
Profile-Guided Static Typing for Dynamic Scripting Languages

Michael Furr Jong-hoon (David) An Jeffrey S. Foster
University of Maryland

{furr,davidan,jfoster}@cs.umd.edu

Abstract
Many popular scripting languages such as Ruby, Python,
and Perl include highly dynamic language constructs, such
as an eval method that evaluates a string as program text.
While these constructs allow terse and expressive code, they
have traditionally obstructed static analysis. In this paper
we present PRuby, an extension to Diamondback Ruby
(DRuby), a static type inference system for Ruby. PRuby
augments DRuby with a novel dynamic analysis and trans-
formation that allows us to precisely type uses of highly
dynamic constructs. PRuby’s analysis proceeds in three
steps. First, we use run-time instrumentation to gather per-
application profiles of dynamic feature usage. Next, we re-
place dynamic features with statically analyzable alterna-
tives based on the profile. We also add instrumentation to
safely handle cases when subsequent runs do not match the
profile. Finally, we run DRuby’s static type inference on the
transformed code to enforce type safety.

We used PRuby to gather profiles for a benchmark suite
of sample Ruby programs. We found that dynamic features
are pervasive throughout the benchmarks and the libraries
they include, but that most uses of these features are highly
constrained and hence can be effectively profiled. Using
the profiles to guide type inference, we found that DRuby
can generally statically type our benchmarks modulo some
refactoring, and we discovered several previously unknown
type errors. These results suggest that profiling and trans-
formation is a lightweight but highly effective approach to
bring static typing to highly dynamic languages.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis; D.2.5 [Programming Languages]: Test-
ing and Debugging—Tracing

General Terms Languages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-734-9/09/10. . . $5.00

Keywords Ruby, profile-guided analysis, RIL, Scripting
Languages

1. Introduction
Many popular, object-oriented scripting languages such as
Ruby, Python, and Perl are dynamically typed. Dynamic typ-
ing gives programmers great flexibility, but the lack of static
typing can make it harder for “little” scripts to grow into ma-
ture, robust code bases. Recently, we have been developing
Diamondback Ruby (DRuby), a tool that brings static type
inference to Ruby.1 DRuby aims to be simple enough for
programmers to use while being expressive enough to pre-
cisely type typical Ruby programs. In prior work, we showed
that DRuby could successfully infer types for small Ruby
scripts (Furr et al. 2009c).

However, there is a major challenge in scaling up static
typing to large script programs: Scripting languages typi-
cally include a range of hard-to-analyze, highly dynamic
constructs. For instance, Ruby lets programmers eval strings
containing source code, use reflection to invoke methods via
send, and define a method missing method to handle calls to
undefined methods. These kinds of features lend themselves
to a range of terse, flexible, and expressive coding styles, but
they also impede standard static analysis. In fact, in Ruby
it is even hard to statically determine what source files to
analyze, because scripts can perform computation to decide
what other files to load.

In this paper, we present PRuby, an extension to DRuby
that solves this problem by combining run-time profiling of
dynamic features with static typing.2 Our key insight is that
even though script programs may use constructs that appear
to be dynamic, in fact their use is almost always heavily
constrained, so that in practice they act statically. As an
extreme example, a call eval “x + 2” is morally the same
as the expression x + 2, and can be typed just as easily with
PRuby. Using profiling enables PRuby to statically check
many other, much more complex and interesting examples.
And while PRuby is specific to typing Ruby, our profile-
guided transformation technique can be applied to many
dynamic languages and many static analyses.

1 http://www.cs.umd.edu/projects/PL/druby/
2PRuby uses Profiling to handle dynamic features ignored by DRuby.

PRuby analyzes Ruby code in three steps. First, it per-
forms a source-to-source translation on the program to be
analyzed so that when run, the program records a profile of
how dynamic features were used in that execution. Among
other information, we record what strings are passed to eval,
what methods are invoked via send, and what invocations are
handled by method missing. Next, the user runs the program
to gather a sufficient profile, typically using the program’s
test suite. Then PRuby uses the profile to guide a program
transformation that removes highly dynamic constructs, e.g.,
by replacing eval calls with the source code seen in the pro-
file. Lastly, PRuby applies type inference to the transformed
program to detect any type errors. PRuby can also safely
handle program runs that do not match the profile. In these
cases, PRuby instruments newly seen code to include full
dynamic checking and blame tracking, so that we can detect
errors in the code and place the blame appropriately.

Notice that PRuby relies on the programmer to provide
test cases to guide profiling. We think this is a reasonable
approach because not only do most Ruby programs already
come with test suites (testing is widely adopted in the Ruby
community), but it gives the programmer an easy to un-
derstand trade-off: The more dynamic features covered in
the profile, the more static checking is achieved. Moreover,
run-time profiling gives PRuby very precise information for
type inference. This is in contrast to using, e.g., purely static
string analysis (Livshits et al. 2005; Christensen et al. 2003;
Gould et al. 2004), which could easily over-approximate the
set of strings seen at run time (Sawin and Rountev 2007). It
also allows us to statically analyze effectful dynamic code.
For example, in our experiments, we found many cases
where eval’d strings define methods, and those methods are
referred to in other parts of the program. As far as we are
aware, techniques such as gradual typing (Siek and Taha
2006, 2007; Herman et al. 2007) would be unsound in the
presence of such effects in dynamic code—static guarantees
could be undermined if dynamically eval’d code overwrites
a method used in statically typed code.

We formalized profiling, transformation, and type check-
ing for TinyRuby, a small object-oriented language with
eval, send, and method missing. We have proven that our
transformation is faithful, meaning it does not change the
behavior of a program under its profile, and that transformed
programs that pass our type checker never go wrong at run
time, except possibly from code that was instrumented with
blame tracking.

We applied PRuby to a suite of benchmarks that use
dynamic features, either directly, via the standard library,
or via a third-party library. We found several interesting
results. First, our experiments show that dynamic language
features are used heavily in Ruby—across our benchmarks,
profiled executions observed 664 unique strings passed to
66 syntactic occurrences of dynamic features, suggesting

that handling such features is essential for any Ruby static
analysis.

Second, we manually categorized all the dynamic feature
usage in our sample runs, and we found that essentially
all of them can be classified as “static.” More precisely,
approximately 2/3 of the time, dynamic features are used
in a small, finite set of ways determined by the Ruby code
that calls them. In the remaining cases, the calls to dynamic
features depend on the local Ruby environment. We found
no cases of arbitrarily dynamic code, e.g., there were no
examples that eval’d a string read from the command line,
or used send to call a method whose name was read from the
network.

Finally, we found that DRuby initially reported many type
errors on the transformed program code. Upon closer inspec-
tion, we found eight real type errors in widely used libraries.
The remaining errors were false positives, but much of the
code appeared “nearly” statically typable, despite being de-
veloped without a static type system in mind. To measure
how statically typable this code is, we applied a range of
refactorings to our benchmarks until they were accepted by
DRuby. We found that the majority of refactorings point to
potential improvements to DRuby, and a few more suggest
places where Ruby coding style could be changed to be more
amenable to static typing. We only found a few cases of code
that uses untypable low-level object manipulation or requires
dynamic typing.

Together, our results suggest that profile-guided transfor-
mation is an effective approach to help bring static typing to
dynamic languages.

2. Motivation
Ruby is a class-based, imperative, object-oriented scripting
language with a rich set of features such a module mix-
ins, higher-order methods (“code blocks”), and strong reg-
ular expression support (Thomas et al. 2004; Flanagan and
Matsumoto 2008). In this section, we motivate the need for
PRuby by giving examples showing uses of its dynamic fea-
tures. All of the examples in this section were extracted from
the benchmarks in Section 5. PRuby also handles several
other dynamic features of Ruby, discussed in Section 4.

Require To load code stored in a file, a Ruby program in-
vokes the require method, passing the file name as a string
argument. Since this is an ordinary method call, a Ruby pro-
gram can actually perform run-time computation to deter-
mine which file to load. Figure 1(a) gives two examples
of this. Lines 1–2, from the sudokusolver benchmark, call
dirname to compute the directory containing the currently
executing file, and then call File.join to create the path of
the file to load. We have found similar calls to require (with
computed strings) are common, occurring 11 times across 5
of our benchmarks. As another example, lines 4–7, from the
memoize benchmark, first modify the load path on line 5 be-
fore loading the file memoize on line 7. This example shows

1 require File . join (File .dirname(FILE), ’ .. ’ ,
2 ’ lib ’ , ’ sudokusolver ’)
3

4 Dir . chdir (” .. ”) if base == ”test”
5 $LOAD PATH.unshift(Dir.pwd + ”/lib”)
6 ...
7 require ”memoize”

(a) Using require with dynamically computed strings

1 alias gem original require require
2

3 def require (path)
4 gem original require path
5 rescue LoadError => load error
6 (if spec = Gem.searcher.find(path) then
7 Gem.activate(spec.name, ”= #{spec.version}”)
8 gem original require path
9 else

10 raise load error
11 end)
12 end end

(b) Example of require from Rubygems package manager

1 def initialize (args)
2 args .keys .each do | attrib |
3 self .send(”#{attrib}=”, args[attrib])
4 end end

(c) Use of send to initialize fields

1 ATTRIBUTES = [”bold”, ”underscore”, ...]
2 ATTRIBUTES.each do |attr|
3 code = ”def #{attr}(&blk) ... end”
4 eval code
5 end

(d) Defining methods with eval

1 def method missing(mid, ∗args)
2 mname = mid.id2name
3 if mname =˜ /=$/
4 ...
5 @table[mname.chop!.intern] = args[0]
6 elsif args . length == 0
7 @table[mid]
8 else
9 raise NoMethodError, ”undefined method...”

10 end
11 end

(e) Intercepting calls with method missing

Figure 1. Dynamic features in Ruby

that even when require is seemingly passed a constant string,
its behavior may actually vary at run time.

