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Resources

A survey of statistical network models

A. Goldenberg, A. Zheng, S. Fienberg, E. Airoldi, Foundations and Trends in Machine 
Learning, 2009

Multiplicative latent factor models for description and prediction of social networks

P. D. Hoff,  Computational and Mathematical Organization Theory , 2009. 

Random effects models for network data

P. D. Hoff, in Dynamic Social Network Modeling and Analysis, 2003

A relational event model for social action

C. E. Butts, Sociological Methodology, 2008

Slides from 2010 Whistler Summer School on Social Networks

http://people.cs.ubc.ca/~murphyk/pims2010Whistler/

http://people.cs.ubc.ca/~murphyk/pims2010Whistler/�
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Static Network Data

• General Notation:  
– N actors (node set)

• Will assume that set of actors is known and fixed

– Edges between actors (Y)
• Adjacency matrix Y

• y i,j indicates an edge between actor i and actor j 

• Simplest case: binary undirected/directed edges

– Covariates/Attributes (X)
• e.g.,  for each actor (e.g., age, text documents,..)

• e.g., for each edge (e..g., numeric weights, vector of attributes, text, etc )
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Dynamic Network Data

Case 1: discrete-time 
– Yt represents the state of the network at discrete time t

– Data D = {Y1 …… Yt ………. YT   }

Example

– actors = students in a school

– Yt = friendships between students in month t,   t = 1, … 12

Interest is often in network dynamics and evolution

e.g., Markov models for P( Yt+1   | Y t )
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Carter Butts
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Dynamic Network Data

Case 2: continuous-time network events
– yt is an edge between some pair i and j at time t

– Birth-death edges: each yt has a start and end time

– Flipping edges: edges can switch on or off 

– Instantaneous edges: each yt is (effectively) instantaneous

– Data D = { y1 …… yt ……….  yT }  - in a sense there is no graph  

Example

– actors = students in a school

– yt = email between 2 students at time t
(would need to allow for multiple recipients…)

Interest is often in rates and patterns of communication

e.g., Poisson rates for y i,j given network history up to time t
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Enron Email Data
(Figure from Goldenberg et al, 2010)
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Time 1
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Time 1
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Time 2
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Time 50



Padhraic Smyth: MLG Workshop, KDD 2010: 13

Relational Event Model

λ (i,j)   =  Poisson rate of edge generation between actor i and actor j

λt (i,j)   =  function of network features up to time t, 

Results in a piecewise constant inhomogeneous Poisson process

- rates(t) are a function of network history at time t

- between events the rates are constant

Typical features include:

- individual actor effects

- persistence between pairs

- preferential attachment 

- conversational behavior  

Butts, 2009
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Relational Event Model

• Example

log λt (i,j)   =  log λ0 +  log λi + log λj +   βt xt(i,j)

• Estimation
– Can be fit with standard regression methods (survival analysis)

– Likelihood involves O(N2) terms for each of T events
• Does not scale well

– Nonetheless an interesting model….
• See Butts (2008) for an application to emergency response communications

p-dim vector 
of weights

p-dim vector 
of features
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Ordinal Version of Relational Events

• If we don’t have time-stamps, but do have the order of the events…

• Can use the fact that “choice probability” can be written as

P(i, j)  =   λt (i,j)   /  Σ λt (i,j)

• Can still learn the model from sequence of events, with relative rates
– Overall network rate λ0 is unspecified  
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Additional Modeling Aspects….

• As with static networks….
– Actor attributes, e.g., actor age

– Edge (event) attributes, e.g., text of an email

• Can also have time-dependent covariates/attributes
– E.g., actor attributes changing over time

– Network level “external” covariates
• Calendar effects: time of day, day of week, time of year

• External events – exogenous time-series
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Outline of the Talk

• Begin with statistical models for static data
– In particular, latent variable models

– Review some useful approaches in this area

• Look at how to extend these models to temporal data
– Particularly relational event data

– Discuss recent work

[Caveat: only focus on certain approaches, not exhaustive]

• Evaluation and prediction
– Some general comments

• Mostly review….with some new work towards the end
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Why Statistical Modeling?

