
Static Typing for Ruby on Rails

Jong-hoon (David) An
Computer Science Department

University of Maryland
College Park, USA

davidan@cs.umd.edu

Avik Chaudhuri
Computer Science Department

University of Maryland
College Park, USA
avik@cs.umd.edu

Jeffrey S. Foster
Computer Science Department

University of Maryland
College Park, USA
jfoster@cs.umd.edu

Abstract—Ruby on Rails (or just “Rails”) is a popular
web application framework built on top of Ruby, an object-
oriented scripting language. While Ruby’s powerful features
such as dynamic typing help make Rails development extremely
lightweight, this comes at a cost. Dynamic typing in particular
means that type errors in Rails applications remain latent until
run time, making debugging and maintenance harder. In this
paper, we describe DRails, a novel tool that brings static typing
to Rails applications to detect a range of run time errors.
DRails works by translating Rails programs into pure Ruby
code in which Rails’s numerous implicit conventions are made
explicit. We then discover type errors by applying DRuby,
a previously developed static type inference system, to the
translated program. We ran DRails on a suite of applications
and found that it was able to detect several previously unknown
errors.

Keywords-Ruby; Ruby on Rails; scripting languages; type
systems; web frameworks

I. INTRODUCTION

Web application frameworks have become indispensable
for rapid web development. One very popular framework
is Ruby on Rails (or just “Rails”), which is built on top
of Ruby, an object-oriented scripting language. While Ruby
allows development in Rails to be extremely lightweight,
Ruby’s dynamic typing means that type errors in Ruby
programs, and hence Rails programs, can remain latent until
run time. Recently, we have been developing Diamondback
Ruby (DRuby), a new static type inference system for
ordinary Ruby code [1], [2]. We would like to bring the
same type inference to Rails to catch common programming
bugs in Rails programs.

Unfortunately, by itself, DRuby would be essentially use-
less on Rails code. The Rails framework uses a significant
amount of highly dynamic, low-level class and method ma-
nipulation as part of its “convention over configuration” [3]
design. This kind of code is essentially unanalyzable with
DRuby (and with any typical static analysis). We also cannot
simply omit the framework during analysis of an application,
since we would then miss most of the application’s behavior.

In this paper, we address this issue with DRails, a novel
tool that brings DRuby’s type inference to Rails. The key
insight behind DRails is that we can make implicit Rails
conventions explicit through a Rails-to-Ruby transformation,

and then analyze the resulting programs with DRuby. Type
errors in the transformed programs indicate type errors in the
original Rails applications. As far as we are aware, DRails
is the first tool to bring static typing to Rails. Furthermore,
we expect that DRails’s transformation can serve as a front-
end for other static analyses on Rails programs, and the idea
of analyzing programs by transformation can be applied to
other code development frameworks as well.

We evaluated DRails by running it on a suite of 11
Rails programs gathered from a variety of sources. DRails
found 12 previously unknown errors that can cause crashes
or unintended behavior at run time. DRails also identified
2 examples of questionable coding practice. The fact that
DRails could find these errors is particularly surprising
since Rails applications are often thoroughly tested during
development using Rails’s built-in testing infrastructure.
Furthermore, DRails reported 57 false positives; about half
of them were due to known incompleteness issues in DRuby,
and we expect most of the others to be eliminated with minor
extensions to DRails.

II. OVERVIEW

Rails is built on top of Ruby, an object-oriented scripting
language [4]. Rails uses a model-view-controller (MVC)
architecture [5], in which any web request by the client
results in a call to some method in a controller, which in turn
uses a model to perform database accesses and eventually
returns a view, i.e., the text of a web page, as the response. To
illustrate how Rails works and the challenges of reasoning
about Rails applications, we will develop a small program
called catalog that maintains an online product catalog. The
database for catalog tracks a set of companies, each of
which has a set of products. In turn, each product has a
name plus a longer textual description. Internally, catalog
has two models (Company and Product), two controllers
(CompaniesController and ProductsController), and one view
(views/companies/info.html.erb). We next discuss the code
for these various components, potential bugs that might
appear in this simple application, and how DRails would
help detect these errors statically. Due to space constraints,
our discussion is incomplete; more details can be found in
our companion technical report [6].

db/schema.rb

1 create table ‘‘companies’’ do |t| t.string ‘‘name’’ end
2 create table ‘‘products’’ do |t|
3 t.integer ‘‘company id’’
4 t.string ‘‘name’’
5 t.string ‘‘description’’
6 end

models/company.rb

7 class Company < ActiveRecord::Base
8 has many :products
9 validates uniqueness of :name

