Ginseng User’s Guide

Tulian Neamtiu
neamtiu @cs.umd.edu

January 13, 2008

1 Overview

Ginseng transforms C programs into updateable C programs that can be updated on the fly in a safe manner. The
compiler handles two tasks. First, it compiles programs to be dynamically updateable. In particular, programs are
compiled so that when dynamically patched with replacement functions, existing code will be able to call the new
versions. In addition, when a type is updated, existing values of that type must be transformed to have the new type’s
representation, in order to be compatible with the new code. Code is compiled to notice when a typed value is out of
date, and to then apply the necessary transformation function. Second, the compiler uses a suite of analyses to ensure
that updates are always type-safe, even when changes are made to function prototypes or type definitions. The basic
idea is to examine the program to discover assumptions made about the types of updateable entities (i.e., functions or
data) in the continuation of each program point. These assumptions become constraints on the timing of updates. For
a detailed description of the compiler see [2]. Ginseng is based on the CIL framework [3], and uses Banshee [1]] for
constraint solving.

Section [2] lays out the installation procedure for our compiler. Since Ginseng works on single-source programs,
applications consisting of multiple source files have to first be merged into a single source file. The merging procedure
is explained in Section 3] Sectiond]describes modifications that have to be made to C programs before handing them
over to Ginseng. Section [f] covers the safety analysis step of the compiler, along with warning/error messages, how
to interpret and how to fix them. Section [7]describes the dynamic patch generator. Section [§] presents a simple yet
realistic example of using Ginseng to perform on-the-fly software evolution for a linked list.

2 Installation

First, extract the distribution
$ tar xzvf ginseng.tar.gz
You will need ocaml 3.08 or later in order to build Ginseng. Ginseng seems to work with gcc 3.3, gcc 3.4 and
gcc 4.0, but has been most thoroughly tested with gcc 3.4, hence this is the prefered gcc version.

It should build out of the box on Linux and Mac. On *BSD, replace make with gmake. Now you can do the proper
build

$ cd ginseng/cil

$ ./configure; make

3 Merging programs

Ginseng performs whole-program analysis and transformation. That is, the program to be analyzed and compiled has
to consist of one source file. In most cases applications consist of multiple source files that are compiled indepedently
and linked together, so we first need to “merge” all source files into one.

3.1 Prerequisites

Ginseng performs a semantics preserving, source-to-source transformation of C programs, turning them into update-
able C programs. Therefore, before compiling with Ginseng, we must be sure the original, unmodified application



performs as expected. The application must compile using the normal C compiler (usually gcc), so the first step in
constructing updateable programs is to build the application (usually make) and make sure it passes the compiler and
linker alright. Ideally, the application comes with regression tests, so make sure it passes the tests as well.

3.2 Merging using CIL

We use the CIL merger http://manju.cs.berkeley.edu/cil/merger.html for merging all source files into one
single file. Since Ginseng is built on top of CIL, the CIL merger is already included in your distribution. The CIL
merger can be used as indicated in the guide at the URL above, but we had limited success with that approach. Instead,
we use these two simple steps: (1) Invoke
$ make CC=<path to DSU compiler>/cil/bin/cilly --trueobj --save-temps --merge
on the application; CIL will write preprocessed files into files with the .o_saved.c extension. (2) Invoke CIL in
merge mode
$ CILLY_DONT_COMPILE_AFTER_MERGE=1 <path_to>cil/bin/cilly --merge --keepmerged -o App.o find
-name saved.c’
The resulting combined one-source is in App.o_comb. c, and it is this file that you will feed to Ginseng. The resulting
object file is in App.o_comb. o; it is used for checking the correctness of merging, see Section[3.3] Note: for projects
using automake
$ make CC=’<path_to>/cil/bin/cilly --trueobj --merge --save-temps’ CCLD=’echo’
seems to do a good job at generating the preprocessed .o_saved. c files.
If there is an inconsistency between declaration and definition, the CIL merger will fail. For example, if filel.c
contains a declaration

extern int foo;

and file2. c defines foo as

long foo;

the merger will fail with an error like

file2.c:1: Error: Incompatible declaration for foo.
Previous was at filel.c:1 (different integer types int and long )}

Such inconsistencies must be solved manually; in this case by changing filel. c to have a proper declaration for foo
ie.,

extern long foo;

3.3 Checking the merged source

The CIL merger is supposed to produce a single source file equivalent to the original source bundle, but there are no
formal guarantees for this. Therefore, before feeding the merged source to Ginseng, link the . o_comb. o file the same
way it would be original sources would be linked, and run the regression tests as indicated in [3.} This should be
fairly trivial, and it normally entails linking the App.o_comb. o and running the application test suite on the resulting
executable.

