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Our experience with networks
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Social networks
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The Internet
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Bio-molecular networks
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Jesus network
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Network analysis -- visualization
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Global topological measures
Indicate the gross topological structure of the network

Connectivity
(Degree)

Path length Clustering coefficient

[Barabasi]



6/29/2010 9

Local network motifs profiles
Regulatory modules within the network

SIM MIM FFLFBL

[Alon]
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Models for Global Network Analysis

P(k) ~ k−γ , k >>1,  2 < γ
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A. Random Networks   [Erdos and Rényi (1959, 1960)]

B. Scale Free [Price,1965 & Barabasi,1999]  

C.Hierarchial

Mean path length ~ ln(k)
Phase transition:
Connected if: p ≥ ln( k ) / k

Preferential 
attachment. Add 
proportionally to 
connectedness

Mean path length ~ lnln(k)

Copy smaller graphs and let them 
keep their connections.
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A. Stochastic Block Models   
[Holland, Laskey, and Leinhardt 1983]

B.Exponential Radom Graph Models 
[Bahadur 1961, Besag 1974, Frank & 
Strauss 1986]  

C.Latent Space Models 
[Hoff, Raftery, and Handcock, 2002]  

Models for Meta Analysis of Networks
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Summary
Impressive graphs! 
Seemingly impressive statements about nwk properties 
--- scale free, small world, …

Can even fit data with some models

But … What about details?
Can we inferinfer …

e.g., the role of every node, the meaning of every edge?
the network topology itself?

Can we predictpredict …
Can we simulatesimulate …

Most current analyses tell BIGBIG stories, or obvious stories, 
but not so useful to serious detail-hunters



6/29/2010 13

I: Network tomography
MicroMicro--inference vs. inference vs. MesoMeso-- or Macroor Macro--inferenceinference
Multi-role of every node
Context dependent role-instantiation
Role dynamics
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Evolving Social Networks

Corporativity, 

Antagonism,

Cliques,
…

over time?
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Evolving Gene Networks
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II: Travel time tomography
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III: Where do networks come from?
Existing work:

Assuming iid sample, and a singlea single staticstatic network

Assuming networks or network time series are observable and given

Then model/analyze the generative and/or dynamic mechanisms
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This Talk:
Dynamic Network Model

Temporal exponential random graph model (tERGM)
[Hanneke and Xing, ICML 06;  Fan, Hanneke, Fu and Xing, ICML 07;  Hanneke, Fu, and Xing, EJS 10]

Reverse Engineer Latent Time-Evolving Networks
The TESLA and KELLER algorithms, and beyond 
[Fan, Hanneke, Fu, and Xing, ICML 07;  Ahmed and Xing, PNAS 09;  Song, Mladen and Xing, ISMB 09; 
Mladen, Song, Ahmed and Xing, AOAS 09;  Mladen, Song, and Xing, NIPS 09;  Song, Mladen and Xing, 
NIPS 09]

Network tomography: modeling latent “multi-role" of vertices
Mixed Membership Stochastic Blockmodel (MMSB)
[Airoldi, Blei, Xing and Fienberg, LinkKDD 05;  Airoldi, Blei, Fienberg and Xing, JMLR 08]

Dynamic tomography underlying evolving network
dynamic MMSBs
[Xing, Fu, and Song, AOAS 09;  Ho, Le, and Xing, submitted 10]
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Political network in the Senate

Sen. (D) Ben Nelson
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T0 TN ?
…

…

"Rewiring" Pathways in Biology
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Modeling Evolving Networks
We observe the network at discrete, evenly spaced time 
points t = 1,2,…,T. 

The observed network at time t: At.

We want to design a class of statistical models for the 
evolution of networks over a fixed set of nodes.
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Markov Assumption
To simplify things, assume the network observed at 
timestep t (1 ≤ t ≤ T) is independent of the rest of history 
given the knowledge of the network at timestep t-1, then

What should the conditional look like?

