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Abstract
Java’s type system provides programmers with strong guar-
antees of type and memory safety, but there are many im-
portant properties not captured by standard Java types. We
describe JQual, a tool that adds user-defined type qualifiers
to Java, allowing programmers to quickly and easily incor-
porate extra lightweight, application-specific type checking
into their programs. JQual provides type qualifier inference,
so that programmers need only add a few key qualifier anno-
tations to their program, and then JQual infers any remaining
qualifiers and checks their consistency. We explore two ap-
plications of JQual. First, we introduce opaque and enum
qualifiers to track C pointers and enumerations that flow
through Java code via the JNI. In our benchmarks we found
that these C values are treated correctly, but there are some
places where a client could potentially violate safety. Sec-
ond, we introduce a readonly qualifier for annotating refer-
ences that cannot be used to modify the objects they refer to.
We found that JQual is able to automatically infer readonly
in many places on method signatures. These results suggest
that type qualifiers and type qualifier inference are a useful
addition to Java.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Validation; D.3.2
[Programming Languages]: Language Classifications—Ob-
ject-oriented languages; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—Program
analysis

General Terms Languages, Verification

Keywords JQual, Java, type qualifiers, readonly, muta-
ble, opaque, transparent, tracked, context-sensitivity, field-
sensitivity, context-free language reachability
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1. Introduction
The Java programming language has a strong type system
that can be used to enforce useful program properties. How-
ever, many important properties can be hard to encode as
standard types, and it may be difficult to incorporate new
properties into the type hierarchy of an existing program.

To address this problem we present JQual, a tool for in-
ferring user-defined type qualifiers in Java. A type qualifier
is an atomic property that refines a standard type. For exam-
ple, we have used JQual to add opaque, a new type qualifier,
to programs that use the JNI. The opaque qualifier anno-
tates Java ints that actually represent C pointer values. Us-
ing JQual, we can enforce the integrity property that ordinary
Java integers, which we qualify with transparent, are never
passed to opaque positions, since then they might mistak-
enly be treated as pointers and dereferenced. This example
is a fairly typical use of type qualifiers, in which the pro-
grammer knows some extra properties about certain values,
but those values are not distinguished by the standard types.

In JQual, type qualifiers can be applied to any type. For
example, we also used JQual to infer a readonly qualifier,
based on Javari [8, 47]. For any class C, a reference of type
readonly C may not be used to modify the object it refers to,
which is a particularly useful annotation for method argu-
ments and results. One interesting feature of readonly is that
it is “sticky” across field access: If x is readonly, then so is
x.f. Thus type qualifiers can propagate in ways that ordinary
types do not, in this case from a reference to the object to
which it refers.

When users specify their type qualifiers to JQual, they
supply a subtyping order that relates sets of qualifiers. For
example, mutable references, which are ordinary, writable
Java references, can be passed to readonly positions, but not
vice-versa, and so mutable < readonly. The addition of sub-
typing makes qualifier inference more flexible, and support-
ing subtyping on qualifiers in a language with subclassing
seems very natural.

The key feature of JQual is type qualifier inference, which
allows programmers to add a few qualifier annotations to
their program, and then JQual infers the remaining qualifiers
and checks their consistency. We formalize type qualifier
inference as a system called Core JQual, which operates



on a variant of Featherweight Java [22] with optional type
qualifier annotations.

Core JQual is context-insensitive and field-based, mean-
ing all instances of a class share the same field types. We ex-
tend Core JQual to FS JQual, which adds field-sensitivity, in
which each instance of an object has its own field types. The
key feature of FS JQual is that field-sensitivity is selective—
the programmer specifies which fields should be treated
field-sensitively, and which fields should not. This greatly
improves performance over a full field-sensitive analysis,
and we have generally found it is easy to identify which
fields should be made field-sensitive. We further extend our
formalism to CS/FS JQual, which supports both field- and
context-sensitivity. We introduce context-sensitivity by en-
coding it as a context-free language reachability problem on
a constraint graph [36, 38]. Context-sensitivity is especially
important for a field-sensitive analysis, so that object types
are not conflated by common constructors and methods.