For a much more complex use of require, consider the
code in Figure 1(b). This example comes from Rubygems, a
popular package management system for Ruby. In Rubygems,
each package is installed in its own directory. Rubygems re-
defines the require method, as shown in the figure, so that
require’ing a package loads it from the right directory. Line 1
makes an alias of the original require method. Then lines 3–
11 give the new definition of require. First, line 4 attempts to
load the file normally, using the old version of require. If that
fails, the resulting LoadError exception is caught on line 5
and handled by lines 6–11. In this case, Rubygems searches
the file system for a library of the same name (line 6). If
found, the package is “activated” on line 7, which modifies
the load path (as in Figure 1(a)), and then the file is loaded
with the old require call on line 8.

This implementation is convenient for package man-
agement, but it makes pure static analysis quite difficult.
Even if we could statically determine what string was
passed to the new version of require, to find the corre-
sponding file we would need to reimplement the logic of
the Gem.searcher.find method. In PRuby, in contrast, we
use dynamic profiling to discover which files are actually
loaded, and thus no matter how complex the logic that finds
them, we can determine the loaded files precisely.

Send When a Ruby program invokes e0.send(“meth”,
e1, . . . , en), the Ruby interpreter dispatches the call reflec-
tively as e0.meth(e1, . . . , en). Figure 1(c) shows a typical
use of this feature, from the StreetAddress benchmark. This
code defines a constructor initialize that accepts a hash args
as an argument. For each key attrib in the hash, line 3 uses
send to pass args[attrib], the value corresponding to the key,
to the method named “#{attrib} =”, where #{e} evalu-
ates expression e and inserts the resulting value into the
string. For example, if initialize is called with the argument
{“x”⇒ 1}, it will invoke the method self.x=(1), providing
a lightweight way to configure a class through the construc-
tor.

Another common use of send is in test drivers. For exam-
ple, the Ruby community makes heavy use of Ruby’s stan-
dard unit testing framework (not shown). To write a test case
in this framework, the programmer creates a class with test
methods whose names begin with test . Given an instance of
a test class, the framework uses the methods method to get a
string list containing the names of the object’s methods, and
then calls the appropriate ones with send.

Eval Ruby also provides an eval method that accepts a
string containing arbitrary code that is then parsed and exe-
cuted. Our experiments show that use of eval is surprisingly
common in Ruby—in total, eval and its variants are used
to evaluate 423 different strings across all our benchmark
runs (Section 5). Figure 1(d) shows one example of metapro-
gramming with eval, taken from the text-highlight bench-

e ::= x | v | d | e1; e2 | e1≡e2 | let x = e1 in e2

| if e1 then e2 else e3 | e0.m(e1, . . . , en)
| eval` e | e0.send`(e1, . . . , en)
| safe eval` e | JeK` | blame `

v ::= s | true | false | new A | JvK`

d ::= def` A.m(x1, . . . , xn) = e

x ∈ local variable names A ∈ class names
m ∈ method names s ∈ strings
` ∈ program locations

Figure 2. TinyRuby source language

mark. This code iterates through the ATTRIBUTES array
defined on line 1, creating a method named after each array
element on lines 3–4. We found many other examples like
this, in which Ruby programmers use eval to create methods
via macro-style metaprogramming.

Method Missing Figure 1(e) gives an example use of
method missing, which receives calls to undefined meth-
ods. This code (slightly simplified) is taken from the ostruct
library, which creates record-like objects. In this definition,
line 2 converts the first argument, the name of the invoked
method, from a symbol to a string mname. If mname ends
with = (line 3), then on line 5 we update @table to map
mname (with the = removed and interned back into a sym-
bol) to the first argument. Otherwise there must be no argu-
ments (line 6), and we read the value corresponding to the in-
voked method out of @table. For example, if o is an instance
of the ostruct class, the user can call o.foo = (3) to “write”
3 to foo in o, and o.foo() to “read” it back. Notice that we
can use method invocation syntax even though method foo
was never defined. This particular use of method missing
from ostruct is one of two occurrences of method missing
that are dynamically executed by our benchmark test suites.

One interesting property of method missing is that it
cannot be directly modeled using other dynamic constructs.
In contrast, the require and send methods are in a sense
just special cases of eval. We could implement require by
reading in a file and eval’ing it, and we could transform
o.send(m, x, y) into eval(“o.#{m}(x, y)”).

3. Dynamic Features in TinyRuby

We model our approach to statically type checking dy-
namic language features with TinyRuby, shown in Figure 2.
The core language includes local variables x (such as the
distinguished local variable self) and values v. Values in-
clude strings s, booleans true and false, objects created with
new A, and wrapped values JvK`, which indicate values with
dynamic rather than static types. We annotate JvK` with
a program location ` so that we may later refer to it. In
TinyRuby, objects do not contain fields or per-object meth-

ods, and so we can represent an object simply by its class
name. We could add richer objects to TinyRuby, but we keep
the language simple to focus on its dynamic features.

In TinyRuby, method definitions d can appear in arbitrary
expression positions, i.e., methods can be defined anywhere
in a program. A definition def` A.m(x1, . . . , xn) = e adds
or replaces class A’s method m at program location `, where
the xi are the arguments and e is the method body. Note that
TinyRuby does not include explicit class definitions. Instead,
a program may create an instance of an arbitrary class A at
any point, even if no methods of A have been defined, and
as we see occurrences of def` A.m(. . .) = . . ., we add the
defined method to a method table used to look up methods at
invocation time. For example, consider the following code:

let x = new A in(def` A.m() = . . .); x.m()

The call to x.m() is valid because A.m() was defined be-
fore the call, even though the definition was not in effect at
new A. This mimics the behavior of Ruby, in which changes
to classes affect all instances, and allows eval to be used
for powerful metaprogramming techniques, as shown in Fig-
ure 1(d). Our method definition syntax also allows defining
the special method missing method for a class, which, as we
saw in Section 2, receives calls to non-existent methods.

Other language constructs in TinyRuby include sequenc-
ing e1; e2, the equality operator e1 ≡ e2, let binding, con-
ditionals with if, and method invocation e0.m(e1, . . . , en),
which invokes method m of receiver e0 with arguments e1

through en.
TinyRuby also includes two additional dynamic con-

structs we saw in Section 2. The expression eval` e eval-
uates e to produce a string s, and then parses and evalu-
ates s to produce the result of the expression. The expres-
sion e0.send`(e1, . . . , en) evaluates e1 to a string and then
invokes the corresponding method of e0 with arguments e2

through en. We annotate both constructs with a program
location `.

The last three expressions in TinyRuby, safe eval` e,
JeK`, and blame `, are used to support dynamic typing
and blame tracking. These expressions are inserted by our
translation below to handle uses of dynamic constructs we
cannot fully resolve with profiling. Our approach is some-
what non-standard, but these constructs in our formalism
closely match our implementation (Section 4), which per-
forms blame tracking without modifying the Ruby inter-
preter. We delay discussing the details of these expressions
to Section 3.3.

3.1 An Instrumented Semantics
To track run-time uses of eval, send, and method missing,
we use the instrumented big-step operational semantics
shown in Figure 3. Since most of the rules are straightfor-
ward, we show only selected, interesting reduction rules, and
similarly for the other formal systems we discuss below. Full

(VAR)

〈M, V, x〉 → 〈M, ∅, V(x)〉

(DEF)

〈M, V, d〉 → 〈(d, M), ∅, false〉

(EVAL)
〈M, V, e〉 → 〈M1,P1, s〉 〈M1, V, parse(s)〉 → 〈M2,P2, v〉

〈M, V, eval` e〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(SEND)
〈M, V, e1〉 → 〈M1,P1, s〉 m = parse(s)
〈M1, V, e0.m(e2, . . . , en)〉 → 〈M2,P2, v〉

〈M, V, e0.send`(e1, . . . , en)〉 → 〈M2, (P1 ∪ P2 ∪ [` 7→ s]), v〉

(CALL-M)
〈Mi, V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = new A

(def` A.m(. . .) = . . .) 6∈ Mn+1

(def`′ A.method missing(x1, . . . , xn+1) = e) ∈ Mn+1

s = unparse(m) m 6= method missing
V′ = [self 7→ v0, x1 7→ s, x2 7→ v1, . . . , xn+1 7→ vn]

〈Mn+1, V′, e〉 → 〈M′,P ′, v〉

〈M0, V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′ ∪ [`′ 7→ s], v〉

Figure 3. Instrumented operational semantics (partial)

proofs are available in a companion technical report (Furr
et al. 2009a). In our implementation, we add the instrumen-
tation suggested by our semantics via a source-to-source
translation.

Reduction rules in our semantics have the form 〈M, V, e〉 →
〈M′,P, v〉. Here M and M′ are the initial and final method
tables, containing a list of method definitions; V is a local
variable environment, mapping variables to values; e is the
expression being reduced; v is the resulting value; and P is
a profile that maps program locations (occurrences of eval,
send, and method missing definitions) to sets of strings. In
these rules, we use parse(s) to denote the expression pro-
duced by parsing string s, and we use unparse(e) to denote
the string produced by unparsing e.

The first rule, (VAR), looks up a variable in the local
environment and produces the empty set of profiling infor-
mation. To see why we opted to use environments rather
than a substitution-based semantics, consider the program
let x = 2 in eval` “x + 1”. In a substitution-based seman-
tics, we would rewrite this program as (eval` “x+1”)[x 7→
2], but clearly that will not work, since this is equal to
(eval` “x + 1”), i.e., substitution does not affect strings.
We could try extending substitution to operate on string ar-
guments to eval, but since the string passed to eval can be
produced from an arbitrary expression, this will not work
in general. Other choices such as delaying substitution until
later seemed complicated, so we opted for the simpler se-
mantics using variable environments.

The next rule, (DEF), adds a method definition to the
front of M and returns false. When we look up a definition of

A.m in M, we find the leftmost occurrence, and hence (DEF)
replaces any previous definition of the same method.