10 end

controllers/companies controller.rb

11 class CompaniesController < ActionController::Base
12 def info()
13 @company = Company.find by name (params[:name])
14 end
15 end

views/companies/info.html.erb

16 <h2><%= @company.name %></h2>
17 <% @company.products.each do |product| %>
18 <p><%= product.name + ”:” + product.description%></p>
19 <% end %>

controllers/products controller.rb

20 class ProductsController < ActionController::Base
21 before filter :authorize, :only⇒ :change
22 def info
23 company = Product.find(params[:id]).company
24 redirect to :controller⇒ ‘‘companies’’, :action⇒ ‘‘info’’,
25 :name⇒ company.name
26 end
27 def change
28 @product.description = params[:description]
29 @product.save
30 info
31 end
32 private
33 def authorize
34 @product = Product.find(params[:id])
35 return @product.company.name == session[:user] ? nil : info
36 end
37 end

Figure 1. Rails application catalog source code

A. Models

The first listing in Fig. 1 shows db/schema.rb, which is
a Ruby file that is auto-generated from the database table.
(The code for a Rails application is split across several
subdirectories, including db/ for the database, and models/,
views/, and controllers/ for the correspondingly named
components.) This file records the names of the tables and
the fields of each row: the companies table has a name field,
and the products table has name and description.

In Rails, each row in a table is mirrored as an instance of

a model class (or, just “model”), which must be defined by
a file in the models/ directory. The second listing in Fig. 1
shows the Company class, corresponding to the companies
table. (We omit the Product class from the figure due to
lack of space.) Note the singular/plural relationship between
model (Company) and table (companies) names. Rails uses
the information from schema.rb to automatically add field
setter and getter methods to the models, among other things.
For example, it creates methods name() and name=() to
Company to get and set the corresponding field name.

Because these and other methods are created implicitly by
Rails, and since Ruby has no static type checking, it is easy
to make a mistake in calling such a method and not realize
it during development. In DRails, we transform the initial
program, explicitly generating Ruby code corresponding to
auto-generated methods. For example, the Company model
is modified as follows:

class Company < ActiveRecord::Base
attr accessor :id, :name
...

The calls to attr accessor create methods to read and write
fields @id and @name. We pass the transformed code to
DRuby, which can then check that uses of these accessors
are type correct.

Models not only have methods added to them based
on the database schema, but they also inherit from the
Rails class ActiveRecord::Base (as shown on line 7; <
indicates inheritance). This class defines a variety of useful
methods, including several that tell Rails about relationships
between tables. In our example, each company can have
many products, indicated by the call on line 8, which adds
methods products() and products=() (note the pluralization)
to Company. For these methods to function, Rails requires
that the company id field declared on line 3 exist.

To type programs that use this feature or similar features,
DRails needs to add the implied method definitions and the
implied calls to the program. For example, the has many
call on line 8 is transformed into the following set of type
annotations:

class Company < ActiveRecord::Base
##% products : ()→ HasManyCollection<Product>
...
##% products= : \
##% (Array<Product>)→ HasManyCollection<Product>
...

end

Here the getter method products returns a collection of
Product objects. The setter method products= takes an array
of Products objects and returns the updated collection.

Next, if a model instance is updated or created, the
save() method (inherited from ActiveRecord::Base) is called
to commit it to the database. This method will reject
objects whose validation methods fail. For example, line 9
calls validates uniqueness of :name to require the name

field of a company to be unique across all companies.
Programmers can also define custom validation methods that
include arbitrary Ruby code, but we have omitted this due
to space limitations. DRails ensures that such behaviors are
correctly captured in the analysis by inserting explicit calls
to validation methods in appropriate places.

There are also a few other implicit model conventions that
DRails makes explicit. One important case is find by x(y),
which, if called, returns the first occurrence of a record
whose x field has value y, as shown in line 13 of Fig. 1.
There is one such method, plus one find by all x method,
for each possible field. DRails adds type annotations for
these methods to the model, e.g., since Company has a
field name, DRails adds annotations for find by name and
find all by name to class Company.

