
Efficient Systematic Testing for
Dynamically Updatable Software

Christopher M. Hayden Eric A. Hardisty Michael Hicks Jeffrey S. Foster
University of Maryland, College Park

{hayden, hardisty, mwh, jfoster}@cs.umd.edu

Abstract
Recent years have seen significant advances in dynamic software
updating (DSU) systems, which allow programs to be patched on
the fly. However, a significant challenge remains: How can we en-
sure the act of applying a patch does not itself introduce errors? In
this paper, we address this problem by presenting a new systematic
testing methodology for updatable programs. Our idea is to trans-
form standard system tests into update tests that execute as before,
but each transformed test applies a patch at a different update point
during execution. To mitigate the increase in the number of tests,
we developed an algorithm for test suite minimization that finds a
subset of update points that, if fully tested, yields the equivalent
to full update point coverage. We implemented our approach and
evaluated it on OpenSSH and vsftpd, two widely used server ap-
plications. We found that minimization is highly effective, reducing
the number of update tests required for full coverage by 93%.

1. Introduction
Researchers and practitioners have long been exploring means to
dynamically update the software of a running system with new
code and data, to fix bugs or add features without incurring down-
time. However, while DSU can significantly improve application
availability, it is not without risk. Even if the new version of an ap-
plication runs correctly when started from scratch, the application
could behave incorrectly when patched while it runs. To avoid such
problems, several DSU systems use safety checks to control when
updates are allowed [2, 4, 7, 11]. However, while these checks are
useful, they are not sufficient: Gupta has shown that no automated
check can ensure update correctness in the general case [5].

To validate dynamic updates effectively, we propose a method-
ology to systematically test them (Section 2). Given a suite of ex-
isting system tests for some program P , we can produce a suite of
update tests as follows. For each program point µ reached during
execution of system test t at which a dynamic patch π could be ap-
plied, we define an update test tµ

π that runs t on the old version of P
and applies π at µ. If the patch is correct, and t is valid for both the
old and new versions of P , then tµ

π should succeed. If test t would
produce different behaviors for different versions (as could happen
for a bug fix or feature addition), we can construct a hybrid update
test that accepts both the old and the new version’s behavior.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HotSWUp’09, October 25, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM ISBN 978-1-60558-723-3/09/10. . . $10.00

Directly testing every update point for every system test would
likely result in too many tests to be practical. To address this
issue, we developed a novel algorithm for test suite minimization
that reduces the number of tests without reducing their coverage
(Section 3). Out insight is that many points reached during a test’s
execution will in fact induce equivalent executions when applying
a given patch. For example, consider a sequence µ1; f(); µ2. If a
dynamic patch π does not alter f or any code or data used by f,
then applying π at either µ1 or µ2 will produce the same behavior.
Using this insight, our algorithm identifies sets of equivalent update
points where only one of them needs to be tested.

We have implemented our approach for testing updates, which
we call DSUTest (Section 4), for programs compiled with the
Ginseng DSU framework [11]. Section 5 presents our evaluation of
DSUTest, considering dynamic updates derived from three years’
worth of releases for two widely used servers, vsftpd (9 versions)
and OpenSSH (11 versions). Using existing and custom tests for
these programs, we found that if we unconditionally allow update
points prior to each function call, our suite of system tests applied
to all versions induce more than 9.8 million update tests. Applying
minimization reduces this to around 620,000 update tests, i.e., we
can perform 93% fewer tests and still get full update coverage.

Typical updating systems do not permit updates to be applied
unconditionally, but only when certain safety checks are satisfied.
Activeness safety (AS) is a popular check that disallows changes to
active functions. Applying the AS check, 2 million update tests are
induced, many fewer than without AS. But minimization remains
effective, reducing this number to roughly 35,000 tests, a reduction
of 98%. When restricting ourselves to the manually inserted update
points prescribed by the original Ginseng work [11], we generate
roughly 8,200 update tests, which can be reduced by 2.9% with our
algorithm. Manually inserted points yield less reduction because
they occur in top-level loops, and so are separated by a large
number of function calls, increasing the chances of a call to a
changed function between points. All update tests succeeded for
the manually chosen points, confirming claims in prior published
results. As might be expected, many tests fail when updates are
permitted at any point, and some fail when applied at AS points; our
technical report [6] includes a detailed analysis of these failures.

To our knowledge, our work is the first to explore how to
efficiently and systematically test dynamically updatable software.