( ) ( ) ( ) ( )1121121 APAAPAAPAAAAP tttt  ,,,, LK −− =
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Exponential Random Graphs

Very general families for modeling a single static 
network observation.

are known as a potential, and    its weight
Can estimate the parameters by MCMC MLE

( ) ( ) ( ){ }θφθ ZAAP ln exp −⋅=

[Holland and Leinhardt 1981, Wasserman and Pattison 1996]
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ERGM Example

A Classic example: (Frank & Strauss 1986)
φ1(A) = # edges in A
φ2(A) = # 2-stars in A
φ3(A) = # triangles in A

( ) ( ) ( ) ( ){ }AAAAP 332211 φθφθφθ ++∝ exp
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Temporal Extension of ERGMs
Can we build all the work on ERGMs when 
designing a temporal model?

is a temporal potential
Say the network has a single relation, and its value is either 0
or 1 (e.g., “friends” or “not friends”).
Let  Aij denote the value of the relation between ith actor and 
jth actor.
Then we can use                     to capture the dynamic 
properties of all Aij's

( ) ( ) ( ){ }111 −−− −Ψ⋅= ttttt AZAAAAP ,ln,exp θθ
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An idea for specifying a model
A network might be decomposable into different types of 
“motifs” (e.g., “hub & spokes”, “k-clique”, “triangle”,…).

Write the potential functions to encode your 
understanding about how each motif evolves.

It’s nice because we can “plug in” our intuition about the 
data.
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An Example

“Continuity”: 

“Reciprocity”:

“Transitivity”:

“Density”:
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An Example (cont.)
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Maximum Likelihood Estimation

Approximate MLE by MCMC (Z intractable)

Use gradient ascent, using MCMC to estimate the 
expectation on each iteration (as in ERGM).
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Estimation Toy Example
Generate a series of 10 networks from the example.

True model has θ1=0, θ2=5, θ3=0, θ4=-20
(i.e., reciprocity and density only) 

Estimated parameters:
θ1=-0.5,  θ2=4.2,   θ3=-0.08,   θ4=-20.2
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Simulation

Uses the example model
True parameters random in [0,10)
100 actors
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Degeneracy (Handcock et al. 2008)
For many ERGMs, most of the parameter space is populated by 
distributions that place almost all of the probability mass on a
subset of the sample space containing networks that bear no 
resemblance to the observed networks (typically the complete 
or empty graphs).

For such models, an MLE does not exist, resulting in poor fit
e.g., When the observed statistics do not lie inside of the convex hull of the set of all 
realizable u(A). 
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ERGM 

Realizable mean parameter set

A convex subset of 
Convex hull for discrete case

Convex polytope when             is finite

Marginal Polytope

( ) ( ) ( ){ }θφθ ZXXP ln exp −⋅=
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Bijection for minimal exponential 
family
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A tERGM is non-degenerate 

Theorem 1: when the transition distribution factors over the 
edges, a tERGM is non-degenerate:

Maximum likelihood estimator exists! 
(should not be taken for granted for arbitrary models, be careful!)

[Hanneke, Fu and Xing, EJS 2010]
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Assessing statistic importance and 
quality of fit: A case study

Senate network – 109th congress

Voting records from 109th congress (2005 - 2006)
There are 100 senators whose votes were recorded on 
the 542 bills, each vote is a binary outcome
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Statistic importance
Temporal potentials:

"importance" of t-potentials:

6/29/2010 38

Quality of fit
Statistic of                    from sampled At from P(At|At-1) 
versus that from the true At
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Quality of fit

Able to predict sharp changesAble to predict sharp changes
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What’s it good for?
Hypothesis Testing

Data Exploration (e.g., node-classification)

Foundation for Learning
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This Talk:
Dynamic Network Model

Temporal exponential random graph model (tERGM)
[Hanneke and Xing, ICML 06;  Fan, Hanneke, Fu and Xing, ICML 07;  Hanneke, Fu, and Xing, EJS 10]

Reverse Engineer Latent Time-Evolving Networks
The TESLA and KELLER algorithms, and beyond 
[Fan, Hanneke, Fu, and Xing, ICML 07;  Ahmed and Xing, PNAS 09;  Song, Mladen and Xing, ISMB 09; 
Mladen, Song, Ahmed and Xing, AOAS 09;  Mladen, Song, and Xing, NIPS 09;  Song, Mladen and Xing, 
NIPS 09]