The last three rules in Figure 3 handle the novel features
of TinyRuby. (EVAL) reduces its argument e to a string s,
parses s and then reduces the resulting expression to com-
pute the final result v. The resulting profile is the union
of the profiles P1 (from evaluating e), P2 (from evaluating
parse(s)), and [` 7→ s], which means s should be added to
the set of strings associated with `. In this way, we track the
relationship between eval` e and the string s passed to it a
run-time.

(SEND) behaves analogously. We evaluate the first argu-
ment, which must produce a string, translate this to a method
name m, and finally invoke m with the same receiver and
remaining arguments. In the output profile, we associate the
location of the send with the string s.

Finally, (CALL-M) handles invocations to undefined
methods. In this rule we evaluate the receiver and argu-
ments, but no method m has been defined for the receiver
class. We then look up method missing of the receiver class
and evaluate its body in environment V′, which binds the
first formal parameter to s, the name of the invoked method,
and binds self and the remaining formal parameters appro-
priately. The output profile associates s with `, the location
where method missing was defined.

3.2 Translating Away Dynamic Features
After profiling, we can translate a TinyRuby program into a
simpler form that eliminates features that are hard to analyze
statically. Figure 4 gives a portion of our translation. Exclud-
ing the final rule, our translation uses judgments of the form
P ` e e′, meaning given profile P , we translate expres-
sion e to expression e′. For most language forms, we either
do nothing, as in (REFL), or translate sub-expressions re-
cursively, as in (SEQ); we omit other similar rules.

The first interesting rule is (EVAL), which translates
eval` e. First, we recursively translate e. Next, recall that
(EVAL) in Figure 3 includes in P(`) any strings evaluated
by this occurrence of eval. We parse and translate those
strings sj to yield expressions ej . Then we replace the call
to eval by a conditional that binds e′ to a fresh variable x
(so that e′ is only evaluated once) and then tests x against
the strings in P(`), yielding the appropriate ej if we find a
match. If not, we fall through to the last case, which eval-
uates the string with safe eval` x, a “safe” wrapper around
eval that adds additional dynamic checks we describe below
(Section 3.3). This catch-all case allows execution to con-
tinue even if we encounter an unprofiled string, and also al-
lows us to blame the code from location ` if it causes a subse-
quent run-time type error. In our formalism, adding the form
blame ` allows us to formally state soundness: TinyRuby
programs that are profiled, transformed, and type checked
never get stuck at run time, and reduce either to values or to
blame. In practice, by tracking blame we can also give the
user better error messages.

(REFL)

e ∈ {x, v, blame `}
P ` e e

(SEQ)

P ` e1 e′1
P ` e2 e′2

P ` e1; e2 e′1; e
′
2

(EVAL)

P ` e e′

P ` parse(sj) ej sj ∈ P(`) x fresh

e′′ =

0BB@
let x = e′ in

if x≡s1 then e1

else if x≡s2 then e2 . . .
else safe eval` x

1CCA
P ` eval` e e′′

(SEND)

P ` ei e′i i ∈ 0..n sj ∈ P(`) x fresh

e′ =

0BB@
let x = e′1 in

if x≡s1 then e′0.parse(s1)(e
′
2, . . . , e

′
n)

else if x≡s2 then e′0.parse(s2)(e
′
2, . . . , e

′
n) . . .

else safe eval` “e′0.” + x + “(e′2, ..., e
′
n)”

1CCA
P ` e0.send`(e1, . . . , en) e′

(METH-MISSING)

P ` e e′ sj ∈ P(`)

e′′ =

„
def` A.parse(s1)(x2, . . . , xn) = (let x1 = s1 in e′);
def` A.parse(s2)(x2, . . . , xn) = (let x1 = s2 in e′); . . .

«
P ` def` A.method missing(x1, . . . , xn) = e e′′

(PROG)

P ` e e′ (def`j Aj .mj(xj
1, . . . , x

j
n) = . . .) ∈ e′

ed =

„
def`1 A1.m1(x1

1, . . . , x
1
n1) = blame `1;

def`2 A2.m2(x2
1, . . . , x

2
n2) = blame `2; . . .

«
P ` e⇒ (ed; e′)

Figure 4. Transformation to static constructs (partial)

(SEND) is similar to (EVAL). We recursively trans-
late the receiver e0 and arguments ei. We replace the invo-
cation of send with code that binds fresh variable x to the
first argument, which is the method name, and then tests x
against each of the strings sj in P(`), which were recorded
by (SEND) in our semantics. If we find a match, we invoke
the appropriate method directly. While our formal rule du-
plicates e′i for each call to send, in our implementation these
expressions are side-effect free (i.e., they consist only of lit-
erals and identifiers), and so we actually duplicate very little
code in practice. Otherwise, in the fall-through case, we call
safe eval with a string that encodes the method invocation—
we concatenate the translated expressions e′i with appropri-
ate punctuation and the method name x. (Note that in this
string, by e′i we really mean unparse(e′i), but we elide that
detail to keep the formal rule readable.)

(METH-MISSING) follows a similar pattern. First, we
recursively translate the body as e′. For each string sj in

P(`) (which by (CALL-M) in Figure 3 contains the methods
intercepted by this definition), we define a method named sj

that takes all but the first argument of method missing. The
method body is e′, except we bind x1, the first argument, to
sj , since it may be used in e′.

Our approach to translating method missing completely
eliminates it from the program, and there is no fall-through
case. There are two advantages to this approach. First, a
static analysis that analyzes the translated program need not
include special logic for handling method missing. Second,
it may let us find places where method missing intercepts
the wrong method. For example, if our profiling runs show
that A.method missing is intended to handle methods foo
and bar, DRuby’s type system will complain if it sees a call
to an undefined A.baz method in the translated program.
We believe this will prove more useful to a programmer
than simply assuming that a method missing method is in-
tended to handle arbitrary calls. However, one consequence
of this approach is that if a program is rejected by DRuby’s
type system, then unprofiled calls to method missing would
cause the program to get stuck.

The last step in the translation is to insert “empty” method
definitions at the top of the program. We need this step so we
can formally prove type soundness. For example, consider a
program with a method definition and invocation:

. . . def` A.m(. . .) = e; . . . ; (new A).m(. . .); . . .

The challenge here is that the definition of A.m might occur
under complex circumstances, e.g., under a conditional, or
deep in a method call chain. To ensure (new A).m(. . .) is
valid, we must know A.m has been defined.

One solution would be to build a flow-sensitive type sys-
tem for TinyRuby, i.e., one that tracks “must be defined”
information to match uses and definitions. However, in our
experience, this kind of analysis would likely be quite com-
plex, since definitions can appear anywhere, and it may be
hard for a programmer to predict its behavior.

Instead, we assume that any method syntactically present
in the source code is available everywhere and rely on dy-
namic, rather than static, checking to find violations of our
assumption. Translation P ` e ⇒ (ed; e′), defined by
(PROG) in Figure 4, enforces this discipline. Here ed is
a sequence of method definitions, and e′ is the translation of
e using the other rules. For each definition of A.m occur-
ring in e′, we add a mock definition of A.m to ed, where the
body of the mock definition signals an error using blame `
to blame the location of the actual definition.

We could also have built ed from the method definitions
actually seen during execution, e.g., (DEF) in Figure 3 could
record what methods are defined. We think this would also
be a reasonable design, but would essentially require that
users have tests to drive profiling runs in order to statically
analyze their code, even if they do not use features such
as eval. Thus for a bit more flexibility, we build ed based

(SEVAL)
〈M, V, e〉 → 〈M′,P, s〉

parse(s) ↪→` e′ 〈M′, V, Je′K`〉 → 〈M′′,P ′, v〉
〈M, V, safe eval` e〉 → 〈M′,P ∪ P ′, v〉

(IF↪→)

e1 ↪→` e′1 e2 ↪→` e′2 e3 ↪→` e′3

if e1 then e2 else e3 ↪→` if Je′1K` then e′2 else e′3

(CALL↪→)

ei ↪→` e′i i ∈ 0..n

e0.m(e1, . . . , en) ↪→` Je′0K`.m(e′1, . . . , e
′
n)

(DEF↪→)

def`′ A.m(x1, . . . , xn) = e ↪→` blame `′

(IF-WRAP-T)
〈M, V, e1〉 → 〈M1,P1, JtrueK`〉 〈M1, V, e2〉 → 〈M2,P2, v2〉

〈M, V, if e1 then e2 else e3〉 → 〈M2, (P1 ∪ P2), v2〉

(IF-WRAP-BLAME)
〈M, V, e1〉 → 〈M1,P1, v〉 v ∈ {JsK`, Jnew AK`}
〈M, V, if e1 then e2 else e3〉 → 〈M1,P1, blame `〉

(CALL-WRAP)
〈Mi, V, ei〉 → 〈Mi+1,Pi, vi〉 i ∈ 0..n v0 = Jnew AK`′′

(def` A.m(x1, . . . , xn) = e) ∈ Mn+1

m 6= method missing
V′ = [self 7→ v0, x1 7→ Jv1K`′′ , . . . , xn 7→ JvnK`′′]

〈Mn+1, V′, e〉 → 〈M′,P ′, v〉

〈M0, V, e0.m(e1, . . . , en)〉 → 〈M′, (
[
i

Pi) ∪ P ′, JvK`′′〉

Figure 5. Safe evaluation rules (partial)

on static occurrences of definitions, but we might make
dynamic method definition tracking an option in the future.

3.3 Safe Evaluation
To handle uses of dynamic features not seen in a profile,
our translation in Figure 4 inserts calls to safe eval` e, a
“safe” wrapper around eval. Figure 5 gives some of the
reduction rules for this form. In the first rule, (SEVAL), we
reduce safe eval` e by evaluating e to a string s, parsing s,
translating the result to e′ via the ↪→` relation (a source-to-
source transformation), and then evaluating Je′K`, a wrapped
e′. The expression Je′K` behaves the same as e′, except if it
is used type-unsafely then our semantics produces blame `,
meaning there was an error due to dynamic code from `. This
is contrast to type-unsafe uses of unwrapped values, which
cause the semantics to go wrong (formally, reduce to error).
In practice, we implement Je′K` by a method that accepts
an object and modifies it to have extra run-time checking
(Section 4).