2. Dynamic update testing
We can state the dynamic update testing problem as follows. Let P0

and P1 be two program versions, and let π be a patch that updates
P0 to P1. The details of the form of π and how it is implemented
at run-time differ between systems, but they are not relevant to our
basic methodology. To dynamically test π, we must run P0, apply π

at the allowable update points, and then decide whether the ensuing
behavior is acceptable.

In what follows, we presume we can specifically enumerate
those points at which a particular patch can be applied during a pro-
gram’s execution. In DSU systems like Ginseng [11], programmers
can provide a whitelist of program locations (e.g., line numbers)
that are valid for an update, while Gupta et al. [5], POLUS [4], and
others propose a blacklist, e.g., by indicating that certain functions
must be inactive prior to updating. We define an update point to oc-
cur each time the program reaches a whitelisted or non-blacklisted
location such that automatic safety checks (if any) are satisfied for
that point and the given patch. In Ginseng, the whitelist is defined
for the original program when it is deployed: updates can only oc-
cur at calls to a DSU update() function, and then only if Ginseng’s
type safety checks are also satisfied.

Our approach to update testing is to start with the system test
suites for P0 and P1 and from them generate update tests for a patch
π. For a deterministic test t, we can unambiguously enumerate the
update points that arise during the test’s execution. (We discuss
non-determinism in Section 4.) We define ti

π to be the update test
that executes P0 on t, applying π at the ith update point. To run
such tests, we can easily modify the DSU run-time to delay patch
application to the ith update point reached. Since t presumably
terminates, there will be a finite number of induced update tests
ti
π for a fixed π.

Now we consider how to generate update tests from system
tests. Let Ti be a suite of system tests for Pi, for i ∈ {0, 1}. All
t ∈ (T0 ∩T1) should pass for both P0 and P1, so all ti

π for all i are
reasonable update tests.

On the other hand, tests t ∈ (T1 − T0) are meant to test
functionality that is new to P1, else t would have also been in T0.
(If this is not the case, we can treat such a test as if it were in
T0 as well.) For such a test, not all ti

π for all i will be reasonable
update tests. In this case, we can construct a hybrid test amenable
to execution on either P0 or P1. In particular, we execute test t
with P0 and run it to completion without performing an update. We
observe P0’s output, and then manually construct the hybrid test t′

that modifies t to also allow this output. Thus t′ will be considered
as having passed if its output corresponds to the output of either P0

or P1. We then generate update tests for t′ as above.
Constructing hybrid tests for certain program modifications may

not be straightforward. For example, P1 may fix a bug in P0 that
resulted in a crash or other behavior that could be incorrectly at-
tributed to an update test failure. Likewise, P1 may deprecate func-
tionality that worked correctly in P0. See our companion technical
report for further discussion of these cases [6].

3. Test suite minimization
The procedure described in Section 2 lets us systematically derive
update tests from existing system tests. Unfortunately, we have
found this procedure vastly multiples the number of tests to run. For
example, our experiments with roughly 90 system tests applied to
ten versions of OpenSSH yielded more than 8 million update tests.
We mitigate this increase in test suite size with a novel algorithm
that eliminates all provably redundant tests.

To illustrate our algorithm, consider the following code, assum-
ing that f, g, and h call no other functions:

1 void main() { DSU update(); f ();
2 DSU update(); g ();
3 DSU update(); h(); }

Suppose a dynamic patch π1 to this program contains only a
modification to function h. Then whether the update is applied at
line 1, 2, or 3, the behavior of the program is the same: the calls

to f and g will be to the old version, which is the same as the new
version, and the call to h will be to the new version. Thus, for patch
π1, update points on lines 1–3 form an equivalence class, and we
need only test one of the three to cover the whole class.

However, suppose dynamic patch π2 modifies f, g, and h. In this
case, none of the update points are equivalent. If we update on line
1, we will call the new versions of all three functions. If we update
on line 2, we will call the old version of f and the new versions of
g and h. If the update on line 3 happens, we will call the old f and
g and the new h. All of these executions may produce reasonable
behavior, but we have to test each of them to find out.