• Learning
– can estimate network properties from data in a principled way

• Prediction/Querying
– reduces to computation of relevant conditional probabilities and 

expectations

• Noise/Missing Data
– Systematic way to handle real-world noise

• Covariates
– Relatively straightforward to integrate “non-network” information into 

the network model
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Slide from Dave Hunter
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Estimation is Hard

P(G | θ)  =  f( G ; θ ) / normalization constant 

The normalization constant  =  sum over all possible graphs 

Say binary directed graphs: how many graphs?    2 n(n-1)

e.g., with n = 50,  we will have 22450  ~ 10245 graphs to sum over

MCMC techniques are now the method of choice – but many problems 
with degeneracy of likelihoods – difficult models to fit

(e.g., see Robins et al, Social Networks, 2007)
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An Alternative: Latent Variable Models

• ERGMs
– allow us to model edge dependencies in very flexible ways – but the 

computational penalty is too high

• Latent Variable Models
– Typically, latent variables are chosen so that edges are conditionally 

independent given the latent variables
• Can lead to much simpler models than full ERGMs

– If we can find useful and tractable latent variable representations, this 
may provide a good alternative to ERGMs
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Example: The Latent Space Model

• Idea:
– Embed nodes in a latent K-dimensional Euclidean space

– Probability of edge (i,j) = f (distance (i, j) )

– Edges are conditionally independent given K-dim locations

Hoff, Raftery, Handcock, 2002
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Example: The Latent Space Model

• Idea:
– Embed nodes in a latent K-dimensional Euclidean space

– Probability of edge (i,j) = f (distance (i, j) )

– Edges are conditionally independent given K-dim locations

• Probability model
– zi = K-dim latent position vector for node i

Log-odds (y ij = 1)  =   log P( y ij = 1)/(1 –P( y ij = 1) )  

=   - |  zi - zj |  +   µ +   β x ij

Hoff, Raftery, Handcock, 2002

distance of nodes i and j network density parameter

covariate effects (optional)
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Example: The Latent Space Model

• Likelihood:

P(Y | Z, b, m)  =  Π P(  y ij |  zi , zj , µ ,  β )

• Estimation:
– Can maximize likelihood directly (as a function of Z,….) using gradient 

methods

– Can also be Bayesian, use priors, and sample from posterior density using 
MCMC 

– Can also introduce block/cluster structure on nodes
(see Handcock, Raftery, and Tantrum, 2007)

• Computational issues
– Note that the product above is over all pairs, O(N2): poor scalability

– Recent work (Raftery et al, 2010) shows how to ignore many non-edges

Hoff, Raftery, Handcock, 2002

logistic function
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Figure from Hoff, Raftery, Handcock, 2002
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Figure from Hoff, Raftery, Handcock, 2002

• Representational issue
– Is Euclidean space embedding a good way to represent network 

information? Similar to issues with multidimensional scaling      
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Example: Relational Topic Model

• Nodes = documents, edges = links between documents

• “Standard” LDA/topic model, but ..
– Topics i,j influence p(edge i, j)

– Edge(i, j) influences topics i and j

• Model is similar to latent-space model
– Latent space: actors represented by k-dim location

– Relational topics: docs represented by k-dim topic distribution

– Both use logistic-like links for edge probabilities

Chang and Blei, 2009
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Relational Topic Model (RTM)
[Chang, Blei, 2009]

• Same setup as LDA, except we have observed network information across 
documents (adjacency matrix)

idZ

idX
wkΦ

kdθ

KN d

β
id'Z

id'X

kd'θ

N d’

d' d,y

α

υη,
“Link probability function”

Documents with similar topics 
are more likely to be linked

Topics influence links, and links 
infuence topics
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Link probability functions

• Exponential:

• Logistic:

• Normal CDF:

• Normal:

– where Element-wise product

K-dim vector of  topic proportions
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Link Prediction with Wikipedia Movie Pages
• 'Sholay' 

– Indian film, 45% of words belong to topic 24 (Hindi topic)
– Top 5 most probable movie links in training set: 

• 'Laawaris‘
• 'Hote Hote Pyaar Ho Gaya‘
• 'Trishul‘
• 'Mr. Natwarlal‘
• 'Rangeela‘