The relation e ↪→` e′ rewrites the expression e, insert-
ing J·K` where needed. We give three example rewrite rules.
(IF↪→) rewrites each subexpression of the if, wrapping the
guard since its value is consumed. Similarly, (CALL↪→)
wraps the receiver so that at run time we will check the
receiver’s type and blame ` if the call is invalid. Lastly,
(DEF↪→) replaces a method definition by blame—we can-
not permit methods to be redefined in dynamically checked
code, since this could undermine the type safety of statically
typed code.

When wrapped values are used, we unwrap them and ei-
ther proceed as usual or reduce to blame `. For example, (IF-
WRAP-T) evaluates the true branch of an if given a guard
that evaluates to JtrueK`, whereas (IF-WRAP-BLAME) eval-
uates to blame ` if the guard evaluates to a non-boolean. No-
tice the contrast with ordinary reduction, which would in-
stead go wrong when if is used with a non-boolean guard.

(CALL-WRAP) handles a method invocation in which the
receiver is a wrapped object. Here we must be careful to also
wrap the arguments (in the definition of V′) when evaluating
the method body; because we did not statically check that
this call was safe, we need to ensure that the arguments’
types are checked when they are used in the method body.
Similarly, we must wrap the value returned from the call so
that it is checked when used later.

Notice that our semantics for safe eval` e does not use
any static type information. Instead, it performs extensive
object wrapping and forbids method definitions in dynamic
code. One alternative approach would be to run DRuby’s
type inference algorithm at run time on the string e returns.
However, this might incur a substantial run-time overhead
(given the space and time requirements of PRuby’s type
inference system), and it disallows any non-statically typed
parts of the program. Another alternative would be to only
keep objects wrapped until they are passed to statically typed
code. At that point, we could check their type against the
assumed static type, and either fail or unwrap the object and
proceed. This would be similar to gradual typing (Siek and
Taha 2006, 2007; Herman et al. 2007). We may explore this
approach in the future, as having static types available at
run time could reduce the overhead of our wrappers at the
expense of additional space overhead.

3.4 Formal Properties
It should be clear from the discussions above that our trans-
lation preserves the character of the original program, with
respect to the core behavior and the dynamic features seen
during the profiling run(s). We can prove this formally:

THEOREM 1 (Translation Faithfulness). Suppose 〈∅, ∅, e〉 →
〈M, P ′, v〉 and P ′ ⊆ P and P ` e ⇒ e′. Then there exist
MP such that 〈∅, ∅, e′〉 → 〈MP , ∅, v〉.
In other words, if we translate an expression based on its
profile (or a superset of the information in its profile), both
the original and translated program produce the same result.

Also, since our translation has removed all dynamic features,
we will record no additional profiling information in the
second execution, making the final profile ∅.

In our formal system, an expression e always evaluates to
the same result and produces the same profile, but in prac-
tice, programs may produce different profiles under different
circumstances. For example, if we want to test the behav-
ior of e, we could evaluate e; e1, where e1 is a test case for
the expression e, and e; e2, where e2 is a different test case.
Based on the above theorem, if our profiling runs are suffi-
cient, we can use them to translate programs we have not yet
profiled without changing their behavior:

COROLLARY 2. Suppose 〈∅, ∅, (e; e1)〉 → 〈M1,P1, v1〉.
Further, suppose that 〈∅, ∅, (e; e2)〉 → 〈M2,P2, v2〉. Then
if P2 ⊆ P1 and P1 ` (e; e2) ⇒ e′, then 〈∅, ∅, e′〉 →
〈M′2, ∅, v2〉.

In other words, if the dynamic profile P1 of (e; e1) covers all
the dynamic behavior of (e; e2), then using P1 to translate
e; e2 will not change its behavior. In our experiments, we
found that many dynamic constructs have only a limited
range of behaviors, and hence can be fully represented in
a profile. Thus, by this theorem, most of the time we can
gather a profile and then use that to transform many different
uses of the program.

Finally, the last step is to show that we can perform sound
static analysis on the translated program. A companion tech-
nical report gives a (mostly standard) type system for this
language (Furr et al. 2009a). Our type system proves judg-
ments of the form MT ` e, meaning under method type
table MT, a mapping from method names to their types,
program e is well-typed. In order for our type system to
be sound, we forbid well-typed programs from containing
eval, send, or method missing (since we cannot check these
statically), though programs may contain uses of safe eval
and J·K` (which are checked dynamically). We can formally
prove the following type soundness theorem, where r stands
for either a value, blame `, or error, an error generated if the
expression goes wrong:

THEOREM 3 (Type Soundness). If ∅ ` e and 〈∅, ∅, e〉 →
〈M,P, r〉, then r is either a value or blame `. Thus, r 6=
error.

This theorem says that expressions that are well-typed in this
language do not go wrong.

Recall that the translation from Section 3.2 eliminates the
three dynamic features that this type system does not permit,
and inserts appropriate mock definitions at the beginning of
the program. Thus, if we start with an arbitrary program,
gather information about its dynamic feature usage via the
instrumentation in Figure 3, and translate it according to
Figure 4, we can then apply sound static type checking to
the resulting program, while still precisely modeling uses of
eval, send, and method missing in the original program.

4. Implementation
As discussed earlier, PRuby is an extension to Diamond-
back Ruby (DRuby), a static type inference system for Ruby.
DRuby accepts standard Ruby programs and translates them
into the Ruby Intermediate Language (RIL), a much sim-
pler subset of Ruby designed for analysis and transforma-
tion (Furr et al. 2009b). DRuby performs static type infer-
ence internally on RIL code, and reports any type errors to
the user. DRuby supports a wide range of typing constructs,
including intersection and union types, optional method ar-
guments and varargs methods, self types, object types with
fields, parametric polymorphism, mixins, tuple types, and
first class method types, among others (Furr et al. 2009c).
PRuby is a drop-in replacement for the regular Ruby

interpreter. The user runs PRuby with the command

druby --dr-profile filename.rb

This command runs filename.rb to gather a profile, trans-
forms the program to eliminate dynamic constructs accord-
ing to the profile (as in Section 3.2), and then runs DRuby’s
type inference on the resulting program. In the future, we
expect profiling to be done separately and the results saved
for later use, but for experimental purposes our current
all-in-one setup is convenient. Altogether, PRuby, which
includes the enhanced DRuby source, comprises approxi-
mately 16,000 lines of OCaml and 800 lines of Ruby.

There are three interesting implementation issues in
PRuby: performing profiling, handling additional dynamic
constructs, and implementing safe eval and its relatives.

4.1 Profiling
PRuby creates profiles by running an instrumented version
of the source code. PRuby first must discover what source
files, in addition to the one specified on the command line,
are executed and hence need to be instrumented; as we saw
in Section 2, this is hard to determine statically. To find the
set of executed files, PRuby runs the original program but
with special code prepended to replace the definitions of
require and load3 with new methods that record the set of
loaded files and log them to disk when the program exits.
Since both methods are affected by the current load path,
which may be changed by the program, we log that as well.

Next, PRuby parses all files seen in require and load
calls, translates them into RIL, and adds instrumentation to
record uses of eval, send, method missing, and other dy-
namic features, to mimic the semantics in Section 3.1. Fi-
nally, we unparse the transformed RIL code into /tmp, and
then run the output code to compute a profile. The instru-
mentation is generally straightforward, though care must be
taken to ensure the program runs correctly when executed in
/tmp.

3 Ruby’s load is similar to require, but it always (re-)evaluates the given
file, even if previously loaded, while require evaluates a file only once.

4.2 Additional Dynamic Constructs
In addition to the constructs discussed in Section 3, PRuby
also handles several other closely related dynamic features.
Similarly to eval, Ruby includes instance eval, class eval,
and module eval methods that evaluate their string argument
in the context of the method receiver (an instance, class, or
module, respectively). For example, calling

x.class eval(“def foo()...end”)

adds the foo method to the class stored in variable x. We
profile these methods the same way as eval, but we use a
slightly different transformation. For example, we replace
the above code by

x.class eval() do def foo()...end end

Here we keep the receiver object x in the transformed pro-
gram, because the definition is evaluated in x’s context.
DRuby recognizes this form of class eval (which is also
valid Ruby code) specially, analyzing the body of the code
block in x’s context. Our transformation for instance eval
and module eval is similar.

Ruby includes four methods for accessing fields of ob-
jects, {instance, class} variable {get, set}, which take the
name of the instance or class variable to read or write. When
PRuby profiles these methods, it records the variable name
and transforms the expression into calls to {instance, class}
eval. For example, we transform a.instance variable set

(“@x”, 2) into a.instance eval do @x = 2 end.
Finally, PRuby also includes support for attr and attr

{reader, writer, accessor}, which create getter/setter meth-
ods given a field name, and also for const {get, set}, which
directly read or write constants (write-once variables).PRuby
profiles calls to these methods, and replaces the non-literal
field or constant name arguments with the string literals seen
at run time. DRuby then specially handles the case when
these methods are called with string literals. For example,
when DRuby sees const set(“X”, 3), it will give the con-
stant X the type Fixnum. These constructs are translated
similarly to how the other dynamic features are treated, e.g.,
by inserting calls to safe eval for unseen strings.

Ruby includes some dynamic features PRuby does not
yet support. In particular, DRuby’s type system treats cer-
tain low-level methods specially, but these methods could
be redefined, effectively changing the semantics of the lan-
guage. For instance, if a programmer changes the Module#
append features method, they can alter the semantics of
module mixins. Other special methods include Class#new,
Class#inherited, Module#method added, and Module#
included. PRuby also does not support applying dynamic
constructs to per-object classes (eigen-classes) or calling
dynamic features via the Method class. In addition to these
features, PRuby currently does not support const missing,
which handles accesses to undefined constants, similarly to
method missing; we expect to add support for this in the
future.