3.1 Formal language
We present our minimization algorithm in terms of a small formal
language. This language permits dynamic updates to function def-
initions and global variables such that, following an update, active
functions continue to execute the old version while all subsequent
function calls invoke the newest version. This semantics is em-
ployed by Ginseng, and subsumes the semantics of systems that use
the activeness check, such as Ksplice [2], K42 [7], and Jvolve [12].
In our companion technical report [6], we sketch how our approach
can be adapted to support the semantics of UpStare [8], which al-
lows an active function to transition immediately to its new version,
and other systems like POLUS [4] and UpgradeJ [3], which allow
explicitly versioned function calls.

Figure 1 gives the language syntax. Expressions e consist of
constants c (e.g., integers, floating point numbers, etc.), variables x,
function calls f(e1, ..., en), or sequences s; e, which evaluate s and
then e, returning the result of the latter. Statements s consist of as-
signment x := e, sequencing s1; s2, branching if e then s1 else s2

(which executes s1 if e evaluates to a non-zero integer, and s2 oth-
erwise), and the no-op skip. The statement update corresponds to
Ginseng’s DSU update() call, as described above.

We model a program as a pair (H, s), where H is a heap con-
taining bindings for functions and global variables, and s is the
statement to be executed. A binding b maps an identifier to a con-
stant c or to λ(x1, ..., xn).e, which denotes a function with param-
eters x1 to xn and body e. When the function is called it returns
the result of evaluating e with the formal parameters substituted by
the actual arguments. A patch π is also a set of bindings, just like
the heap. When a patch is applied, its bindings add to or overwrite
the corresponding bindings in the heap. Roughly speaking, we can
model a C program in this language as (H, fin := main(c1, ..., cn))
where H contains the program’s initial function and global variable
bindings, the ci represent the command-line arguments, and fin re-
ceives the final result.

We express the operational semantics of this language as a re-
lation (H, s) −→ν H ′, where H and s are the currently executing
heap and statement, H ′ is the heap after s has been completely ex-
ecuted, and ν is an event trace, described below. We also need a
sibling judgment (H, e) −→ν (H ′, c) for expressions, where c is
the result of computing the expression e.

The label ν describes an event trace induced by an execution.
Event traces are defined at the bottom of Figure 1. Each event cor-
responds to the execution of one program construct, and individual
events are concatenated using the ; operator. For example, if plus
returns the sum of its arguments, then

((x 7→ 4, plus 7→ ...), x := plus(x, 5)) −→ν (x 7→ 9, plus 7→ ...)

where ν is

read(x, 4); call(plus(4, 5)); ...; ret(plus(4, 5)); write(x, 9)

That is, starting out with a heap that maps x to 4 and plus to an ap-
propriate function, executing x := plus(x, 5) produces a heap that
maps x to 9. The execution also yields an event trace ν indicating x

Expressions e ::= c | x | f(e1, ..., en) | s; e
Statements s ::= x := e | s1; s2 | skip

| if e then s1 else s2 | update

Heap, patch H, π ::= · | b, H
Binding b ::= x 7→ c | f 7→ λ(x1, ..., xn).e

Traces ν ::= ν; ν | skip | read(x, c) | write(x, c)
| call(f(c1, ..., cn))
| ret(f(c1, ..., cn))
| noupdate | update(π)

Figure 1. Syntax of programs and event traces

[FUN-CALL]
H(f) = λ(x1, ..., xn).e

(H, e1) −→ν1 (H1, c1)...(Hn−1, en) −→νn (Hn, cn)
e′ = e[xi 7→ ci] for all 1 ≤ i ≤ n (Hn, e′) −→ν (H ′, c)

ν′ = ν1; ...; νn; call(f(c1, ..., cn)); ν; ret(f(c1, ..., cn))

(H, f(e1, ..., en)) −→ν′ (H ′, c)

[UPD-SKIP]
ν = noupdate

(H, update) −→ν H

[UPD-TAKEN]
H ′ = H[x 7→ π(x)] ∀x ∈ dom(π)

(H, update) −→update(π) H ′

Figure 2. Selected operational rules

was read; plus was called, executed (...), and returned; and then x
was written. We discuss update(π) and noupdate events shortly.

Figure 2 gives the three most interesting operational semantics
rules for our language. The other rules are straightforward, and are
presented in our technical report [6].

The FUN-CALL rule describes the semantics of expression
f(e1, ..., en). First, we look up f ’s definition in H . Next, we eval-
uate arguments e1 through en. Then we set e′ to be e (the body of
f), but with all occurrences of its formal parameters xn replaced by
the actual arguments cn. We then evaluate e′ to produce c, which
is returned by the call. The trace ν′ computed by the function call
composes the traces produced by evaluating each of the arguments
along with the trace produced by evaluating the function’s body,
delimited by call(f(...)) and ret(f(...)) events.