B. Controllers and Views

In Rails, the actions available in a web application are
defined as methods of controller classes. The third listing
in Fig. 1 shows CompaniesController, which, as do other
controllers, inherits from ActionController::Base. This con-
troller defines an action info that allows clients to list the
products belonging to a particular company. This action is
invoked whenever the client requests a URL beginning with
“〈server〉/companies/info”, and it expects a parameter name
to be passed as part of the POST or GET request. When info
is called, it finds the Company row whose name matches
params[:name], the requested name, and stores it in field
@company (line 13). The last step of an action is often a call
to render, which displays a view. In this case, info includes
no such call, so Rails automatically calls render :info to
display the view with the same name as the controller.

The corresponding view is shown as the fourth listing in
Fig. 1. As is typical, this view is written as an .html.erb file,
which contains HTML with embedded Ruby code. Here, text
between <% and %> is interpreted verbatim as Ruby code,
and text between <%= and %> is interpreted as a Ruby
expression that produces a string to be output in the resulting
web page. For example, line 16 shows a second-level head-
ing whose content is the value of @company.name; recall
@company was set by the controller, so it is an interesting
design decision that Rails allows it to be accessed here.
Similarly, lines 17–19 contain Ruby code to iterate through
the company’s products and render each one.

The last listing in Fig. 1 defines a more complex con-
troller, ProductsController, with several actions. The first
one, info (lines 22–26), computes the company of the product
given by the parameter id and then uses redirect to to pass
control to the info action of CompaniesController (lines 11–
15), specifying the company’s name. As we discussed above,
this in turn calls render :info (lines 16–19). It is possible
to call redirect to several times before eventually calling
render, allowing control to flow through several controllers
before eventually displaying a view.

The change action (lines 27–31) allows a product de-
scription to be updated. However, we only want to allow
authorized users to make such changes. Thus, on line 21 we
call before filter to specify that the authorize action should
always be run before change. Note that authorize is declared
private (line 32), so it cannot be called directly as an action.

When authorize is called, it looks up the product to be
modified (line 34) and checks whether the user logged
into the current session (stored in session[:user]; this is
established elsewhere (not shown)) matches the name of
the company of that product (line 35). If so, then authorize
evaluates to nil, and control passes to change, which updates
the product description (line 28), commits the change to the
database (line 29), and then calls info to show the product
listing screen (line 30). Otherwise, authorize calls info, and
since that ends in a redirect to, the action change will never
be rendered.

Like models, controllers and views can have errors that
are hard to detect. First, view file names could have the
wrong extension, in which case Rails may be unable to
find them, causing crashes or unintended behavior. Second,
a (perhaps implicit) call to render could go to a non-existent
view. Third, as control flows get complex, with actions
inserted before other actions with filters, and actions in one
controller calling actions in another, it is easy to make a
typo in the method name for a filter. For example, writing
:authorized instead of :authorize on line 21 will crash the
program. Or, making a mistake in a redirect to call (say,
by writing ‘‘company’’ instead of ‘‘companies’’ on line 24,
or @company = ... rather than company = ... on line 13) will
also result in an unexpected behavior.

Analogously to the transformation of models, DRails
performs code transformation for views and controllers. To
fully reason about views, we first need to able to analyze
the Ruby code embedded in HTML. Our solution is to use
Markaby for Rails [7] to parse the views and produce regular
Ruby classes that generate the same dynamic web pages.
(Note that while Markaby worked as-is on small examples,
we needed to make major improvements to apply it to
our suite of programs in Section III.) We call this process
Rubyifying the view. For example, here is the result of
Rubifying views/companies/info.html.erb of Fig. 1, slightly
simplified for discussion purposes:

module CompaniesView
include ActionView::Base
def info

Rubify.h2 do Rubify.text(@company.name) end
@company.products.each do |product|

Rubify.p do
Rubify.text(product.name + ”:” + product.description)

end end end end

Here the method name info is based on the view name info.
The calls to Rubify’s methods output strings containing the
appropriate HTML; notice that the calls are intermixed with

regular Ruby code. For example, Rubify.h2 do... end creates
the second-level heading on line 16 of Fig. 1. We created
this method as part of module CompaniesView, where the
module name was derived from the file’s location under
views/. Rails does approximately the same thing, implicitly
creating a CompaniesView class from the view.

Summing up, even an application as simple as catalog
contains many opportunities for error. DRails can find many
Rails errors by transforming the original program and run-
ning DRuby on the result.