4 Preparing sources

After merging, the resulting source file is almost ready to be passed to Ginseng. There are a few things the user has
to inform Ginseng about: where the update points are, which loops ought to be extracted, which functions act like
malloc. These “notes to the compiler” take the form of #pragma directives that the user annotates the source code
with, and Ginseng in turn will pick them up.

4.1 Specifying update points

We define a quiescent point in the program as one at which there are no partially-completed transactions, and all
global state is consistent. Dynamic updates are best applied at such quiescent points, and preferably those that are
stable throughout a system’s lifetime. If the application is structured around an event processing loop, the end of the
loop defines a stable quiescent point: there are no pending function calls, little or no data on the stack, and the global
state is consistent. Once the user has identified quiescent points in the program flow, an update point can be specified
by inserting a call to the update function at that point:


http://manju.cs.berkeley.edu/cil/merger.html

__DSU_update();

Establishing an update point in the (infinite) event loop is described in Section[.2}

4.2 Loop extraction

Ginseng cannot replace code on the stack, but can replace functions (using function indirection). Thus, to replace
the body of a loop, we have to “extract” the loop body in a separate function. This usually comes in handy when the
application is structured around an infinite event loop. The user can request loop extraction as indicated in Figure[T}
first, the loop to be extracted is labeled, then a #pragma __DSU_loop("label_name") is added.

Original program Program prepared for loop extraction

#pragma __DSU_loop("L")

while (1) { “L..:while 1 {

¥ }

Figure 1: Loop extraction.

To specify an update point at the end of the loop, use #pragma __DSU_loopupd("label") instead. Ginseng
will automatically insert a __DSU_update () in the extracted loop.

4.3 Malloc lookalikes

The safety analysis part of Ginseng has to treat malloc and other memory allocation functions specially, since these
functions are used to construct abstract type values (see Section 4 of [2]). Ginseng recognizes malloc and alloca
by default, but sometimes the applications use custom memory allocators, hence the names of allocation functions has
to be communicated to the compiler using #pragma __DSU_malloc("function_name"). For instance, OpenSSH
uses a custom function for memory allocation (xmalloc), so the user would have to notify Ginseng as follows:

#pragma __DSU_malloc("xmalloc")

4.4 Overriding the analysis

Since the safety analysis in Ginseng is conservative, it might deem types non-updatable, even though the programmer
knows the types are used in a safe manner. Classical examples are conversions to and from void *. The programmer
can choose to override the analysis and “force” types updateable by using the directive:

#pragma __DSU_FORCE_UPDATABLE("type_name")}
Conversely, a
#pragma __DSU_FORCE_NONUPDATABLE("type_name")}

directive is provided for effectively forcing a type non-updateable; this is useful when the programmer knows the
type representation is unlikely to change in future versions, or when type representations are fixed (e.g.,
hardware-mapped structures). See Section[f]for details.

S Compiler flags

Flag Values | Description

Operating modes




--do-update mandatory option for enabling the Ginseng

--dosemdiff compiler operates in semdiff mode; takes two .c input files and prints
out the AST differences

--dopatchgeneration compiler operates in patch generation mode; takes two .c input files
and, depending on the value of --type-transformers, generates auto-
patches or type transformer files

--patchmode compiler operates in patch compilation mode; takes a .patch.c input
files and generates a .patch.cil.c

--testmode compiler operates in test mode. Seldom used.

--printversiondata dump the contents of the . vd file specified in --versiondata-in