The semantics of update are non-deterministic, allowing us to
either skip or take an update. In the former case we apply UPD-
SKIP, which treats update like skip but produces a noupdate event.
In the latter case we apply UPD-TAKEN, which produces a new
program H ′ with bindings in π replacing or adding to those in H .
For example, if given (H, s) where s is f(2); update; f(3), then
the first call to f would use H(f), and if we reduced update using
UPD-TAKEN, then the second call to f would use H ′(f). Note that
we have not specified where π comes from in this rule, as that
does not affect our formal reasoning about this system. In practice,
we specify π and the position in the trace at which to apply UPD-
TAKEN before executing each update test.

3.2 Finding equivalent update points
Let t = (H, s) be a system test, i.e., the program code in H with a
test driver s. Then if we run t (with no updates taken), the resulting
trace νt contains some number n of noupdate events, which in turn
induce a set of update tests t1π . . . tn

π . Our goal is to determine which
of these update tests produce equivalent traces for a given patch π.
By equivalent, we mean that although they vary in the update point

conflict(π, skip) = false
conflict(π, call(x(. . .)) = (x ∈ dom(π))
conflict(π, ret(. . .)) = false
conflict(π, read(x, . . .)) = (x ∈ dom(π))
conflict(π, write(x, . . .)) = (x ∈ dom(π))
conflict(π, noupdate) = false
conflict(π, update(π′)) = (dom(π) ∩ dom(π′) 6= ∅)
conflict(π, ν1; ν2) = (conflict(π, ν1) ∨ conflict(π, ν2))

—
gentests(π, N, U, ν) = (N, U)

where ν 6= (ν1; ν2) ∧ ν 6= noupdate ∧ ¬conflict(π, ν)
gentests(π, N, U, ν) = (N, U ∪ {N})

where ν 6= (ν1; ν2) ∧ ν 6= noupdate ∧ conflict(π, ν)
gentests(π, N, U, noupdate) = (N + 1, U)
gentests(π, N, U, ν1; ν2) =

let (N ′, U ′) = gentests(π, N, U, ν1) in gentests(π, N ′, U ′, ν2)

Figure 3. conflict and gentests functions

taken, they read and write the same values to and from the same
variables, call the same functions with the same parameters, etc.—
in other words, their behavior is identical except for update timing.
Then we can run a single representative test from each equivalence
class while retaining full update coverage.

We compute equivalent update points by applying the gentests
function in Figure 3 to the original trace νt. The gentests function
invokes conflict(π, ν), which returns a boolean indicating whether
actions in ν conflict with patch π. More precisely, if this function
returns false, then applying π any time during a run that generates
ν will not affect the generated trace (and therefore will not affect
the program’s behavior).

Function conflict(π, ν) is defined at the top of Figure 3. Given
a call, read, or write to x, there is a conflict with π if and only
if x ∈ dom(π). There are no conflicts with skip, noupdate, or
ret(. . .)—the last because currently executing functions continue
as-is following an update. Given a different update with patch π′,
patch π conflicts with it if and only if π′ and π affect overlapping
functions or variables (each update test will perform one update per
run, making this case academic). Finally, a patch π conflicts with
trace ν1; ν2 if it conflicts with either ν1 or ν2.

The bottom of Figure 3 defines gentests(π, N, U, ν), which
uses conflict() to compute a minimal set of update points for ν.
Here π is the patch, N is the index of the last-seen noupdate
event, U is the set of indexes of update points to test, and ν is the
trace (which should contain no update(. . .) events). The gentests()
function returns a pair (N ′, U ′) where N ′ is the most recently seen
update point and U ′ is the total set of update point indexes to test.
Thus, given a complete trace νt from system test t, we compute

(N, U) = gentests(π, 0, ∅, (νt; noupdate))

The set U defines the minimal set of update points that achieve
100% update coverage; we ignore i = 0, if it is in U , since 0
represents the beginning of the trace and not a proper update point.

In the definition of gentests() the first clause handles the case
when ν is not a sequence, is not an update point, and does not
conflict with π. In this case, the output sets N and U are the same
as the inputs. The second clause handles the case when the event
does conflict with π: if the update π had been applied before the
event ν took place, its outcome might be different. As such, we add
the index N of the most recent update point to our set U . The third
clause increments the counter N when it sees a noupdate event.
The last clause processes the two subtraces ν1 and ν2 in sequence.