Network tomography: modeling latent “multi-role" of vertices
Mixed Membership Stochastic Blockmodel (MMSB)
[Airoldi, Blei, Xing and Fienberg, LinkKDD 05;  Airoldi, Blei, Fienberg and Xing, JMLR 08]

Dynamic tomography underlying evolving network
dynamic MMSBs
[Xing, Fu, and Song, AOAS 09;  Ho, Le, and Xing, submitted 10]
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Where do networks come from?
Existing work:

Assuming iid sample, and a singlea single staticstatic network

Assuming networks or network time series are observable and given

Then model/analyze the generative and/or dynamic mechanisms

We assume:We assume:

Non-iid Varying Coefficient Varying StructureNon-iid VVarying CCoefficient VVarying SStructure
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…

t=1 2 3 T

⇒

⇒

Background: network inference

BN

DBN

An invariant graph over 

An invariant "bipartite" graph over 
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Graph Regression

Lasso:

Markov Random FieldsMarkov Random Fields

Graphical Gaussian Model Graphical Gaussian Model 

contains both the 
structure and 
parameters

Neighborhood selection
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Graph Regression

Neighborhood selection
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Graph Regression

It can be shown that:
given iid samples, and under several technical conditions (e.g., "irrepresentable"), 
the recovered structured is "sparsistent" even when p >> n 
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Political network in the Senate

Sen. (D) Ben Nelson
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T0 TN

…

Drosophila developmentDrosophila development

Reverse engineer "rewiring" social
networks

t*

n=1 or some small #



6/29/2010 49

Challenges
Very small sample size

observations are scarce and costly

Noisy data

Large dimensionality of the data
usually 
complexity regularization is required to avoid curse of dimensionality, 
e.g. sparsity

And now the data are non-iid since underlying probability 
distribution is changing !
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Modeling Time-Varying Graphs
The hidden temporal exponential graph models [ Fan et al. 
ICML 2007]

Transition Model:

Emission Model:
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Straightforward -- tractable 
transition model; the partition 
function is the product of per 
edge terms

Computation is non-trivial

Given the graphical structure, run 
variable elimination algorithms, works 
well only for small graphs

Inference (0)

P(Network|Data) ?
Gibbs sampling:

Need to evaluate the log-odds

Difficulty: Evaluate the ratio of Partition function Z(A')=ΣAexp(θΦ(A,A'))

So far scale to ~20 nodes !!!So far scale to ~20 nodes !!!

[Fan et al. ICML 2007]
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Two Scenarios 

Smoothly evolving graphsSmoothly evolving graphs Abruptly evolving graphsAbruptly evolving graphs
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KELLER: Kernel Weighted L1-regularized Logistic Regression

Constrained convex optimization
Estimate time-specific nets one by one, based on "virtual virtual iidiid" samples
Could scale to ~104 genes, but under stronger smoothness assumptions

Inference I [Song, Kolar and Xing, Bioinformatics 09]

Lasso:
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Problem formulation
Formulate as structure learning problem of a 
time-evolving Markov Random Fields

Idea: maximize the likelihood to obtain the structure

Calculation of likelihood: intractable (because of the Z)
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Conditional likelihood

Neighborhood:

Time-specific graph regression:
Estimate at

Where

and

Algorithm - neighborhood selection
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Synthetic data
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Assumptions
Define: 

A1: Dependency Condition

A2: Incoherence Condition

A3: Smoothness Condition

Structural consistency of KELLER
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Theorem [Kolar and Xing, 09]
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TESLA: Temporally Smoothed L1-regularized logistic regression

Constrained convex optimization
Estimate time-specific nets jointly, based on original "nonnon--iidiid" samples
Scale to ~5000 nodes, does not need smoothness assumption, can 
accommodate abrupt changes. 

