively simple
results.
Graphs often provide a powerful representation for the
interpretation of models.
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Characterizing Statistical Approaches to Studying
Graphs

1. Specify model, or a sequence or a class of models.
2. Ask about a “sampling scheme”—mechanism for data

generation.
Sometimes 1. and 2. go together.

3. Set up likelihood function (and specify priors).
4. Estimate and assess fit, e.g., using asymptotics.

Here is where algorithms fit in, e.g., IPF, EM, MCMC,
variational methods.

Check on validity of assumptions.
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Graphical Representations of Statistical Models

Variables Individuals
Directed a b

Undirected c d

a—HMMs, state-space models, Bayes nets, causal models
(DAGs), recursive partitioning models
b—social networks, trees, citation and email networks
c—covariance selection models, log-linear models
d—relational networks, co-authorship networks

Note that a and c refer to probability models, while b and d are
used to describe observed data.
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a—HMMs, State-Space Models
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a—Causal Models, DAGs

CHILD network (blue babies) (Cowell et al.,1999)
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b—Social Networks

AIDS blog network (Kolaczyk, 2009)
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b—Trees

Ancestral Trees (Kolaczyk, 2009)
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c—Log-linear Models

Prognostic factors for coronary heart disease for Czech
autoworkers—26 table (Edwards and Hrvanek, 1985)
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d—Relational Networks

Zachary’s “karate club” network (Kolaczyk, 2009)
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d—Framingham “obesity” network

Christakis and Fowler (2007)
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d—Internet Topology
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d—Yeast Protein-Protein Interaction

Airoldi et al. (2008)
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Graphical Models for Variables

The following Markov conditions are equivalent:
Pairwise Markov Property: For all nonadjacent pairs of
vertices, i and j , i ⊥ j | K \ {i , j}.
Global Markov Property: For all triples of disjoint subsets of
K , whenever a and b are separated by c in the graph,
a ⊥ b | c.
Local Markov Property: For every vertex i , if c is the
boundary set of i , i.e., c = bd(i), and b = K \ {i ∪ c} , then
i ⊥ b | c.

All discrete graphical models are log-linear.
The Gaussian graphical model selection problem involves
estimating the zero-pattern of the inverse covariance or
concentration matrix.
For DAGs, we continue to use Markov properties but also
exploit partial ordering of variables.
Always assume individuals or units are independent r.v.’s.
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Models for Individuals/Units in Networks

Graph describes observed adjacency matrix.
Usually use 1 for presence of an edge, and 0 for absence.
Can also have weights in place of 1’s.

Except for Erdös-Rényi-Gilbert model, where occurrence
of edges corresponds to iid Bernoulli r.v.’s, units are
dependent.
Simplest generalization of E-R-G model assumes that
dyads are independent—e.g., the p1 model of Holland and
Leinhardt, which has additional parameters for
reciprocation in directed networks.
Exponential Random Graph Models (ERGMs) that include
“star” and “triangle” motifs no longer have dyadic
independence.
Can have multiple relationships measure on same
individuals/units.
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Holland and Leinhardt’s p1 model

n nodes, random occurrence of directed edges.
Describe the probability of an edge occurring between
nodes i and j :

log Pij (0,0) = λij

log Pij (1,0) = λij + αi + βj + θ

log Pij (0,1) = λij + αj + βi + θ

log Pij (1,1) = λij + αi + βj + αj + βi + 2θ + ρij

3 common forms:
ρij = 0 (no reciprocal effect)
ρij = ρ (constant reciprocation factor)
ρij = ρ+ ρi + ρj (edge-dependent reciprocation)
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Inference for Graphical Models for Variables

For discrete r.v.’s, we use maximum likelihood estimation
with asymptotics as n→∞ with p fixed.
For Gaussian r.v.’s, we use standard normal theory.
Identifiability issues arise when p > n. Role for
“regularization” penalties, e.g., LASSO.
Hierarchical Bayesian models allow for smoothing:

Dirichlet process prior is often useful.
Mixtures of DP models tend to destroy graphical
interpretation (i.e., conditional independence).
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Inference for Models for Individuals/Units in Networks

Relevant asymptotics has number of nodes, n→∞.
When there are node-specific parameters, asymptotics are
far more complex.
Maximum likelihood approaches available for ERGMs.
For blockmodels, with constant structure within blocks,
there is asymptotic theory.

Related literature on “community formation” and
“modularity.”

Degeneracy problems arise for more general ERGMs.
No suitable inference approaches for most “statistical
physics” style models.