As an example, consider the trace

ν = noupdate; call(f()); noupdate; call(g()); noupdate; call(h())

corresponding to the execution of the example from the begin-
ning of Section 3. If we run gentests(π, 0, ∅, (ν; noupdate)) where
dom(π) = {f}, our outcome will be U = {1}, as follows.
When we see the first noupdate, we increment N = 0 to N = 1.
Then we see the call to f , where conflict(f, π) = true . As such,
we add N = 1 to U . Subsequent occurrences of noupdate in-
crement N , but no further elements are added to U because nei-
ther call(g()) nor call(h()) conflict with π. On the other hand,
if dom(π) = {f, g, h}, then all three calls would conflict with
π, and thus N would be added to U in each case, resulting in
U = {1, 2, 3}.

Correctness. We have proven our algorithm correct. Given a sys-
tem test t = (H, s), let ν denote the trace produced by executing t
with no updates. Also let νi

π denote the trace produced by induced
update test ti

π .

THEOREM 3.1 (Correctness). If (H, s) −→ν H ′ and
gentests(π, 0, ∅, (ν; noupdate)) = (N, U), then for all i 6∈ U ,
there exists j ∈ U such that νi

π = νj
π .

Informally, the above theorem says that any update point i is
either in U , or there is some equivalent update point in U that yields
the same trace. The proof of this theorem depends crucially on the
following lemma, which shows that if a patch does not conflict with
a trace, then applying the patch does not affect the generated trace.

LEMMA 3.2. Let H, s, e, ν, π be such that ¬conflict(ν, π) and
either (H, s) −→ν H ′ or (H, e) −→ν (H ′, c). Let H0 = H[x 7→
π(x)] for all x ∈ dom(π). Then we have (H0, s) −→ν H ′

0 or
(H0, e) −→ν (H ′

0, c), respectively, with H ′
0 = H ′[x 7→ π(x)] for

all x ∈ dom(π).

The proof is by induction on (H, s) −→ν H ′ (or (H, e) −→ν

(H ′, c)). To use gentests with a different updating semantics would
require re-defining conflict and re-proving Lemma 3.2 (but not
Theorem 3.1).

4. Implementation
We have implemented our testing framework and minimization al-
gorithm for Ginseng, a compiler and run-time system for dynam-
ically updating C programs [11]. Our implementation, DSUTest,
extends our formal presentation in three ways. First, it accounts
for Ginseng’s support for changes to type definitions, where ac-
cesses to values of updatable type occur via special wrapper func-
tions. Thus we must trace calls to these functions and consider
calls conflicting when a patch modifies the respective type defini-
tion. Second, our implementation accommodates server programs
that fork independent subprocesses that could themselves be up-
dated. To handle this case, we annotate events with a determin-
istically chosen process identifier. Finally, our basic methodology
presumes that tests are deterministic; our implementation accom-
modates some forms of nondeterminism, e.g., I/O buffering by the
OS and functionality that depends on the environment, such as the
current time of day. In particular, to keep update tests consistent
with the initial trace, we check that each update test trace matches
the original up to the chosen update point, and re-run the test if
not. For highly non-deterministic activities, e.g., signal handling,
we designate ignore regions of code in which the test trace need
not match the original. We disallow dynamic updates within such
regions, though conflicting events within the regions make update
points before and after the region non-equivalent. Our TR presents
further details [6].

5. Experiments
We evaluated the practicality of our testing approach using two
long-running server applications: OpenSSH, a widely used SSH

server, and vsftpd, a popular FTP server. Here we consider the
effectiveness of our minimization algorithm; we do not consider
the outcomes of the tests themselves for lack of space.

5.1 Methodology
The left half of Figure 4 summarizes the versions of OpenSSH
and vsftpd over which we applied our minimization algorithm. We
largely reuse the dynamic patches and slightly modified program
versions from our earlier Ginseng work [11]. To make it easy to
refer to the versions in our discussion, we number them starting
from 0. For each version, Figure 4 lists the total lines of code
(measured with sloccount), the number of update tests (drawn from
unmodified and hybrid system tests), and the number of changes
to function signatures, function bodies, and named type definitions
(structs, unions and typedefs) required to update to the next version.