• ‘Cowboy’
– Western film, 25% of words belong to topic 7 (western topic)
– Top 5 most probable movie links in training set:

• 'Tall in the Saddle‘
• 'The Indian Fighter'
• 'Dakota'
• 'The Train Robbers'
• 'A Lady Takes a Chance‘

• ‘Rocky II’
– Boxing film, 40% of words belong to topic 47 (sports topic)
– Top 5 most probable movie links in training set:

• 'Bull Durham‘
• '2003 World Series‘
• 'Bowfinger‘
• 'Rocky V‘
• 'Rocky IV'
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Example: Stochastic Block Model

• Idea:
– Partition the set of nodes into K “blocks” that are “structurally 

equivalent”

– Model interactions at the K x K block level instead of N x N actor level

P( y ij )  =  P( y ki, kj ),      ki, kj ε {1,……K}

e.g., Nowicki and Snijders, 2001
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Example: Stochastic Block Model

• Idea:
– Partition the set of nodes into K “blocks” that are “structurally 

equivalent”

– Model interactions at the K x K block level instead of N x N actor level

P( y ij )  =  P( y ki, kj ),      ki, kj ε {1,……K}

e.g., Nowicki and Snijders, 2001

(Figure from Goldenberg et al, 2010)
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Example: Stochastic Block Model

• Estimation
– 2 sets of parameters

1.   B = block-level interaction matrix, e.g., K x K matrix of Bernoullis

2.   Z =  N indicator variables, mapping each node to one of K blocks

(Can use your favorite estimation technique: EM, gradient, MCMC, etc)

- See also Infinite Relational Model (IRM), Kemp et al (2006)
- Allows one to learn the number of blocks  

e.g., Nowicki and Snijders, 2001
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Mixed Membership Stochastic Block Model (MMB)

• Generalizes the stochastic block model to allow mixed membership

• Specifically, 
– Replace N indicator variables, with N multinomials zi ,   i = 1, …N

– Each multinomial is a distribution over the K blocks
• Allows an actor to have multiple memberships, with prob zi1, … ziK

Airoldi, et al, 2008
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Mixed Membership Stochastic Block Model (MMB)

• Generalizes the stochastic block model to allow mixed membership

• Specifically, 
– Replace N indicator variables, with N multinomials zi ,   i = 1, …N

– Each multinomial is a distribution over the K blocks
• Allows an actor to have multiple memberships, with prob zi1, … ziK

• Generative model
– For each actor: multinomial zi ~  Dirichlet

– For each possible edge:

ki ~ multinomial zi ,    kj ~ multinomial zj

yij,  ~   B( ki , kj )

• Estimation
– Likelihood involves O(N2) terms: can use variational or MCMC methods

Airoldi, et al, 2008
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Mixed Membership Stochastic Blockmodel

Stochastic Blockmodel

Figures from Airoldi, et al, 2008
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Binary Feature Relational Model
Miller, Griffiths, Jordan, 2009

• Based on idea of Indian Buffet Process  (Griffiths and Ghahramani, 2006)

• Represent each object by a set of latent binary features

• Learn binary features that explain well the observed data

• Non-parametric: infinite number of features

….but in practice, given data, only a finite number are inferred

• Motivation:

• Classes defined over combinatorial number of binary features

• Different from MMB, e.g., “male high school musicians/athletes”

• Different from latent space 

• Can apply this idea to network data

• Latent variable model where p(edge i, j) is a function of i and j’s latent 
binary features
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Relational Binary Feature Model for Networks
Miller, Griffiths, Jordan, 2009

Hidden Features

Actors

Presence of edge between actor i and actor j is  (e.g.)
a logistic function of a weighted sum of features they have in common

Estimation: based on MCMC

Figure from Griffiths and Ghahramani, 2006
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Predictions on NIPS Coauthorship Data

From Miller, Griffiths, Jordan, 2009
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A Unified View…

P ( y ij = 1)  =   f ( g( zi ,  zj ) + β x ij +  µ )

where

f = logistic function (for example)

zi ,  zj = k x 1 latent vectors for the ith and jth nodes

g = function that combines latent vectors, with parameters θ
x i j = covariate vector for the pair of nodes