Ginsengoptions

-—-update-points

controls speculative update points insertion

full insert speculative update points after all statements
returnonly insert speculative update points only before return keywords
none no speculative update points are inserted
--effect-printing controls inferred effect printing
full print effects (as source code coments) at each program point
functions print effects around function signatures only
types
none effects are not printed
--gvar-types auto-generate unique named types for each global variable
--no-static-conabs prevent con/abs functions from being static inline
--versiondata-in read the version data from this file. Mandatory in patch compilation
mode or when —--printversiondata is pecified
--versiondata-out write the version data to this file. Mandatory in normal and patch com-
pilation modes
Analysis options
--assembly what to do when abstract types are used in inline assembly
warn do nothing, just issue a warning
ignore do nothing, issue no warning
kill-shallow | kill top level types invloved only
kill-deep kill top level types and their children
die fail-stop; die at that particular program point
--from-void what to do when void * values are cast down to abstract type pointers
warn do nothing, just issue a warning
ignore do nothing, issue no warning
kill-shallow | kill top level types invloved only
kill-deep kill top level types and their children




die fail-stop; die at that particular program point

Patch generation options

--type-transformers controls generation of type transformers (applicable in patch mode only)
yes type transformers are generated along with the auto-generated patch
no omit type transformer generation

exclusive | emit only type transformers

--no-patchsplit prevent splitting the auto-generated patch file into one-function-files (aka
splinter files)
--patchdirectory-out directory where the patch file (or splinter files, see ~——no-patchsplit

above) will be generated

Debugging options

--enable-debug turn on printing of debug messages for the specified module. See
updatedebug.ml: :bugType for a list of modules

--stop-loops stop after extracting loops (for debugging loop extraction)

--no-suspect-alias don’t perform suspect alias analysis

6 Analysis

Ginseng performs a safety analysis to detect types used in a representation-dependent way that hampers future
changes in a type’s representation. For example, uses of sizeof or unsafe type casts that are legal in the current
program version might become illegal in future versions, once the type representation has changed. A type used in an
illegal fashion is deemed non-updateable; Ginseng will not use the type wrapping scheme for such a type, and its
representation cannot change in future versions.

The programmer might have to guide Ginseng’s safety analysis in certain cases. Since the analysis is monomorphic,
it will not detect universal or existential uses of types, rendering certain types non-updateable, although they are used
in a type-safe, representation-independent fashion. On the other hand, the analysis might deem a type updateable, but
the programmer needs to have a fixed, non-wrapped representation for the type in question.

To override the analysis and force a type (non)updateable, Ginseng provides two pragma primitives — #pragma
__DSU_FORCE_NONUPDATABLE and #pragma __DSU_FORCE_UPDATABLE; their use is detailed in Section 4]
Whenever Ginseng encounters an “illegal” type use, it prints out an error message in the format

(<source file>:<line>) setTypeNonUpdatable(<type name>) (<illegal use>)

This points the programmer to the offending source code line; there are cases when changes to the source code
eliminate the offending use (e.g. instantiating an existential). When such changes are not effective, the last resort is
forcing types (non)updateable.

For example, in updating sshd we had to use a #pragma __DSU_FORCE_UPDATABLE("struct_Channel") to tell
Ginseng that an existential use of struct Channel is update-safe. Conversely, when updating vsftpd we used a
#pragma __DSU_FORCE_NONUPDATABLE("struct_vsf_sysutil_ipv4port") to prevent Ginseng from
wrapping struct vsf_sysutil_ipvé4port.

C lacks support for universal or existential polymorphism, so programmers have to resort to using void * for
polymorphism. Ginseng checks all upcasts to void * and downcasts from void * to ensure no type “laundering”
occurs (see Section 4.3 of [2]). Ginseng tracks all upcasts from an abstract type pointer T * into void * by
annotating the void * and tracking its subsequent flow. If a void * flows to an abstract type pointer S *, with T #
S, both S and T are set non-updateable, to avoid representation inconsistencies. Whenever a downcast to S * from a
void * with annotation T *, U *, V %, etc. is encountered, the Ginseng message has the format:



(<source file>:<1line>) printVoidConstraints <S> <= <T U V> subset: [true|false]

Unless both the left and the right hand side of the subset constraint are identical, singleton sets, all types in the lhs
and rhs sets are set non-updateable. Pointers to base types are indicated using the format __base_type_x.

7 Dynamic patches

Dynamic patches are generated mostly automatically by Ginseng, but (depending on the nature of changes between
versions), the programmer might still have to write type transformers and state transformers. Source code for patches
consists of two files: a .patch.custom. c file containing state and type transformers, which can be tailored by the
programmer, and a .patch.gen. c containing definitions of new (or changed) types and functions. Ginseng
generates both these files automatically, but the programmer is only supposed to alter the former.