III. IMPLEMENTATION AND EXPERIMENTS

DRails comprises approximately 1,700 lines of OCaml
and 2,000 lines of Ruby. DRails begins by combining all
the separate files of the Rails application into one large pro-
gram. DRails parses the program into the Ruby Intermediate
Language (RIL), a subset of Ruby that is designed to be
easy to analyze and transform [8]. Then DRails instruments
this program to capture arguments passed to Rails API
calls. The program is loaded with Ruby, and the resulting
instrumentation output is fed back into DRails and used to
transform the combined program, making uses of Rails’s
conventions explicit. This transformed program is passed to
DRuby along with base.rb, a file that gives type signatures
to remaining Rails API methods, and stub files containing
type signatures for any external libraries. DRuby performs
type inference and emits warnings for any errors it finds.

We evaluated DRails by running it on 11 Rails appli-
cations that we obtained from various sources including
RubyForge and OpenSourceRails. Fig. 2 summarizes our
results. The first group of columns gives the size of each
application, in terms of source code lines (counted with
wc); the size in kilobytes of the RIL control-flow graph
after parsing the model, controllers, and similar files and
Rubifying the views; and the size in kilobytes of the RIL
control-flow graph after full transformation. This increase
shows that there is a significant amount of code that Rails
produces by convention.

Due to current limitations of DRails, we needed to make
some small changes to the applications. We manually closed
unbalanced HTML tags so that Rubified code is well-formed
(R), flattened nested directory structures to avoid confusion
in matching class names to files (H), transformed non-literal
arguments to render and redirect to into case statements
to capture all routing behaviors (I), and manually added
required files to config/environment.rb (B).

The results of running DRails on these programs are
tabulated in the last two groups of columns in Fig. 2. We
ran DRails on an AMD Athlon 4600 processor with 4GB
of memory. We break down the running times of DRails
into DRails-only time, DRuby time, and the total time. The
reported running times are the average of three runs. The
DRails-only step is fairly fast across all the applications,
and most of the running time is due to DRuby.

We manually categorized DRuby’s error reports into four
categories: errors (E), reports that corresponds to bugs that
may crash the program at run time or cause unintentional
behavior; warnings (W), reports for code that behaves cor-
rectly at run time, but uses suspicious programming practice;
deprecated (D), reports of uses of Rails features no longer
available in Rails 2.x; and false positives (F) that do not
correspond to actual bugs.

We found 12 errors in the applications. Eight of the errors,
six in lohimedia and two in onyx, are due to programmer
misunderstandings of Ruby’s syntax. For example, lohime-
dia contains the code:

flash[:notice] = ‘‘You do not have...’’
+ ”...”

Here the programmer intends for the string on the second
line to be concatenated with the first line. In Ruby, however,
line breaks affect parsing, so the string on the first line is
assigned to flash[:notice]. Then the second line results in a
call to the unary method + with a string argument, which is
a type error. Because Ruby is dynamically typed, errors like
this can remain latent until run-time, whereas DRuby (and
DRails) can find such bugs statically.

The other two errors in onyx are due to the following
embedded Ruby code:

<% @any more = Post.find(:first, :offset⇒ (@offset.to i +
@posts per page.to i) + 1, :limit⇒ 1) %>

Here DRuby reports that Post, which the programmer seems
to be treating as a model, is undefined, as indeed it is.

One error in diamondlist is due to invoking the nonex-
istent method << on a Hash. (A method with that name
does exist in Array, perhaps explaining the error.) The other
error in diamondlist occurs in call to render in which the
specified view, top bar, does not exist.

Finally, boxroom has an interesting error in one of
its models due to a call to an undefined method
password confirmation. This method name is commonly
used by convention in Rails applications, but it is
only available if the user declares both password
and password confirmation fields, usually by calling
attr accessor. However, in this case the programmer instead
calls attr accessible on these fields, which has completely
different semantics.

We found 2 warnings in total. The first warning is due
to a call to a method that is not in Rails documentation but
actually part of a Rails definition. We are not sure whether
this method should have been documented or is meant to
be private. The second warning occurs due to a method call
whose block argument has the wrong type signature [1]. We
found 72 uses of deprecated constructs that operate correctly
on older versions of Rails but cause run-time errors on
Rails 2.x. benchmarks. DRails reported 57 false positives
due to: limitations in DRuby’s annotation language; features
not handled by DRails; inconsistent variable scoping due to