Test cases. For OpenSSH we used the suite of system tests dis-
tributed with OpenSSH’s source code. Tests launch a server and
communicate with it via an ssh client, exercising various connec-
tion parameters and/or executing remote commands, and judging
success/failure based on return codes and command output. We
split some large tests with orthogonal components into several
smaller tests, so we could run them in parallel.

vsftpd is not distributed with any system tests, so we con-
structed 13 tests for core FTP operations, including connecting,
uploading and downloading files in binary and ASCII formats, and
navigating remote FTP directories. These tests apply to all versions
of the server. For the 6→7 patch, we wrote an additional hybrid
test (Section 2) to exercise a new feature that limits the number of
failed login attempts that are allowed.

Update point selection. In Ginseng, the programmer specifies
update points by manually inserting DSU update() calls. In prior
work with vsftpd and OpenSSH, we inserted one or two of these
calls at quiescent points—positions where there are no in-flight
operations, hence updates will more likely succeed [11]. For the
current experiments, we manually inserted two update points per
application: one at the beginning of the connection acceptance loop,
and one at the beginning of the command processing loop. In our
results, these are referred to as Manual Pts. We also considered
programmatically inserting an update point prior to each function
call throughout the program to approximate the operation of a
system that does not use explicit update points; we refer to these
points as All Pts in our results. Finally, we considered the subset of
All Pts that would be allowed by the widely used activeness safety
check, in which an update is only permitted if the patch changes
functions not referenced by the current activation stack [2, 5, 7, 12];
we refer to these points as AS Pts.

5.2 Results
The right half of Figure 4 shows the number of update tests we
would have to execute—with and without minimization—for the
All Pts and AS Pts sets of update points. For each, we show the orig-
inal count, the minimized count, and the percent reduction. These
results show that minimization eliminates a tremendous number of
potential tests. Overall, minimization results in a 95% reduction for
OpenSSH and an 86% reduction for vsftpd.

The amount of reduction is roughly inversely proportional to
the size of the patch. For example, we can see that the OpenSSH
patch from versions 1→2 changed only six functions, and there is
a correspondingly large reduction in the number of distinct update
points. On the other hand, patch 2→3 changes many more func-
tions, and these changes create conflicts that reduce minimization.
The amount of minimization depends on the actual changes and
the tests being run. The 6→7 patch to vsftpd resulted in a signif-
icantly smaller reduction than all other patches. This patch added

∆ to next ver Reduction
Version LoC Tsts Sig Fun Type All Pts AS Pts

O
pe

nS
SH

0 3.5p1 46,735 75 3 98 5 580,871 → 31,791 (95%) 35,314→ 3,027 (91%)
1 3.6.1p1 48,459 75 0 6 0 705,322 → 1,795 (∼100%) 587,578 → 1,717 (∼100%)
2 3.6.1p2 48,473 76 5 238 11 638,720 → 63,011 (90%) 20,902→ 2,353 (89%)
3 3.7.1p1 50,448 91 0 18 0 772,198 → 4,324 (99%) 638,803 → 3,775 (99%)
4 3.7.1p2 50,460 91 13 172 10 773,086 → 27,399 (96%) 21,343→ 1,564 (93%)
5 3.8p1 51,822 104 0 24 1 878,235 → 17,398 (98%) 111,950 → 1,723 (98%)
6 3.8.1p1 51,838 104 6 257 10 879,668 → 47,092 (95%) 44,278→ 2,139 (95%)
7 3.9p1 53,260 104 4 179 12 918,717 → 89,601 (90%) 100,854 → 4,141 (96%)
8 4.0p1 56,068 105 0 72 3 973,364 → 34,293 (96%) 61,724→ 2,070 (97%)
9 4.1p1 56,104 104 10 157 7 933,514 → 52,356 (94%) 61,051→ 2,891 (95%)