Inference II [Ahmed and Xing, PNAS 09]

6/29/2010 60

Temporally Smoothed Graph 
Regression

TESLA:

…
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Coefficients as functions
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Modified estimation procedure

estimate block partition on which the coefficient functions 
are constant

estimate the coefficient functions on each block of the 
partition

(*)

(**)

[Kolar, Le and Xing, NIPS 09]
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Structural Consistency of TESLA

I. It can be shown that, by applying the results for model
selection of the Lasso on a temporal difference 
transformation of (*), the the blockblock are estimated are estimated 
consistentlyconsistently

II. Then it can be further shown that, by applying Lasso on 
(**), thethe neighborhoodneighborhood of each node of each node on each of the on each of the 
estimated blocksestimated blocks consistentlyconsistently

Further advantages of the two step procedure
choosing parameters easier
faster optimization procedure

[Kolar, Le and Xing, NIPS 09]
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Comparison of KELLER and TESLA

Smoothly varying Abruptly varying
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TREEGL: Tree-Smoothed Graph Lasso

Inference III [Parikh et. al, 2010]
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Autoregressive model with time-varying coeff/struct

Sparsity pattern in A corresponds to a directed TV-network

Time-Varying Dynamic Bayesian 
Networks [Song, Kolar and Xing, NIPS 09]

"Granger causality"
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Performance on Synthetic TV-DBN
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Senate network – 109th congress

Voting records from 109th congress (2005 - 2006)
There are 100 senators whose votes were recorded on 
the 542 bills, each vote is a binary outcome

Estimating parameters:
KELLER: bandwidth parameter to be hn = 0.174, and the penalty 
parameter λ1 = 0.195
TESLA: λ1 = 0.24 and λ2 = 0.28
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Senate network – 109th congress

March 2005 January 2006 August 2006
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Senator Chafee
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Senator Ben Nelson

T=0.2 T=0.8
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Drosophila life cycle
From Arbeitman et al. (2002)

Four stages: 
embryo, larva, pupa, adult

66 microarray measured
across full life cycle

Focus on 588 development
related genes
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Dynamic Gene Interactions Networks 
of Drosophila Melanogaster

molecular molecular 
functionfunction

biological biological 
processprocess

cellular cellular 
componentcomponent
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Known Gene 
Interactions

Visualizing
Time-span of known
gene interactions



6/29/2010 75

3 samples

3 samples

1 sample

Breast cancer progression/reversal

Based on 3-dimensional Organotypic cell culture

[Ankur et al, Submitted 2010]
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Tree-evolving networks
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This Talk:
Dynamic Network Model

Temporal exponential random graph model (tERGM)
[Hanneke and Xing, ICML 06;  Fan, Hanneke, Fu and Xing, ICML 07;  Hanneke, Fu, and Xing, EJS 10]

Reverse Engineer Latent Time-Evolving Networks
The TESLA and KELLER algorithms, and beyond 
[Fan, Hanneke, Fu, and Xing, ICML 07;  Ahmed and Xing, PNAS 09;  Song, Mladen and Xing, ISMB 09; 
Mladen, Song, Ahmed and Xing, AOAS 09;  Mladen, Song, and Xing, NIPS 09;  Song, Mladen and Xing, 
NIPS 09]

Network tomography: modeling latent “multi-role" of vertices
Mixed Membership Stochastic Blockmodel (MMSB)
[Airoldi, Blei, Xing and Fienberg, LinkKDD 05;  Airoldi, Blei, Fienberg and Xing, JMLR 08]

Dynamic tomography underlying evolving network
dynamic MMSBs
[Xing, Fu, and Song, AOAS 09;  Ho, Le, and Xing, submitted 10]
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Network tomography
Multi-role of every node
Context dependent role-instantiation
Role dynamics
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Example:

6/29/2010 80

…

…

Mixed Membership Stochastic 
Blockmodel [Airoldi, Blei, Fienberg and Xing, 2008]
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In the mixed-membership simplex

…

…
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Logistic Normal Prior

…

…

Role Compatibility Matrix - Non-conjugate
- Laplace Approximation

Problem
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Can be combined with SSM
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Inference and Learning
Inference

Given a Network E = {eii}
Evaluation: 

P(E| μ,Σ, β )
Posterior: 

P(γ, z | μ,Σ, β , E)

