Kernel Methods for
Structured In- & Outputs

Thomas Gartner

Supervised Classification Example
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Supervised Classification
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Motivation: Support Vector Machines

Motivation: Support Vector Machines
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Motivation: Maximal Margin Hyperplane Version Space Geometry of SVMs
.Bayes point”
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Version Space Geometry of SVMs

.Bayes point”

Regularised Risk Minimisation Principle
n
h=argmin D Vi fla)) st QUI<A
fer =1

error on training capacity of
data (drawn iid) hypothesis space
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h:arjgen}ln ;fgl‘lf(y;-. f(z)) + vQ[f]




Regularised Risk Minimisation Principle

B = argmin l‘zzl Vg () st Q] <A
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Stability with respect to Outliers

Kernel Methods
) =2 cik(ai, )

in hypothesis space:

in input space:
~ -

before, we were looking for a hyperplane in input space,
now, we are looking for a hyperplane in a function space (a RKHS with kernel k
where each x is represented by the function k(x,.)

requiring an RKHS means basically everything works as before

Hypothesis Change with Kernels
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Stability with respect to Outliers

Prediction of Biochemical Properties




Approach: Kernel Methods for Graphs
HOEDICTLICD:

in hypothesis space: in input space:
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we need valid kernel functions for molecules: k ( 7 )

The “Intersection Kernel”-Principle (1)

X

can be feasible even if
x is only given intensionally
and even if |x| is exponential
in its representation!!!

k(x,x")=p(xNx")

n-gram Kernels (n=2)

cat cart

k(cat,cart) = 1

The “Intersection Kernel”-Principle (2)

X

k(% X)=2 e T(RL)-F(|P], )

Subsequence Kernels (n=2)
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k(cat,cart) = A2+ A3+ A°
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Subsequence Kernels (n=2)

cat cart

k(cat,cart) = A2+ A3+ A°




(Parse-) Tree Kernel
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Graph Kernels

Cyclic Pattern Kernels

‘complete’ as well as all-subgraphs graph kernels are hard
polynomial algorithm for all-walks kernels [colt'03]
(enumeration of) cyclic patterns [kdd'04]
walk kernel for RRL [mlj'06]

[ilp’03] “best algorithmic paper”

computing CPK is NP-hard
but efficient learning is still possible as
most compounds contain only a few cycles

Graph Kernels --- Negative Results

Computing the “all patterns” graph kernel is hard for instance for patterns

that are “all paths”, “all cycles”, or “all connected subgraphs” with
subgraph-isomorphism as the embedding operator.

Computing any graph kernel for which
/ /
kK(G,)=k(G, )& G~G

is at least as hard as deciding graph isomorphism
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All-Walks Kernels Limits of matrix power series
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Kernels between Vertices in (Hyper-) Graphs

Travelling John Q Public Problem
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Structured Output Prediction Structured Output Prediction
input & output spaces X, V() input & output spaces X', Y(X)
training data D = {(z:,Yi) bien) € X x 2Y(X) training data D = {(z:, V) biepny € X x 273
Ansatz Ansatz
® joint scoring function f: X xY — R ® joint scoring function f: X xY — R
® prediction / decoding ¢(z) = argmax f(z,y) ® prediction / decoding g(z) = argmax f(z,y)
yeY yey
¥ Z Freunhafer ¥ Z Freunhafer
. ] - L]
Finding the Scoring Function (simplified) Structured Perceptron
. make as few as possible mispredictions on a sequence (x;,y,), (X5,¥5), ..
f=argmin Q[f]
fen
subject to  f(xi,y) > f(zi,2) (Vi,VzeY\Yi,yeY:) initialise f, <- 0
for x; predict argmax, . (X,2)
if misprediction
thén let F;(.,.) <- Fi,(.,.) + k((X;.yD.(-.-))
has exponentially many constraints !! else let f,(.,.) <- f,_,(.,.)




Structured Perceptron

make as few as possible mispredictions on a sequence (x,y,), (X,,y,), ...

initialise f, <- 0

for x; predict argmax, . (x,2)

if misprediction
theén let f,(.,.) <= f,(.,.) + k((X,¥),(->-))
else let £;(.,.) <= f,,(.,.)

SVM-like Structured Output with Decoding-Oracle

f= aI‘ngII":in VP + Nl
subject to  f(zi,y) > Ay, 2) + f(zi,2) =& (Vi,Vz2 € Y\ {yi})

f= arfger;in llwlly + 1€l
subject to (w, ¢(wi,y:)) > Ay, 2) + (w, ¢(@i,2)) - &

Finding Violated Constraints

decoding (polynomial time?)

H given f, x find z € argmax f(z,y)
yey

separation (polynomial time?)
m given f, x, y find any 2 * fla,y) < f(z,2) or proof that none exists

optimality (polynomial time? /in NP?)
m given f, x, y decide Az e Y: f(z,y) < f(z,2)

Optimality vs Non-Optimality

optimality (in NP?) is there no longer cycle
m given f, x, y decide Az € Y: f(z,y) < f(z,2)
B what is a short certificate of optimality?

sub-optimality (in NP!) is there any longer cycle
® given f, x, y decide 3z €Y : f(z,y) < f(,2)
B certificate of non-optimality is short

Optimality vs Non-Optimality

optimality (coNP-complete and hence not in NP)
BzeY: f(z,y) < f(z,2)

H given f, x, y decide

sub-optimality (NP-complete)
u given f, x, y decide 3, ¢ Vi fla,y) < f(z,2)

coNP-complete NP-complete

Structured Output Ranking

h* = argmin
FiXXY—R




Structured Output Ranking

h* = argmin
FXXY—R
B representer theorem }* ¢ span_

assume a tensor product of Hilbert spaces ;, « 3/ — Hay @ Hy
assume a small output basis (d)
® factorised representer theorem

minimise a quadratic upper bound on the AUC

Structured Output Ranking

the following terms occur in the objective
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Structured Output Ranking

the following terms occur in the objective

Summary

most approaches assume (at least) that
optimality is in NP. However, it is often
co-NP complete. .|

we proposed a ranking based approach that
results in an unconstrained convex
optimisation problem.

The new approach complements the existing one
and is based on an orthogonal assumption. It can
be adapted to new output spaces by coding one .-
new matrix. .

Constructive Machine Learning for De Novo Drug Design
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