7.1 Type transformers

When type representations change, type transformers will convert values from the old representation to the new one.
Ginseng compiler automatically generates type transformer skeletons containing “best guess” conversion functions
between representations, but the programmer still has to intervene in order to verify the auto-generated conversions
and add initialization code where needed. For instance, if a struct type has changed, the stub consists of code to
copy the preserved fields over from the old to the new definition, and the programmer will have to initialize newly
added fields. Type transformers bear the following signature:

void tt_type(type_old *xin, type_new *xout, type *xnew)
{

}

The arguments are pointers to the “raw”, unwrapped, type representations (xin and xout) and to the wrapped
representation (xnew); most of the time, xin and xout are sufficient for writing the conversion function, but when
converting linked structures e.g., trees or lists, xnew is needed as well. In most cases type is a struct, and the effort
consists of initializing newly added fields. Depending on when/how the new code uses the newly added fields,
writing the type transformer can range from trivial (assigning a default value) to impossible (see Section 6.2 of [2]).
If no type has changed, the auto-generated . patch.custom. c will be empty, meaning there are no type transformers
to be filled out. Note however that state transformers (see next section) might still be necessary.

7.2 State transformers

A state transformer is a function run at update time to (1) convert global state in order to establish the invariants the
new code expects, and (2) run initialization code the new code depends on, but is not part of the old program’s
initialization code.

Since a state transformer function is optional, it is not included by default in the . patch. custom. c; the programmer
has to add it using the following prototype:

void __DSU_state_xform()
{

}

Just like in the type transformer case, state transformer complexity can range from trivial (if at all needed) to
impossible (e.g. hardware initialization at boot time). The most complicated cases we have encountered were
refactorings of global structures where global state had to be transferred between the old and new storage model.

8 Example

The linkedlist example (ginseng/cil/test/update/linkedlist) demonstrates dynamic updating with Ginseng.
To build and run it:
$ cd ginseng/cil/test/update/linkedlist; make; ./linkedlist.exe



The easisest way to start your own dynamic updating project is to use the linkedlist skeleton (Makefile and 0/1
directories). Replace 1inkedlist-[012] .c with the successive versions of the application to be updated, and adjust
the PROG variable in the Makefile accordingly.

Ginseng supports updating types, functions, global variables, and long-running loops, and the linkedlist example
illustrates all these.

In linkedlist-0.c, a singly-linked list type (T1ist) contains elements of type T. main () runs a loop whose body
will be updated twice. interactive_update () prints the list and invokes the dynamic updating function
__DSU_update(); interactive_update () will also be updated twice.

In linkedlist-1.c, the element type T has grown to two fields, x and y. The transformers for updating linkedlist,
to linkedlist, are in 0/1linkedlist.patch.custom.c. The tt_T type transformer converts values of type T from
the old (0, T,;¢) into the new (1,T,.,,) representation. Global state is transformed in the function
__DSU_state_xform(). Note that printT(), interactive_update() and the body of MAINLOOP are
automatically updated, requiring no user intervention.

In linkedlist-2.c, the singly-linked list (T1ist) is augmented, making it a doubly-linked list. The transformers
for updating linkedlist, to linkedlists are in 1/1inkedlist.patch.custom.c. The tt_Tlist type transformer
converts values of type Tlist from the old (1, Tlist,;q) into the new (2, Tlist,.,,) representation. Global state is
transformed in the function __DSU_state_xform(). Note that the new functions 1astT and revIterT are
automatically rendered accessible to the updated program. As expected, consT, interactive_update() and the
body of MAINLOOP are automatically updated.

References

[1] J. Kodumal and A. Aiken. Banshee: A scalable constraint-based analysis toolkit. In Proc. SAS, September 2005.
http://banshee.sourceforge.net/.

[2] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic software updating for C
(extended version). Technical Report CS-TR-4790, Department of Computer Science, University of Maryland,
March 2006. http://www.cs.umd.edu/projects/dsu/DSU-TR. pdf|

[3] G.C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis and
transformation of C programs. Lecture Notes in Computer Science, 2304:213-228, 2002.
http://manju.cs.berkeley.edu/cil/,


http://banshee.sourceforge.net/
http://www.cs.umd.edu/projects/dsu/DSU-TR.pdf
http://manju.cs.berkeley.edu/cil/

	Overview
	Installation
	Merging programs
	Prerequisites
	Merging using CIL
	Checking the merged source

	Preparing sources
	Specifying update points
	Loop extraction
	Malloc lookalikes
	Overriding the analysis

	Compiler flags
	Analysis
	Dynamic patches
	Type transformers
	State transformers

	Example