CFG sizes (kb) Patches (#) Running times (s) Errors (#)
LoC Before After R H I B DRails DRuby Total E W D F

depot 997 139 358 · · · 1 2.30 9.74 12.04 · 1 1 1
moo 838 143 402 4 · · 3 2.45 18.76 21.21 · · · 3

pubmgr 943 196 548 · · · 1 3.00 26.41 29.41 · · · ·
rtplan 1,480 273 697 · · · 2 3.47 26.65 30.12 · · 6 1

amethyst 1,183 264 729 · · · 4 3.53 39.03 42.56 · · · 1
diamondlist 1,415 265 786 4 2 · 1 4.10 23.81 27.91 2 · · 2

chuckslist 1,447 329 883 1 · 9 4 4.08 52.23 56.31 · 1 2 14
boxroom 2,330 376 959 6 · 1 2 4.16 87.23 91.39 1 · 27 6

onyx 2,228 484 1,190 6 1 · 1 5.62 79.75 85.37 3 · · 1
mystic 2,822 639 1,525 13 · 5 1 6.38 146.40 152.78 · · · 11

lohimedia 11,106 1,290 3,331 9 · 2 3 14.01 662.95 676.96 6 · 36 17

Figure 2. Experimental results

newly introduced Ruby code during Rubification; and run-
time type tests that DRuby cannot analyze.

Threats to Validity We should emphasize that DRails by no
means checks for all possible errors in Rails programs, e.g.,
clearly Rails programs can have errors that are unrelated to
types. Beyond that, there are several potential threats to the
validity of our experimental results. First, our type signatures
for the Rails API could be overly general, allowing calls
that might fail at runtime. Second, DRails’s modeling of the
Rails API is incomplete and could be slightly inaccurate.
Third, our categorization of some of DRails’s errors might be
incorrect, e.g., we may have classified code as erroneous that
actually behaves correctly at runtime. Finally, there could be
bugs in DRuby that cause it to unsoundly miss type errors.

IV. RELATED WORK

Most existing work on static analysis of web applications
focuses on verification of security properties. Lam et al. [9]
combine static analysis with model checking to verify that
information-flow patterns are satisfied in Java-like programs.
Huang et al. [10] use a lattice-based static analysis algorithm
derived from type systems and typestate to ensure similar
information-flow properties. The tool TAJ [11] performs
taint analysis of web applications written in Java, and uses
novel program slicing techniques to handle reflective calls
and flows through containers. The tool Pixy [12] performs
alias analysis for PHP and finds security vulnerabilities in
web applications written in PHP. Xie and Aiken [13] address
the same problem, and present a static analysis algorithm
based on symbolic evaluation to handle dynamic features of
PHP. The key differences between all of these systems and
DRails is our focus on static typing and Ruby on Rails, a
combination we believe we are the first to study.

V. CONCLUSION

In this paper, we presented DRails, a novel static analysis
tool for Rails applications. DRails works by translating Rails
applications into pure Ruby code in which the automation
provided by Rails’s sophisticated internal machinery is made
explicit. We then apply DRuby, a static type inference

system for Ruby, to the result. We showed that static typing
catches a variety of bugs in Rails applications, and we
believe we are the first to bring static typing to Rails.

REFERENCES

[1] M. Furr, J. An, J. S. Foster, and M. Hicks, “Static Type
Inference for Ruby,” in OOPS Track, SAC, 2009.

[2] M. Furr, J. An, and J. S. Foster, “Profile-guided static typing
for dynamic scripting languages,” in OOPSLA, 2009, to
appear.

[3] “Ruby on Rails,” 2009, http://rubyonrails.org.

[4] D. Flanagan and Y. Matsumoto, The Ruby Programming
Language. O’Reilly Media, Inc, 2008.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Addison-Wesley, 1995.

[6] J. An, A. Chaudhuri, and J. S. Foster, “Static typing for ruby
on rails,” University of Maryland, College Park, Tech. Rep.,
2009, http://www.cs.umd.edu/∼davidan/papers/drails.pdf.

[7] “Markaby for Rails,” 2006, http://redhanded.hobix.com/
inspect/MarkabyforRails.html.

[8] M. Furr, J. An, J. S. Foster, and M. Hicks, “The ruby
intermediate language,” in DLS, 2009, to appear.

[9] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing
web applications with static and dynamic information flow
tracking,” in PEPM, 2008, pp. 3–12.

[10] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and
runtime protection,” in WWW, 2004, pp. 40–52.

[11] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man, “TAJ: Effective taint analysis for Java,” in PLDI, 2009,
to appear.

[12] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analy-
sis for static detection of web application vulnerabilities,” in
PLAS, 2006, pp. 27–36.

[13] Y. Xie and A. Aiken, “Static detection of security vulnerabil-
ities in scripting languages,” in USENIX Security, 2006, pp.
179–192.