10 4.2p1 57,294 (Not patched)
Total 8,053,695 → 369,060 (95%) 1,683,797 → 25,400 (98%)

vs
ft

pd

0 2.0.0 13,048 13 0 6 0 210,142 → 26 (∼100%) 102,307 → 26 (∼100%)
1 2.0.1 13,059 13 1 12 0 210,142 → 516 (∼100%) 69,775→ 166 (∼100%)
2 2.0.2pre2 13,114 13 0 21 0 215,223 → 1,122 (99%) 55,555→ 553 (99%)
3 2.0.2pre3 14,293 13 0 76 0 220,564 → 3,866 (98%) 37,265→ 1,912 (95%)
4 2.0.2 16,970 13 0 10 1 218,586 → 19,893 (91%) 2,123 → 301 (86%)
5 2.0.3 12,977 13 0 25 1 223,098 → 15,910 (93%) 67,330→ 3,567 (95%)
6 2.0.4 14,427 14 0 100 2 233,199 → 200,653 (14%) 7,437 → 2,742 (63%)
7 2.0.5 14,482 13 0 93 2 222,296 → 10,371 (95%) 3,098 → 275 (91%)
8 2.0.6 14,785 (Not patched)

Total 1,753,250 → 252,357 (86%) 344,890 → 9,542 (97%)

Figure 4. Reduction effectiveness

a new failed login limit feature which could be enabled through a
new configuration flag. When applied, this patch reloads the vsftpd
configuration, which could update many global variables (to reflect
the new configuration), creating conflicts that inhibit reduction.

The AS Pts set is 79% smaller, overall, than the full set of
points across both applications. Applying minimization results in
an additional 98% reduction. With the combination of activeness
safety checking and minimization, the maximum number of tests
for any update is 4,141, which requires running each system test an
average of 40 times. This demonstrates that reduction is useful even
with the more limited set of update points allowed by activeness
safety.

The manually introduced update points are a small fraction of
those in All Pts, and the reduction effectiveness for Manual Pts
is substantially lower. Summing up all runs of both applications,
the four manual update points are dynamically executed a total of
8,241 times. Applying the reduction yields a total of 8,006 distinct
update points, for an improvement of 2.9%. Manually inserted
update points are in the top-level loops of the program, and thus
many function calls may occur between iterations, increasing the
chances of a conflict. Note, however, that when using manual points
no patch would require more than 859 update tests in total, which
requires running each system test an average of 8 times.

6. Related work
Gupta et al. [5] originally defined the update validity problem as
showing, for a given program and patch, that after patching the
old version its execution would eventually reach a state that could
have been reached by executing the new version from scratch.
Gupta et al. showed that this problem is in general undecidable.
Just as software testing is a tractable alternative to full program
verification, our framework is a tractable alternative to determining
complete update validity—we consider the executions of particular
tests rather than all possible executions, and the test oracle decides
the validity of the final state of the patched program.

Our approach to generating update tests is related to Chess [9]
which tests multi-threaded programs by intelligently enumerating
a program’s potential thread schedules; we enumerate and test
potential update points. At a high level, our technique for test

minimization is like partial order reduction in model checking [1],
which is used to avoid consideration of distinct program executions
that result in the same states. Our minimization algorithm on traces
is inspired by Neamtiu et al.’s observation that an update at two
program points is equivalent if the activity between those two
points is unaffected by the patch [10]. Neamtiu et al. applied this
observation to a static analysis for implementing version-consistent
update transactions, while we apply it to the test case minimization.

References
[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Raja-

mani. Partial-order reduction in symbolic state space exploration. In
CAV, 1997.

[2] J. Arnold and F. Kaashoek. Ksplice: Automatic rebootless kernel
updates. In Eurosys, 2009.

[3] G. M. Bierman, M. J. Parkinson, and J. Noble. UpgradeJ: Incremental
typechecking for class upgrades. In ECOOP, 2008.

[4] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. POLUS: A powerful
live updating system. In ICSE, pages 271–281, 2007.

[5] D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line
software version change. IEEE TSE, 22(2), 1996.

[6] C. Hayden, E. Hardisty, M. Hicks, and J. Foster. A testing based em-
pirical study of dynamic software update safety restrictions. Technical
Report CS-TR-4947, University of Maryland, College Park, 2009.

[7] The K42 Project. http://www.research.ibm.com/K42/.
[8] K. Makris and R. Bazzi. Immediate multi-threaded dynamic software

updates using stack reconstruction. In USENIX ATC, 2009.
[9] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, A. Nainar, and I. Neamtiu.

Finding and reproducing heisenbugs in concurrent programs. In OSDI,
2008.

[10] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contextual effects
for version-consistent dynamic software updating and safe concurrent
programming. In POPL, 2008.

[11] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic
software updating for C. In PLDI, 2006.

[12] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic software
updates for Java: A VM-centric approach. In PLDI, 2009.