Currently, PRuby does not support nested dynamic con-
structs, e.g., eval’ing a string with eval inside it, or send’ing a
message to the eval method. In these cases, PRuby will not
recursively translate the nested construct. We believe these
restrictions could be lifted with some engineering effort.

4.3 Implementing safe eval

We implemented safe eval` e, JeK`, and blame ` as two
components: a small Ruby library with methods safe eval(),
wrap(), and blame(), and druby eval, an external program
for source-to-source translation.

The druby eval program is written using RIL, and it im-
plements the ↪→` translation as shown in Figure 5. For exam-
ple, it translates method definitions to calls to blame(), and
it inserts calls to wrap() where appropriate. There are a few
additional issues when implementing ↪→` for the full Ruby
language. First, we need not wrap the guard of if, because
in Ruby, if accepts any object, not just booleans. Second, in
addition to forbidding method definitions, we must also dis-
allow calls to methods that may change the class hierarchy,
such as undef method. Lastly, we add calls to wrap() around
any expressions that may escape the scope of safe eval, such
as values assigned to global variables and fields.

Given druby eval, our library is fairly simple to imple-
ment. The safe eval() method simply calls druby eval to
translate the string to be evaluated and then passes the re-
sult to Ruby’s regular eval method. The blame() method
aborts with an appropriate error. Lastly, the wrap() method
uses a bit of low-level object manipulation (in fact, exactly
the kind PRuby cannot analyze) to intercept method calls:
Given an object, wrap() first renames the object’s methods
to have private names beginning with druby, then calls
undef method to remove the original methods, and lastly
adds a method missing definition to intercept all calls to the
(now removed) original methods. Our method missing code
checks to see if the called method did exist. If so, it dele-
gates to the original method with wrapped arguments, also
wrapping the method’s return value. If not, it calls blame().

One nice feature of our implementation of wrap() is that
because we do not change the identity of the wrapped object,
we preserve physical equality, so that pointer comparisons
work as expected. Our approach does not quite work for in-
stances of Fixnum and Float, as they are internally repre-
sented as primitive values rather than via pointed-to objects.
Instead, we wrap these objects by explicitly boxing them in-
side of an traditional object. We then extend the compari-
son methods for these classes to delegate to the values inside
these objects when compared.

5. Profiling Effectiveness
We evaluated PRuby by running it on a suite of 13 programs
downloaded from RubyForge. We included any dependen-
cies directly used by the benchmarks, but not any optional
components. Each benchmark in our suite uses at least some

Benchmark LoC Req Eval Snd Total
ai4r-1.0 764 4/ 4 2/ 2 4/ 4 10/ 10
bacon-1.0.0 258 · · · ·
hashslice-1.0.4 78 · · · ·
hyde-0.0.4 115 2/ 2 1/11 1/ 2 4/ 15
isi-1.1.4 224 · 1/ 1 · 1/ 1
itcf-1.0.0 178 · · · ·
memoize-1.2.3 69 · · 1/ 1 1/ 1
pit-0.0.6 166 2/ 2 · · 2/ 2
sendq-0.0.1 88 · · · ·
StreetAddress-1.0.1 875 1/ 1 · 1/15 2/ 16
sudokusolver-1.4 188 2/ 2 1/ 1 · 3/ 3
text-highlight-1.0.2 262 · 2/48 · 2/ 48
use-1.2.1 193 · · · ·
Total 3,458 11/11 7/63 7/22 25/ 96
Req – dyn. require and load G/S – field and constant get/set;
Eval – eval and variants attr and its variants
Snd – send and send MM – method missing
n/m – n=occ, m=uniq strs

Lib Module LoC Req Eval Snd G/S MM Total
archive-tar-minitar 539 · · · 2/ 32 · 2/ 32
date 1,938 · 3/ 33 · · · 3/ 33
digest 82 1/ 1 · · 1/ 1 · 2/ 2
fileutils 950 · 4/101 · · · 4/101
hoe 502 1/ 2 · 1/ 2 · · 2/ 4
net 2,217 · 1/ 8 · · · 1/ 8
openssl 637 · 3/ 2 · · · 3/ 20
optparse 964 · · 2/ 4 · · 2/ 4
ostruct 80 · · 2/ 2 · 1/ 9 3/ 11
pathname 511 · · 1/ 1 · · 1/ 1
rake 1,995 2/19 3/136 · · · 5/155
rubyforge 500 · 1/ 2 · · · 1/ 2
rubygems 4,146 · 4/ 32 · 4/ 68 · 8/100
tempfile 134 · · 1/ 2 · 1/ 2 2/ 4
term-ansicolor 78 · 1/ 28 · · · 1/ 28
testunit 1,293 · · 1/63 · · 1/ 63
Other 4,871 · · · · · ·
Total 21,437 4/22 20/360 8/74 7/101 2/11 41/568

(a) Per-benchmark results (no occ. of MM or G/S) (b) Library results (as covered by benchmarks)

Figure 6. Dynamic feature profiling data from benchmarks

of the dynamic language features handled by PRuby, either
in the application itself or indirectly via external libraries.
All of our benchmarks included test cases, which we used to
drive the profiling runs for our experiments. Finally, many
projects use the rake program to run their test suites. Rake
normally invokes tests in forked subprocesses, but as this
would make it more difficult to gather profiling information,
we modified rake to invoke tests in the same process.

5.1 Dynamic Feature Usage
Figure 6 measures usage of the dynamic constructs we saw
in our profiling runs. We give separate measurements for the
benchmark code (part (a)) and the library modules used by
the benchmarks (part (b)). We should note that our measure-
ments are only for features seen during our profiling runs—
the library modules in particular include other uses of dy-
namic features, but they were in code that was not called by
our benchmarks.

For each benchmark or module, we list its lines of code
(computed by SLOCCount (Wheeler 2008)) and a summary
of the profiling data for its dynamic features, given in the
form n/m, where n is the number of syntactic occurrences
called at least once across all runs, and m is the number
of unique strings used with that feature. For Req and G/S,
we only count occurrences that are used with non-constant
strings. Any library modules that did not execute any dy-
namic features are grouped together in the row labeled Other
in Figure 6(b).

These results clearly show that dynamic features are
used pervasively throughout our benchmark suite. All of
the features handled by PRuby occur in some program, al-
though method missing is only encountered twice. Eight
of the 13 benchmarks and more than 75% of the library
module code use dynamic constructs. Perhaps surprisingly

(given its power) eval is the most commonly used construct,
occurring 27 times and used with 423 different strings—
metaprogramming is indeed extremely common in Ruby.
Over all benchmarks and all libraries, there were 66 syntac-
tic occurrences of dynamic features that cumulatively were
used with 664 unique strings. Given these large numbers, it
is critical that any static analysis model these constructs to
ensure soundness.

5.2 Categorizing Dynamic Features
The precision of DRuby’s type inference algorithm depends
on how much of the full range of dynamic feature usage
is observed in our profiles. To measure this, we manually
categorized each syntactic occurrence from Figure 6 based
on how “dynamically” it is used. For example, eval “x + 2”
is not dynamic at all since the eval will always evaluate
the same string, whereas eval ($stdin.readline) is extremely
dynamic, since it could evaluate any string.

Figure 7 summarizes our categorization. We found that
all of the dynamic features in our profiles are used in a con-
trolled manner—their use is either determined by the class
they are called in, or by the local user’s Ruby environment.
In particular, we found no examples of truly dynamic code,
e.g., eval’ing code supplied on the command line, suggest-
ing that profiling can be used effectively in practice. We now
discuss each category in detail.

Single The least dynamic use of a construct is to always
invoke it with the same argument. Three uses of eval and
seven uses of send can only be passed a single string. For
instance, the sudokusolver benchmark includes the code

PROJECT = ”SudokuSolver”
PROJECT VERSION =

eval (”#{PROJECT}::VERSION”)

which is equivalent to SudokuSolver::VERSION. As another
example, the ostruct module contains the code

meta.send(:define method, name) { @table[name] }

This code uses send to call the private method define method
from outside the class. The other uses of send in this cate-
gory were similar.

Collection A slightly more expressive use of dynamic con-
structs is to apply them to a small, fixed set of arguments.
One common idiom (18 occurrences) we observed was to
apply a dynamic construct uniformly across a fixed collec-
tion of values. For example, the code in Fig. 1(d) iterates
over an Array of string literals, evaling a method defini-
tion string from each literal. Thus, while multiple strings are
passed to this occurrence of eval, the same strings will be
used for every execution of the program. Additionally, any
profile that executes this code will always see all possible
strings for the construct.

Bounded We also found some dynamic constructs that are
called several times via different paths (in contrast to being
called within the same iteration over a collection), but the
set of values used is still bounded. For example, consider the
following code from the pathname module:

if RUBY VERSON < ”1.9”
TO PATH = :to str

else TO PATH = :to path end
path = path. send (TO PATH)

Here one of two strings is passed to send, depending on the
library version.

Sometimes dynamic constructs are called in internal
methods of classes or modules, as in the following exam-
ple from the net/https library:

def self . ssl context accessor (name)
HTTP.module eval(<<−End, FILE , LINE + 1)

def #{name}() ... end # defines get method
def #{name}=(val) ... end # defines set method
end

End
end
ssl context accessor :key
ssl context accessor : cert store

This code defines method ssl context accessor, which given
a symbol generates get and set methods based on that name.
The body of the class then calls this method to add several
such get/set methods. This particular method is only used in
the class that defines it, and seems not to be intended for use
elsewhere (nor is it used anywhere else in our benchmarks).

Features in this category are also essentially static, be-
cause their behavior is determined by the class they are con-
tained in, and profiling, even in isolation, should be fully
effective. Combining this with the previous two categories
gives a total of 42 features used with 538 unique strings,
which means around 2/3 of the total dynamic feature usage
across all runs is essentially static.