Learning
Given a Network E = {eii}

Parameter estimation

{ } { }( )( )∑ Σ=Σ
Σ

βµβµ
βµ

,,logmaxarg,,
),,(

***
ijeP

Intractable!
e.g.  P(E| μ,Σ, β )
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Variational Inference
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Problem
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Laplace Variations Inference

( ) ( ) ( )∏= nn zqqzq γγ :1,

Fully Factored Distribution
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Dirichlet vs. LN MMSB
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This Talk:
Dynamic Network Model

Temporal exponential random graph model (tERGM)
[Hanneke and Xing, ICML 06;  Fan, Hanneke, Fu and Xing, ICML 07;  Hanneke, Fu, and Xing, EJS 10]

Reverse Engineer Latent Time-Evolving Networks
The TESLA and KELLER algorithms, and beyond 
[Fan, Hanneke, Fu, and Xing, ICML 07;  Ahmed and Xing, PNAS 09;  Song, Mladen and Xing, ISMB 09; 
Mladen, Song, Ahmed and Xing, AOAS 09;  Mladen, Song, and Xing, NIPS 09;  Song, Mladen and Xing, 
NIPS 09]

Network tomography: modeling latent “multi-role" of vertices
Mixed Membership Stochastic Blockmodel (MMSB)
[Airoldi, Blei, Xing and Fienberg, LinkKDD 05;  Airoldi, Blei, Fienberg and Xing, JMLR 08]

Dynamic tomography underlying evolving network
dynamic MMSBs
[Xing, Fu, and Song, AOAS 09;  Ho, Le, and Xing, submitted 10]
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Dynamic tomography
How to model dynamics in a simplex?

Project an individual/stock in 
network into a "tomographic" space

Trajectory of an individual/stock 
in the "tomographic" space
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Evolving networks

March 2005 January 2006 August 2006

… … …
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Dynamic MMSB (dMMSB) [Xing, Fu, and Song,

AOAS 2009]

K×K

N×N

N N

K×K

N×N

N N

K×K

N×N

N N

C
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Φμ

μh
ሺ1ሻ

Σh

C
νμ

K×K

βk,l

γi
ሺ1ሻ

N
N

zi→j
ሺ1ሻ zj←i

ሺ1ሻ

ciሺ1ሻ

N×N
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δ

… μh
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N
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ሺTሻ zj←i

ሺTሻ

ciሺTሻ

N×N

ei,jሺTሻ

Time‐varying
Role Prior

Cluster
Selection Prior

Time‐varying
Network Model

Role Compatibility
Matrix

Dynamic Mixture of MMSB (dM3SB)

Legend
Hidden role prior
Actor hidden roles
Observed interactions
Role compatibility matrix

[Ho, Le, and Xing, submitted 2010]
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Algorithm: Generalized Mean Field
(xing et al. 2004)

Inference via variational EM 
Generalized mean field
Laplace approximation
Kalman filter & RTS smoother

1

3

2
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dMMSB vs. MMSB
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dM3SB vs. dMMSB
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Goodness of fit
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Case Study 0: Sampson’s Monk 
Network

Dataset Description
18 monks (junior members in a monastery)
Liking relations recorded
3 time-points in one year period
Timing: before a major conflict outbreak

Recall static analysis:
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Sampson’s Monk Network: 
role trajectories

The trajectories of the varying role-vectors over time
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Sampson’s Monk Network: 
Dynamic Analysis 

Observations
Big changes in time 1 to time 2
From time 2 to time 3, role-
vectors purifying

More isolated
Led to the separation
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Dataset Description
151 persons considered
used emails from 2001, and built an email network for each month,
so the dynamic network has 12 time points. 
we learned a dMMSB of 5 latent roles.

Case Study 1: The Enron Network
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Colored bars: Estimated latent space vector (for each time point)
Numbers under bars: Estimated cluster (for each time point)

Role Compatibility Matrix B
Role 1 = Passive, 2 = Receiver, 3 = Sender/Receiver

Enron Network: role trajectories
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Enron Network: dynamic analysis 
Roles

The first role (blue) stands for inactivity. 
The second role (cyan) corresponds to receivers.
Role 3 (yellow) correspond to both senders and 
receivers.