µ = network density parameter 

(see also Hoff, 2009; Airoldi 2010)
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Examples Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

Latent space model:

zi ,  zj = k x 1 vectors of latent positions in Euclidean space

g( zi ,  zj ) =   - |  zi - zj |
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Examples Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

Latent space model:

zi ,  zj = k x 1 vectors of latent positions in Euclidean space

g( zi ,  zj ) =   - |  zi - zj |

Latent factor model:  (see Hoff, 2008)

zi = k x 1 real-valued vector  

g( zi ,  zj )  = z’i W  zj , where W is a k x k diagonal matrix
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Examples Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

Latent space model:

zi ,  zj = k x 1 vectors of latent positions in Euclidean space

g( zi ,  zj ) =   - |  zi - zj |

Latent factor model:  (see Hoff, 2008)

zi = k x 1 real-valued vector  

g( zi ,  zj )  = z’i W  zj , where W is a k x k diagonal matrix

Relational topic model:

zi = k-dimensional topic distribution (multinomial) for document i

g( zi ,  zj ) =   weighted  element-wise product of the 2 topics
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Examples Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

Latent class or stochastic blockmodel:

zi = fixed k-dimensional binary indicator vector, e.g., (0, 0, 1, 0 , 0)  

g( zi ,  zj ) =   W zi , zj , where W is a k x k matrix

The indicators select which element (block) to use 
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Examples Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

Latent class or stochastic blockmodel:

zi = fixed k-dimensional binary indicator vector, e.g., (0, 0, 1, 0 , 0)  

g( zi ,  zj ) =   W zi , zj , where W is a k x k matrix

The indicators select which element (block) to use 

Mixed membership stochastic blockmodel (MMB)

Like latent class, but zi =  sampled from “actor multinomial” i
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Examples Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

Latent class or stochastic blockmodel:

zi = fixed k-dimensional binary indicator vector, e.g., (0, 0, 1, 0 , 0)  

g( zi ,  zj ) =   W zi , zj , where W is a k x k matrix

The indicators select which element (block) to use 

Mixed membership stochastic blockmodel (MMB)

Like latent class, but zi =  sampled from “actor multinomial” i

Relational binary feature model (finite version):

zi = k-dimensional binary vector, e.g., (1, 0, 1, 0 , 1)  

g( zi ,  zj )  = z’i W  zj , where W is a k x k matrix

The combination of “on” features determine the pairwise effect
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Adding Time….
General static form for latent variable models:  

Log-odds ( y ij = 1)   =     g( zi ,  zj ) + β x ij +  µ

One approach is to make the z’s time-dependent

i.e., allow latent features of each actor change over time

An example: Gaussian linear motion models in z-space

- Sarkar and Moore (2005) for actors’ latent-space positions 

- Fu, Song, and Xing (2009) for actors’ mixed membership vectors  
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Event Data and Latent Variables
Data = series of time-stamped binary directed events among actors

2 processes we want to model:
– Rates (e.g., Poisson)

– Choices (who connects to who)

A simple approach:

Each pair i, j (at time t) has an event rate that is Poisson  λ ij

Global network rate = Σ λ ij = λ

P( y ij )  = λ ij / λ or, λ ij =   P( y ij )   x   λ

Here P( y ij ) is a multinomial with O(N2) entries : given that an event will 
happen, which pair will it be?

(different from binary y ij variables we saw before)
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Direct Estimation

• We could predict the likelihood of i and j communicating based 
directly on i and j’s history

– Multinomial with O(N2) entries

– Can use smoothing to combat sparsity

• Problems
– Data can be extremely sparse for large N – smoothing is non-informative, 

and does not “borrow strength” from the graph

• Nonetheless this is a useful baseline when evaluating predictions
– Historically, few papers evaluate models predictively

– Even fewer compare their models to simple baselines
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Illustration of Sparsity: Frequency of Events per pair of Actors

International Political 
Events data
King, 2003 
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Mixtures for Relational Events
Talk by Chris DuBois, Tuesday

• Mixture model over events
– First choose event class k,  k = 1, …. K

• k ~  π
• y ij :    i ~ φ ( sender nodes | k),     j ~ φ ( receiver nodes | k)