Category Req Eval Snd G/S MM Total
Single · 3/ 3 7/ 7 · · 10/ 10

Collection · 14/337 1/ 2 3/ 48 · 18/387
Bounded · 7/ 69 4/20 3/ 52 · 14/141

File system 11/11 3/ 14 · · · 14/ 25
Open module 4/22 · 3/67 1/ 1 2/11 10/101

Total 15/33 27/423 15/96 7/101 2/11 66/664
n/m – n=occ, m=uniq strs

Figure 7. Categorization of profiled dynamic features

File System The next category covers those dynamic fea-
tures whose use depends on the local file system. This in-
cludes most occurrences of Req, e.g., the code at the top of
Figure 1(a), which loads a file who name is derived from

FILE , the current file name. Another example is the fol-
lowing convoluted code from rubyforge:

config = File .read(FILE). split (/ END /).last .gsub(
/#\{(.∗)\}/) { eval $1 }

This call reads the current file, removes any text that appears
before END (which signals the Ruby interpreter to stop
reading), and then substitutes each string that matches the
given pattern with the result of calling eval on that string. De-
spite its complexity, for any given installation of the library
module, this code always evaluates the same set of strings.

The other cases of this category are similar to these two,
and in all cases, the behavior of the dynamic constructs de-
pends on the files installed in the user’s Ruby environment.

Open module The last category covers cases in which dy-
namic features are called within a library module, but the
library module itself does not determine the uses. For exam-
ple, the testunit module uses send to invoke test methods that
the module users specify. Similarly, the rake module loads
client-specified Ruby files containing test cases. As another
example, the ostruct module is used to create record-like ob-
jects, as shown in Figure 1(e).

These cases represent an interesting trade-off in profiling.
If we profile the library modules in isolation, then we will
not see all client usage of these 10 constructs (hence they
are “open”). However, if we assume the user’s Ruby envi-
ronment is fixed, i.e., there are no new .rb files added at run
time, then we can fully profile this code, and therefore we
can perform full static typing checking on the code.

6. Type Inference
Finally, we used PRuby to perform type inference on each
of the benchmarks, i.e. PRuby gathered the profiling data
reported in Figure 6, transformed the code as outlined in
Sections 3 and 4, and then applied DRuby’s type inference
algorithm on the resulting program.

When we first ranPRuby on our benchmarks, it produced
hundreds of messages indicating potential type errors. As
we began analyzing these results, we noted that most of
the messages were false positives, meaning the code would
actually execute type safely at run time. In fact, we found

Benchmark Total LoC Time (s)
ai4r-1.0 21,589 343
bacon-1.0.0 19,804 335
hashslice-1.0.4 20,694 307
hyde-0.0.4 21,012 345
isi-1.1.4 22,298 373
itcf-1.0.0 23,857 311
memoize-1.2.3 4,171 9
pit-0.0.6 24,345 340
sendq-0.0.1 20,913 320
StreetAddress-1.0.1 24,554 309
sudokusolver-1.4 21,027 388
text-highlight-1.0.2 2,039 2
use-1.2.1 20,796 323

Figure 8. Type inference results

that much of the offending code is almost statically typable
with DRuby’s type system. To measure how “close” the
code is to being statically typable, we manually applied a
number of refactorings and added type annotations so that
the programs pass DRuby’s type system, modulo several
actual type errors we found.

The result gives us insight into what kind of Ruby code
programmers “want” to write but is not easily amenable to
standard static typing. (DRuby’s type system combines a
wide variety of features, but most of the features are well-
known.) In the remainder of this section, we discuss the true
type errors we found (Section 6.1), what refactorings were
needed for static typing (Section 6.2), and what we learned
about the way people write Ruby programs (Section 6.3).
Overall, we found that most programs could be made stat-
ically typable, though in a few cases code seems truly dy-
namically typed.

6.1 Performance and Type Errors
Figure 8 shows the time it took PRuby to analyze our modi-
fied benchmarks. For each benchmark, we list the total lines
of code analyzed (the benchmark, its test suite, and any li-
braries it uses), along with the analysis time. Times were
the average of three runs on an AMD Athlon 4600 proces-
sor with 4GB of memory. These results show that PRuby’s
analysis takes only a few minutes, and we expect the time
could be improved further with more engineering effort.

Figure 9 lists, for each benchmark or library module
used by our benchmarks, its size, the number of refactorings
and annotations we applied (discussed in detail in the next
section), and the number of type errors we discovered. The
last row, Other, gives the cumulative size of the benchmarks
and library modules with no changes and no type errors.
PRuby identified eight type errors, each of which could

cause a program crash. The two errors in the pathname mod-
ule were due to code that was intended for the development
branch of Ruby, but was included in the current stable ver-
sion. In particular, pathname contains the code

def world readable ?() FileTest . world readable ?(@path) end

Module LoC Refactorings Annots Errors
archive-minitar 538 3 · 1
date 1,938 58 8 ·
digest 82 1 · ·
fileutils 950 1 7 ·
hoe 502 3 2 ·
net 2,217 22 3 ·
openssl 637 3 3 1
optparse 964 15 21 ·
ostruct 80 1 · ·
pathname 511 21 1 2
pit-0.0.6 166 2 · ·
rake 1,995 17 7 ·
rational 299 3 25 ·
rbconfig 177 1 · ·
rubyforge 500 7 ·
rubygems 4,146 44 47 4
sendq-0.0.1 88 1 · ·
shipit 341 4 · ·
tempfile 134 1 3 ·
testunit 1,293 3 20 ·
term-ansicolor 78 1 ·
text-highlight-1.0.2 262 1 1 ·
timeout 59 1 1 ·
uri 1,867 15 20 ·
webrick 435 4 1 ·
Other 4,635 · · ·
Total 24,895 226 177 8

Figure 9. Changes needed for static typing

However, the FileTest.world readable? method is in the de-
velopment version of Ruby but not in the stable branch that
was used by our benchmarks. The second error in pathname
is a similar case with the world writable? method.

The type error in archive-minitar occurs in code that at-
tempts to raise an exception but refers to a constant incor-
rectly. Thus, instead of throwing the intended error, the pro-
gram instead raises a NameError exception.

The four type errors in rubygems were something of a
surprise—this code is very widely used, with more than 1.6
million downloads on rubyforge.org, and so we thought any
errors would have already been detected. Two type errors
were simple typos in which the code incorrectly used the
Policy class rather than the Policies constant. The third er-
ror occurred when code attempted to call the non-existent
File.dir? method. Interestingly, this call was exercised by
the rubygems test suite, but the test suite defines the miss-
ing method before the call. We are not quite sure why the
test suite does this, but we contacted the developers and con-
firmed this is indeed an error in rubygems. The last type er-
ror occurred in the =∼method, which compares the @name
field of two object instances. This field stores either a String
or a Regexp, and so the body of the method must perform
type tests to ensure the types are compatible. However, due
to a logic error, one of the four possible type pairings is han-
dled incorrectly, which could result in a run time type error.

Finally, the openssl module adds code to the Integer class
that calls OpenSSL :: BN :: new(self). In this call, self has
type Integer, but the constructor for the OpenSSL :: BN

class takes a string argument. Therefore, calling this code
always triggers a run-time type error.

6.2 Changes for Static Typing
To enable our benchmarks and their libraries to type check
(modulo the above errors), we applied 226 refactorings and
added 177 type annotations. We can divide these into the
following categories. For the moment, we refrain from eval-
uating whether these changes are reasonable to expect from
the programmer, or whether they suggest possible improve-
ments to PRuby; we discuss this issue in detail in Sec-
tion 6.3.

Dynamic Type Tests (177 Annotations) Ruby programs
often use a single expression to hold values with a range
of types. Accordingly, DRuby supports union types (e.g.,
A or B) and intersection types (e.g., (Fixnum → Fixnum)
and (Float → Float)). However, DRuby does not currently
model run-time type tests specially. For example, if e has
type A or B, then DRuby allows a program to call methods
present in both A and B, but it does not support dynamically
checking if e has (just) type A and then invoking a method
that is in A but not in B.

To work around this limitation, we developed an anno-
tation for conditional branches that allows programmers to
indicate the result of a type test. For example, consider the
following code:

1 case x
2 when Fixnum: ###% x : Fixnum
3 x + 3
4 when String: ###% x : String
5 x.concat ‘‘ world’ ’
6 end

Here, the case expression on line 1 tests the class of x against
two possibilities. The annotations on lines 2 and 4 tell
DRuby to treat x as having type Fixnum and String, respec-
tively, on each branch. These annotations were extremely
common—we added them to 135 branches in total.We also
added 9 method annotations for intersection types and 33
method annotations for higher order polymorphic types.
Polymorphic type signatures can be used by DRuby given
annotations, but cannot currently be inferred. DRuby adds
instrumentation to check all the above annotations dynami-
cally at run time, to ensure they are correct.

Class Imprecision (81 Refactorings) In Ruby, classes are
themselves objects that are instances of the Class class. Fur-
thermore, “class methods” are actually methods bound in-
side of these instances. In many cases, we found program-
mers use Class instances returned from methods to invoke
class methods. For example, consider the following code:

1 class A
2 def A.foo() ... end
3 def bar()
4 self . class . foo() # calls A.foo()

5 end
6 end

Here the call on line 4 goes to the class method defined on
line 2. However, the class method invoked on line 4 has type
()→ Class in DRuby, and since Class has no foo() method,
DRuby rejects the call on line 4. To let examples like this
type check, we changed self.class to use a different method
call that dispatches to the current class. For example,

def bar()
myclass (). foo()

end
def myclass()

A
end

Similarly, an instance can look up a constant dynamically in
the current class using the syntax self . class :: X, requiring
an analogous transformation.

Block Argument Counts (24 Refactorings) In Ruby, higher-
order methods can accept code blocks as arguments. How-
ever, the semantics of blocks is slightly different than regular
methods. Surprisingly, Ruby does not require the formal pa-
rameter list of a block to exactly match the actual arguments:
formal arguments not supplied by the caller are set to nil, and
extra actual arguments are ignored.