Dynamic changes
Most actors are smooth over time. However, 

Individual activity
All people are dominated by role 1
Apart from role, most people have a little role 2, 
and no role 3 --- they only receive emails
A few send actively and receive, including: 

Mark Haedicke (#65) 
(Managing Director of the Legal Department)

Louise Kitchen (#107) (President of Enron Online)

Yet some are more interesting …
Kenneth Lay (#127) (Chairman and CEO of Enron)
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Enron Network: dynamic analysis 
Cluster legend

Outliers at t=8 (August 
2001), when Enron’s 

financial issues were first 
disclosed.

A high proportion of role 3 
implies high send/receive 

email activity.

Outliers at t=8 (August 
2001), when Enron’s 

financial issues were first 
disclosed.

A high proportion of role 3 
implies high send/receive 

email activity.

(CEO Kenneth Lay) (CEO Jeffrey Skilling)
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Case Study 2: The 109th congress

March 2005 January 2006 August 2006

US senator voting records
100 senators, 109th Congress (Jan 2005 – Dec 2006) in 8 epochs
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Voting data preprocessed into a network graph using (Kolar et al., 2008)

Role Compatibility Matrix B
Role 1 = Passive, 2/4 = Democratic clique,

3 = Republican clique

Colored bars: Estimated latent space vector
Numbers under bars: Estimated cluster
Letters beside actor index: Political party and State

Senate Network: role trajectories
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Senate Network: role trajectories
Cluster legendJon Corzine’s seat (#28, 

Democrat, New Jersey) was taken 
over by Bob Menendez from t=5 

onwards.

Corzine was especially left‐wing, 
so much that his views did not 

align with the majority of 
Democrats (t=1 to 4).

Once Menendez took over, the 
latent space vector for senator 
#28 shifted towards role 4, 
corresponding to the main 
Democratic voting clique.

Jon Corzine’s seat (#28, 
Democrat, New Jersey) was taken 
over by Bob Menendez from t=5 

onwards.

Corzine was especially left‐wing, 
so much that his views did not 

align with the majority of 
Democrats (t=1 to 4).

Once Menendez took over, the 
latent space vector for senator 
#28 shifted towards role 4, 
corresponding to the main 
Democratic voting clique.

Ben Nelson (#75) is a right‐wing Democrat 
(Nebraska), whose views are more 

consistent with the Republican party.

Observe that as the 109th Congress 
proceeds into 2006, Nelson’s latent space 

vector includes more of role 3, 
corresponding to the main Republican 

voting clique.

This coincides with Nelson’s re‐election as 
the Senator from Nebraska in late 2006, 

during which a high proportion of 
Republicans voted for him.
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during which a high proportion of 
Republicans voted for him.
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Drosophila Network: 
dynamic role vectors

6/29/2010 108

1

2

3

4

tok

1

2

3

4

l(2)efl

1

2

3

4

Optix

1

2

3

4

dl

Drosophila Network: trajectories of 
selected genes
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Non-degenerate model for network evolution

Efficient and Sparsistent algorithms for recovering latent 
time-evolving networks from nodal attributes

Multi-role estimation from network topology
Roles undertaken by actors are not independent of each other; they can 
have internal dependency structures
An actor in the network can be fractionally assigned to multiple roles
Mixed memberships of actors vary temporally

Visualization and analysis tool for dynamic networks

Discovered interesting patterns from Email/Vote/Gene
Nwks

Summary
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Discussion: future directions
How about estimating time varying "causal" graphs, or 
general time-varying graphical models?

The time-varying DBN based on an nonstationary auto-regressive model 
(NIPS 2009) entails 1st-order "Granger causality"
Consistency proof is difficult (sample no longer conditionally independent), 
but still possible under assumption of local stationarity
Est. of arbitrary TV-GM remains an open problem in both algorithm and 
theory

Web-scale inference/modeling
Scalability to million-node network problem remains hard
Are nodal/edge level inference still interesting in mega networks?
Predictive models for large graph evolution, community organization, 
information diffusion

Socio-media modeling and prediction
Facebook, Twitter, Flicker: many interesting problems
Data integration: Graph + Text + image + …
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