Fitting “power laws” to degree distributions is especially
problematic!
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Estimation for p1

The likelihood function for the p1 model is clearly of
exponential family form.
For the constant reciprocation version, we have

log p1(x) ∝ x++θ +
∑

i

xi+αi +
∑

j

x+jβj +
∑

ij

xijxjiρ (1)

Get MLEs using iterative proportional fitting—method
scales.
Holland-Leinhardt explored goodness of fit of model
empirically by comparing ρij = 0 vs. ρij = ρ.

Standard asymptotics (normality and χ2 tests) aren’t
applicable; no. parameters increases with no. of nodes.

Fienberg and Wasserman used the edge-dependent
reciprocation model to test ρij = ρ.
See Goldenberg et al. (2010) review of these and related
models.
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Exponential Random Graph Models

Let X be a n × n adjacency matrix or a 0-1 vector of length(n
2

)
or a point in {0,1}n).

Identify a set of network statistics

t = (t1(X ), . . . , tk (X )) ∈ Rk

and construct a distribution such that t is a vector of
sufficient statistics.
This leads to an exponential family model of the form:

Pθ(X = x) = h(x) exp{θ · t − ψ(θ)},

where
θ ∈ Θ ⊆ Rk is the natural parameter space;
ψ(θ) is a normalizing constant (often intractable);
h(·) depends on x only.
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Estimation for Exponential Random Graph Models

Pseudo-estimation using independent logistic regressions,
one per node.
MCMC.
Problem of degeneracy or near degeneracy.

MLEs don’t exist—maximize on the boundary.
Likelihood function is not well-behaved and most
observable configurations are near the boundary.
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Connecting the Two Graphical Approaches

There is link between them, not just a common metaphor.
Frank and Strauss (1986) introduce a pairwise Markov
property for individual-level undirected network models.
Xij and Xi ′j ′ are conditionally independent given the other
r.v.’s Xkl iff they do not share a vertex.
Set up conditional independence graph, G∗ = {V ∗,E∗},
where edges from original graph, G = {V ,E}, are nodes.
Distribution of X satisfies the pairwise Markov property iff

Pr{X = x} ∝ exp{
NV−1∑
k=1

θkSk (x) + θτT (x)}

where Sk (x) is no. of k -stars and T (x) is no. triangles.
Many other ERGMs don’t have this property, e.g., those
with alternating k -stars and alternating triangles.
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Roles for Latent Variables

For graphical models for variables:
Natural for many models, e.g., HMMs.
Arise naturally in Hierarchical Bayesian structures.
Hyperparameters are latent quantities.

For models for individuals/units in networks:
Random effects versions of node-specific models such as
p1.
Arise naturally in hierarchical Bayesian approaches, such
as Mixed Membership Stochastic Blockmodels and latent
space models.

Can also use latent structure to infer network links from
data on variables for individuals, e.g., as in relational topic
models.
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Role of Time/Dynamics

For graphical models for variables:
Time gives ordering to variables and assists in causal
models.
Note distinction between position of underlying “latent”
quantity over time and the actual manifest measurement
associated with it, which is often measured retrospectively.

Dynamic models for individual-based networks:
Continuous-time stochastic process models for event data,
perhaps aggregated into chinks.
Discrete-time transition models, perhaps embedded into
continuous time process.
Details in Xing presentation yesterday and in Neville and
Smyth presentations this morning.
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Drawing Inferences From Subnetworks and Subgraphs

Inferences from Subgraphs
Conditional independence structure allows for local
message passing and inference from cliques and regular
subgraphs when there are separator sets that isolate
components.
Interpretation in terms of GLM regression coeficients
always depends on the other variables in the model.

Inferences from Subnetworks
Most properties observed in subnetworks don’t generalize
to full network, and vice versa, e.g., power laws for degree
distributions.
Problem is dependencies among nodes and boundary
effects for subnetworks.
Missing edges are generally not missing at random, except
for some sampling settings, e.g., see Handcock and Gile
(2010).
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Cross-Validation for Graph Mining

Take a subset of the data for training and cross validate on
remainder, 80% for training and 20% for validation.
Possibly repeat.
Works for iid setting involving graphical models for
variables.
DOESN’T WORK FOR NETWORKS OF INDIVIDUALS!!!!

Except perhaps for Markov graphs à la Frank and Strauss.
Recall discussion from Xing’s talk re approximate results.
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Summary

Two types of settings:
Variables Individuals

Directed a b
Undirected c d

For a and c we use conditional independence ideas to
model probabilistic relations among variables.
for b and d we use graph to represent observed data.
Statisticians and machine learning approach should
involve the following sequence:

1. data generation process
2. statistical models
3. algorithms (need to be appropriate for 1. and 2.)
4. model assessment
5. inferences, predictions, etc.
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