DRuby, on the other hand, requires strict matching of the
number of block arguments, since otherwise we could never
discover mismatched argument counts for blocks. Thus we
modified our benchmarks where necessary to make argu-
ments lists match. We believe this is the right choice, because
satisfying DRuby’s requirement is a very minor change.

Non-Top Level Requires (21 Refactorings) PRuby uses
profiling to decide which files are required during a run, and
therefore which files should be included during type check-
ing. However, some of our benchmarks had conditional calls
to require that were never triggered in our test runs, but that
we need for static typing. For instance, the URI module con-
tains the following code:

1 if target . class == URI::HTTPS
2 require ‘net/https ’
3 http.verify mode = OpenSSL::SSL::VERIFY PEER

Here line 2 loads net/https if the conditional on line 1 is
true. The method called on line 3 is added by a load-time
eval inside of net/https. Thus, to successfully analyze this
code, PRuby needs to not only analyze the source code
of net/https, but it also must have its profile to know this
method exists. However, the branch on line 1 was never
taken in our benchmarks, and so this require was never
executed and the eval was not included in the profile.

We refactored cases like this by moving the require state-
ment outside of the method, so that it was always executed
when the file is loaded.

Multiple Configurations (10 Refactorings) We encoun-
tered some code that behaves differently under different op-
erating environments. For example,

if defined?(Win32)
.... # win32 code

end

first checks if the constant Win32 is defined before using
windows-specific methods and constants in the body of the
if. As another example, consider this code from rubygems:

1 if RUBY VERSION < ’1.9’ then
2 File .read file name
3 else
4 File .read file name , :encoding => ’UTF−8’

In versions prior to Ruby 1.9 (the current development ver-
sion of Ruby), the read method only took a single param-
eter (line 2), whereas later versions accept a second pa-
rameter (line 4). When DRuby sees this code, it assumes
both paths are possible and reports that read is called with
the wrong number of arguments. To handle these type-
conflicting cases, we commented out sections of code that
were disabled by the platform configuration.

Heterogeneous Containers (12 Refactorings) DRuby sup-
ports homogeneous containers with types such as Array<T>

and Hash<K,V>. Since arrays are sometimes used heteroge-
neously, DRuby also includes a special type Tuple<T1, . . .,

Tn>, where the Ti are the tuple element types from left to
right. Such a type is automatically coerced to Array<T1 or . . .

or Tn> when one of its methods is invoked.
However, sometimes this automatic coercion causes type

errors. For instance, the optparse module contains the fol-
lowing code:

1 def append(∗args)
2 update(∗args)
3 @list .push(args [0])
4 end

Here, calling the [] method on line 3 forces args to have
a homogeneous array type, losing precision and causing a
type error. We refactored this code to list the arguments
to append explicitly, allowing DRuby to type check this
method. We also encountered several other similar cases,
as well as examples where instances of Hash were used
heterogeneously.

Flow-insensitive Locals (11 Refactorings) DRuby treats
local variables flow-sensitively, since their type may be up-
dated throughout the body of a method. To be sound, we
conservatively treat any local variables that appear inside of
a block flow-insensitively (Furr et al. 2009c). However, this
causes DRuby to report an error if a flow-insensitive local
variable is assigned conflicting types at different program
points. We eliminated these errors by introducing a fresh
local variable at each conflicting assignment and renaming
subsequent uses.

Other (65 Refactorings) We also needed a few other mis-
cellaneous refactorings. In our benchmarks, there were 32
calls handled by method missing that were never seen in our
benchmark runs. Hence PRuby reported these calls as going
to undefined methods. We fixed this by manually copying
the method missing bodies for each method name they were
called with, simulating our translation rules. We could also
have fixed this with additional test cases to expand our pro-
files, so that PRuby would add these methods automatically
during its transformation.

In some cases, DRuby infers union types for an object
that actually has just one type. For example, rubygems in-
cludes a Package.open method that returns an instance of
either TarInput or TarOutput, depending on whether a string
argument is “r” or “w.” DRuby treats the result as having ei-
ther of these types, but as they have different methods, this
causes a number of type errors. We fixed this problem by di-
rectly calling TarInput.open or TarOutput.open instead. A
similar situation also occurred in the uri module.

We also refactored a few other oddball cases, such as
a class that created its own include method (which DRuby
would confuse with Module.include) and some complex ar-
ray and method manipulation that could be simplified into
typable code.

Untypable Code (12 Refactorings) Finally, some of the
code we encountered could not reasonably be statically
typed, even with refactorings and checked annotations. One
example is the optparse class, which provides an API for
command line parsing. Internally, optparse manipulates
many different argument types, and because of the way the
code is structured, DRuby heavily conflates types inside the
module. We were able to perform limited refactoring in-
side of optparse to gain some static checking, but ultimately
could only eliminate all static type errors by manually wrap-
ping the code using the wrap() method from our safe eval
library (Section 4.3).

The other cases of untypable code were caused by uses of
low-level methods that manipulate classes and modules di-
rectly in ways that DRuby does not support. For example, we
found uses of remove method, undef method, and anony-
mous class creation. We also found uses of two modules that
perform higher-level class manipulation: Singleton, which
ensures only one instance of a class exists, and Delegate,
which transparently forwards method calls to a delegate
class. DRuby does not support code that uses these low-
level features and will not detect any run-time errors from
their misuse.

6.3 Discussion and Future Work
In our prior work on DRuby, we found that small bench-
marks are mostly statically typable. We believe our current
results with PRuby suggest that even large Ruby programs
are mostly statically typable—on balance, most of our refac-
torings and type annotations indicate current limitations of

DRuby, and a few more suggest places where Ruby pro-
grammers could easily change their code to be typable (e.g.,
making argument counts for blocks consistent). Given the
extreme flexibility of Ruby, we think this result is very en-
couraging, and it suggests that static typing could very well
succeed in practice.

Our results suggest a number of future directions for
PRuby. Dynamic type tests are clearly important to Ruby
programmers but are not modeled by DRuby. Occurrence
Typing (Tobin-Hochstadt and Felleisen 2008), previously
proposed for Scheme, is one possible solution we plan to
explore. One challenge we expect is that Ruby contains a
multitude of ways to test the dynamic type of a value, and
we need to strike the right balance between supporting com-
mon uses and producing an easy-to-use system. Similarly,
improved handling of the Class type and a more precise anal-
ysis for flow-sensitive local variables would be beneficial.
Combined, these changes could eliminate up to 76% of the
annotations and 41% of the refactorings we introduced.

Other coding idioms may be difficult to support with
DRuby’s type inference algorithm, but could be handled
with improvements to our profiling technique. For example,
currently PRuby performs profiling, transformation, and
type inference in one run (Section 4). If we could combine
profiles from multiple runs, we could run additional tests
to improve code coverage. For example, instead of hoisting
require to the top-level of a file, a better solution may be to
use additional test suites (such as those provided by a library
maintainer), or for libraries to ship a profile database that
could be used by library clients.

Along the same lines, commenting out code to handling
multiple configurations will not work in practice. A better
solution might be to annotate particular constants as config-
uration variables whose values are then profiled by PRuby.
DRuby could then use these profiles to automatically prune
irrelevant code sections.

Our results so far show that PRuby can be applied to
existing code bases that were not written with static typing in
mind. Ultimately, we believe that PRuby will be most useful
to programmers while they are developing their code, so that
potential errors can be caught early in the development life
cycle. In the future, we plan not only to continue to improve
PRuby technically, but also to directly study usability and
utility of PRuby for software developers.

7. Threats to Validity
There are several potential threats to the validity of our re-
sults. Figures 6(a) and (b) only include dynamic constructs
that were observed by our benchmark runs. As we men-
tioned earlier, there are also other dynamic constructs that
are present in the code (particularly the library modules) but
were not called via our test suites. However, additional pro-
filing to try to exhibit these features would only bolster our
claim that dynamic features are important to model. A more

important consequence is that our categorization in Figure 7
may not generalize. It is possible that if we examined more
constructs, we would find other categories or perhaps some
features used in very dynamic ways. However, this would
not affect our other results, and we believe we looked at
enough occurrences (66 total) to gather useful information.

In Ruby, it is possible for code to “monkey-patch” ar-
bitrary classes, changing their behavior. Monkey patching
could invalidate our categorization from Section 5.2, e.g.,
by exposing a dynamic feature whose uses were previously
bounded within a class. However, this would only affect our
categorization and not PRuby, which can still easily profile
and analyze the full, monkey-patched execution.

Similarly, Ruby’s low-level object API could allow a pro-
grammer to subvert our analysis, as discussed at the end of
Section 6.2. Because we cannot verify these unsafe features,
they could potentially disable our run-time instrumentation,
causing a Ruby script to fail. However, we hope that pro-
grammers who use unsafe features will treat them with ap-
propriate caution.

8. Related Work
There are several threads of related work. PRuby is an ex-
tension to DRuby (Furr et al. 2009c), which implements
static type inference for Ruby. The key contribution of
PRuby is our sound handling of highly dynamic language
constructs. Our prior work on DRuby avoided these features
by sticking to small examples, using programmer annota-
tions for library APIs, and eliminating dynamic constructs
with manual transformation. However, as we saw in Sec-
tion 5, highly dynamic features are pervasive throughout
Ruby, and so this approach is ultimately untenable. Kris-
tensen (2007) has also developed a type inference system
for Ruby based on the cartesian product algorithm. This sys-
tem does not handle any of Ruby’s dynamic features, making
it unsound in the presence of these constructs.

In addition to DRuby, researchers have proposed a num-
ber of other type systems for dynamic languages includ-
ing Scheme (Cartwright and Fagan 1991; Tobin-Hochstadt
and Felleisen 2008), Smalltalk (Graver and Johnson 1990;
Strongtalk; Wuyts 2007), Javascript (Thiemann 2005; Hansen
2007; Anderson et al. 2005), and Python (Salib 2004; Ay-
cock 2000; Cannon 2005), though these Python type systems
are aimed at performance optimization rather than at the
user level. To our knowledge, none of these systems handles
send, eval, or similar dynamic features.