– Parameters
� π :   K x 1 multinomial  = relative likelihood of different event classes 

• φ ( sender nodes | k), φ ( receiver nodes | k)
– 2K  multinomials, each of size N

• Simple model
– Similar to model proposed by Sinkkonen et al, MLG 2008

– Quite similar in spirit to LDA/topic model for documents
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Marginal Product Mixture Model (MPMM)

• Likelihood

• Estimation
– Can use EM or Collapsed Gibbs Sampling

• Both are fast – only need to loop over observed events (can ignore pairs 
where no events occurred)

• Extensions
– Modulate “choice process” with time-varying network rate

– Different types of events (“actions”)

– Markov (hidden) dependence on selection of event class
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Comparing MPMM and MMB

• MMB model
– For every pair of actors

• Sample latent class for i and j

• Given latent classes, sample a binary edge, or a count (e.g., Poisson)

• MPMM model
– For every event

• Select latent class of event

• Given latent class, sample i and j

• Differences
– MMB models whole graphs, but not individual events

• So dynamics are from graph to graph (e.g., Fu, Song, Xing 2009)

– MPMM models individual events, not whole graphs
• Allows dynamics at the event level (e.g., Markov dependence of events)

– And inference in MPMM is much more tractable….
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Estimation

• EM
• Straightforward and fast

• MCMC, Collapsed Gibbs sampling

• Also straightforward and fast

• Both EM and Gibbs scale linearly in the number of observed events (edges)

• Easy to apply to large data sets
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Eckmann Email Data Set

200,000 emails

2997 individuals, 82 days
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Email Data (Eckmann)
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International Relations Data 40,000 events
2700 actors
171 action types

(King, 2003)



Padhraic Smyth: MLG Workshop, KDD 2010: 58



Padhraic Smyth: MLG Workshop, KDD 2010: 59

Prediction and Evaluation

• Use future data to evaluate predictive power and compare models

• Metrics
– Log score = log probability of events that actually occurred

– Brier/MSE style scores

– Ranking/ROC scores
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Comments on Evaluation
• Prediction on independent test data is critical

– Relatively easy to do with dynamic networks

– Tricky to do with static networks (but see Hoff, 2009) 

• Caveat
– For link (or link probability) prediction it can be very difficult to beat 

relatively simple baselines, e.g., 
• Graph(t+1) = Graph(t) 

• p(event) = smoothed estimate based on historical frequency of that pair

• Solution?
– More interesting questions than just predicting what happens next, e.g

• How likely is that group A will communicate with group B in the next k days?

• If we have events with missing information, can we infer sender/receiver?

• Can we detect significant shifts/non-stationarity?
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What Next?

• Historically, social science applications of network analysis focused on 
understanding rather than prediction per se

• For data miners/computer scientists, predictive modeling plays a much more 
important role

• Key question: what are the important applications/problems that 
network/graph models can solve, that can’t be solved by other means?

– Candidates?

– e.g., tools for egocentric modeling/analysis/management of personal 
communication data (email, social media, etc)
• Change detection

• Ranking of incoming communication events

• ……
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Summary

• Latent variable models are useful for network modeling/prediction
– Broad “toolbox” of building blocks

– May be scalable to large data sets

• Latent models for dynamic data show promise

• Dynamic network data comes in multiple forms
– Aggregated/longitudinal data

– Time-stamped event data

(quite different in nature)

• Models need to be evaluated via prediction on test data
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Resources

A survey of statistical network models

A. Goldenberg, A. Zheng, S. Fienberg, E. Airoldi, Foundations and Trends in Machine 
Learning, 2009

Multiplicative latent factor models for description and prediction of social networks

P. D. Hoff,  Computational and Mathematical Organization Theory , 2009. 

Random effects models for network data

P. D. Hoff, in Dynamic Social Network Modeling and Analysis, 2003

A relational event model for social action

C. E. Butts, Sociological Methodology, 2008

Slides from 2010 Whistler Summer School on Social Networks

http://people.cs.ubc.ca/~murphyk/pims2010Whistler/

http://people.cs.ubc.ca/~murphyk/pims2010Whistler/index.html�
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