One exception is RPython (Ancona et al. 2007), a sys-
tem that inspired our work on PRuby. RPython translates
Python programs to type safe back-ends such as the JVM.
In RPython, programs may include an initial bootstrapping
phase that uses arbitrary language features, including highly
dynamic ones. RPython executes the bootstrapping phase us-
ing the standard Python interpreter, and then produces a type
safe output program based on the interpreter state. The key

differences between RPython and PRuby are that PRuby
supports dynamic feature use at arbitrary execution points;
that we include a formalization and proof of correctness; that
we provide some information about profile coverage with
test runs; and, perhaps foremost, that PRuby operates on
Ruby rather than Python.

Another approach to typing languages with dynamic fea-
tures is to use the type Dynamic (Abadi et al. 1991). Exten-
sions of this idea include quasi-static typing (Thatte 1990),
gradual type systems (Siek and Taha 2006, 2007; Herman
et al. 2007), and hybrid types (Gronski et al. 2006). However,
we believe these approaches cannot handle cases where dy-
namic code might have side effects that interact with (what
we would like to be) statically typed code. For example, re-
call the code from Figure 1(d), which uses eval to define
methods. Since these definitions are available everywhere,
they can potentially influence any part of the program, and it
is unclear how to allow some static and some dynamic typ-
ing in this context. In contrast, PRuby explicitly supports
constructs that would look dynamic to a standard type sys-
tem, but act essentially statically, because they have only a
few dynamic behaviors that can be seen with profiling; for
code that is truly dynamic, PRuby reverts to full dynamic
checking.

Several researchers have proposed using purely static
approaches to eliminating dynamic language constructs.
Livshits et al. (2005) use a static points-to analysis to resolve
reflective method calls in Java by tracking string values.
Christensen et al. (2003) propose a general string analysis
they use to resolve reflection and check the syntax of SQL
queries, among other applications. Gould et al. (2004) also
propose a static string analysis to check database queries,
and several proposed systems use partial evaluation to re-
solve reflection and other dynamic constructs (Braux and
Noyé 2000; Thiemann 1996). The main disadvantage of all
of these approaches is that they rely purely on static anal-
ysis. Indeed, Sawin and Rountev (2007) observe that pure
static analysis of strings is unable to resolve many dynamic
class loading sites in Java. They propose solving this prob-
lem using a semi-static analysis, where partial information
is gathered dynamically and then static analysis computes
the rest. In PRuby, we opted to use a pure dynamic analysis
to track highly dynamic features, to keep PRuby as simple
and predictable as possible.

Chugh et al. (2009) present a hybrid approach to infor-
mation flow in Javascript that computes as much of the
flow graph as possible statically, and performs only resid-
ual checks at run time when new code becomes available.
In Ruby, we found that the effects of dynamic features must
be available during static analysis, to ensure that all defined
methods are known to the type checker. Our runtime instru-
mentation for blame tracking is similar to a proposed sys-
tem for tracking NULL values in C (Bond et al. 2007). One

difference is that we must check for and allow type-correct
methods at runtime, whereas NULL supports no operations.

Finally, there is an extensive body of work on performing
static analysis for optimization of Java. A major challenge
is handling both dynamic class loading and reflection. Jax
(Tip et al. 1999) uses programmer specifications to ensure
safe modeling of reflective calls. Sreedhar et al. (2000) de-
scribe a technique for ahead-of-time optimization of parts of
a Java program that are guaranteed unaffected by dynamic
class loading. Pechtchanski and Sarkar (2001) present a Java
optimization system that reanalyzes code on seeing any dy-
namic events that would invalidate prior analysis. Hirzel
et al. (2004) develop an online pointer analysis that tracks
reflective method calls and can analyze classes as they are
dynamically loaded. All of these systems are concerned with
optimizing a program, whereas in contrast, PRuby extracts
run-time profiling information to guide compile-time (user-
level) type inference.

9. Conclusion
We have presented PRuby, a profile-guided type inference
system for Ruby. PRuby is built on top of DRuby, which
performs purely static type inference on Ruby.PRuby works
by first instrumenting source programs to gather profiles that
record how dynamic constructs are used by the program.
These profiles then guide a transformation phase that re-
places dynamic constructs with static constructs specialized
to the values seen at run time. We have proven that our tech-
nique is sound for TinyRuby, a small Ruby-like calculus
with dynamic features. We evaluated PRuby on a suite of
Ruby programs, and we found that use of dynamic features
is pervasive throughout our benchmarks, but that, neverthe-
less, most uses of these features are essentially static, and
hence can be profiled. We also discovered a number of type
errors in our benchmarks and found that, modulo these er-
rors, our benchmarks can be made mostly typable by apply-
ing a number of refactorings. We believe our results show
that using profiles to enhance static analysis is a promising
technique for analyzing programs written in highly dynamic
scripting languages.

Acknowledgments
We wish to thank Michael Hicks and the anonymous review-
ers for their helpful comments on this paper. This research
was supported in part by DARPA ODOD.HR00110810073.

References
M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing

in a statically typed language. ACM TOPLAS, 13(2):237–268,
1991.

Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas
Matsakis. RPython: Reconciling Dynamically and Statically
Typed OO Languages. In DLS, 2007.

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou.
Towards Type Inference for JavaScript. In ECOOP, pages 428–
452, 2005.

John Aycock. Aggressive Type Inference. In Proceedings of the
8th International Python Conference, pages 11–20, 2000.

M.D. Bond, N. Nethercote, S.W. Kent, S.Z. Guyer, and K.S.
McKinley. Tracking bad apples: reporting the origin of null and
undefined value errors. In Proceedings of the 2007 OOPSLA
conference, pages 405–422. ACM New York, NY, USA, 2007.

M. Braux and J. Noyé. Towards partially evaluating reflection in
Java. In PEPM, pages 2–11, 2000.

Brett Cannon. Localized Type Inference of Atomic Types in
Python. Master’s thesis, California Polytechnic State University,
San Luis Obispo, 2005.

Robert Cartwright and Mike Fagan. Soft typing. In PLDI, pages
278–292, 1991.

Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise Analysis of String Expressions. In SAS,
pages 1–18, 2003.

Ravi Chugh, Jeff Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Dublin, Ireland, June 2009. To appear.

David Flanagan and Yukihiro Matsumoto. The Ruby Programming
Language. O’Reilly Media, Inc, 2008.

Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-
guided static typing for dynamic scripting languages. Technical
Report CS-TR-4935, University of Maryland, 2009a. http:

//www.cs.umd.edu/projects/PL/druby.

Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael
Hicks. The Ruby Intermediate Language. In Dynamic Language
Symposium, Orlando, Florida, October 2009b.

Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael
Hicks. Static Type Inference for Ruby. In OOPS Track, SAC,
2009c.

Carl Gould, Zhendong Su, and Premkumar Devanbu. Static Check-
ing of Dynamically Generated Queries in Database Applica-
tions. In ICSE, pages 645–654, 2004.

Justin O. Graver and Ralph E. Johnson. A type system for
Smalltalk. In PLDI, pages 136–150, 1990.

J. Gronski, K. Knowles, A. Tomb, S.N. Freund, and C. Flanagan.
Sage: Hybrid Checking for Flexible Specifications. Scheme and
Functional Programming, 2006.

Lars T Hansen. Evolutionary Programming and Gradual Typing in
ECMAScript 4 (Tutorial), November 2007.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual
typing. Trends in Functional Programming, 2007.

M. Hirzel, A. Diwan, and M. Hind. Pointer Analysis in the Pres-
ence of Dynamic Class Loading. In ECOOP, 2004.

Kristian Kristensen. Ecstatic – Type Inference for Ruby Using the
Cartesian Product Algorithm. Master’s thesis, Aalborg Univer-
sity, 2007.

Benjamin Livshits, John Whaley, and Monica S. Lam. Reflection
Analysis for Java. In ASPLS, 2005.

I. Pechtchanski and V. Sarkar. Dynamic optimistic interprocedural
analysis: a framework and an application. In OOPSLA, pages
195–210, 2001.

Michael Salib. Starkiller: A Static Type Inferencer and Compiler
for Python. Master’s thesis, MIT, 2004.

Jason Sawin and Atanas Rountev. Improved static resolution of
dynamic class loading in Java. In IEEE International Working
Conference on Source Code Analysis and Manipulation, pages
143–154, 2007.

Jeremy Siek and Walid Taha. Gradual typing for objects. In
ECOOP, pages 2–27, 2007.

Jeremy G. Siek and Walid Taha. Gradual typing for functional
languages. In Scheme and Functional Programming Workshop,
September 2006.

V.C. Sreedhar, M. Burke, and J.D. Choi. A framework for interpro-
cedural optimization in the presence of dynamic class loading.
In PLDI, pages 196–207, 2000.

Strongtalk. Strongtalk, 2008. http://www.strongtalk.org/.

Satish Thatte. Quasi-static typing. In POPL, pages 367–381, 1990.

Peter Thiemann. Towards partial evaluation of full scheme. In
Reflection 96, pages 95–106, 1996.

Peter Thiemann. Towards a type system for analyzing javascript
programs. In ESOP, pages 408–422, 2005.

Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby:
The Pragmatic Programmers’ Guide. Pragmatic Bookshelf, 2nd
edition, 2004.

F. Tip, C. Laffra, P.F. Sweeney, and D. Streeter. Practical experience
with an application extractor for Java. In OOPSLA, pages 292–
305, 1999.

Sam Tobin-Hochstadt and Matthias Felleisen. The Design and
Implementation of Typed Scheme. In POPL, pages 395–406,
2008.

David A. Wheeler. Sloccount, 2008. http://www.dwheeler.

com/sloccount/.

Roel Wuyts. RoelTyper, May 2007. http://decomp.ulb.ac.

be/roelwuyts/smalltalk/roeltyper/.