We have implemented JQual as an Eclipse plug-in [17],
and we used JQual for the two applications mentioned
above. First, we applied opaque inference to a number of
libraries that use the JNI, using a simple C analysis to add
the necessary opaque qualifiers to native method signatures.
For this analysis, we also inferred enumi qualifiers, which
mark integer values in the range [0..i], and which ensure that
only integers in the expected range are passed to C enums.
We found that context- and field-sensitivity were critical in
reducing the warning counts to reasonable levels. Across
our benchmarks, most opaque and all enum-qualified inte-
gers were used safely, but we found several places where
opaque integers are exposed outside the library code, and
hence could be compromised by careless clients.

Second, we applied readonly inference to a variety of Java
programs, including SPEC benchmarks [2] and programs
downloaded from SourceForge [1]. We also inferred final an-
notations on these programs at the same time. Using context-
insensitive, field-based analysis, JQual inferred that 48% of
non-primitive method arguments and results are readonly,
and 29% of fields are final. Added field-sensitivity for library
container classes and context-sensitivity increased readonly
to 62% of the positions and final to 42% of the fields. Over-
all, JQual was able to infer many interesting uses of readonly
across the benchmarks.

In summary, the main contributions of this work are:

• We introduce opaque and transparent qualifiers to distin-
guish integers that must be treated abstractly from ordi-
nary Java integers, and enumi qualifiers to track allowed
ranges of integers. We also introduce readonly and mu-
table qualifiers for Java to add reference immutability,
based on Javari [8, 47]. (Section 2)
• We present Core JQual, a formal type qualifier inference

system for a simple object-oriented languages. We show
how to extend this system to FS JQual, which includes

field-sensitivity, and to CS/FS JQual, which adds context-
sensitivity. (Section 3)
• We describe JQual, our implementation for Java, and use

JQual in our two applications: Inferring opaque, trans-
parent, and enumi qualifiers in code that uses the JNI,
and inferring readonly in a range of Java programs. We
found that JQual was able to find several potential opaque
violations in our benchmarks, as well as many occur-
rences of readonly and final. (Section 4)

In prior work, we described CQual, a type qualifier system
for C with many applications [4, 9, 14, 15, 16, 18, 24,
42, 49]. In the current work, we show how to incorporate
type qualifiers into Java, and explore novel applications.
Our results suggest that type qualifiers and type qualifier
inference are a useful framework for adding lightweight,
application-specific checking to Java.

2. Applications
Before presenting our type qualifier inference system for-
mally, we discuss our two major applications of JQual in
more depth, and sketch several other potential applications.

2.1 Enhanced Type Checking for the JNI
The first application we explored is adding enhanced type
checking for the Java Native Interface (JNI). The JNI al-
lows Java code to call functions written in C, which is ex-
tremely useful but potentially unsafe. One particular prob-
lem can occur when a C program passes pointer values to
Java. For example, we examined libgtk-java [23], a JNI win-
dowing toolkit whose interface can be used to create various
GUI entities, e.g., windows or buttons. Pointers to those ob-
jects are sent to Java as ints, so that the programmer can pass
them back to the JNI library to manipulate the window com-
ponents. However, since the ints are just ordinary integers
as far as Java is concerned, the programmer could inadver-
tently pass bogus pointer values back to C, thereby poten-
tially causing memory corruption.

We can prevent this problem using type qualifiers. We in-
troduce a qualifier opaque to mark integers that are treated
as pointers in C and a qualifier transparent to mark inte-
gers that have been manipulated or created inside of Java.
We want to forbid transparent integers from being used in
opaque positions, so transparent 6< opaque in the order-
ing on these qualifiers. On the other hand, it is safe to allow
Java to manipulate opaque values it receives from C (e.g., by
printing them), as long as they are never passed back to C.
Thus the final qualifier ordering is opaque < transparent,
so that opaque values can be used in transparent positions,
but not vice-versa.

While this application is specialized for the JNI, the ba-
sic idea is quite general: We wish to enforce an integrity
property, namely that transparent data is not used in opaque
positions. An analogous example is enforcing the security



1 class GUILib {
2 public native static opaque int makeWin(enum2 int t);
3 public native static void setFocus(opaque int windowPtr);
4 }

5 struct window { ... };

6 enum windowType { a = 0, b, c };

7 jint Java_GUILib_makeWin(enum windowType t) {

8 struct window *w = make_window(t);

9 return (int) w;

10 }

11 void Java_GUILib_setFocus(int jwindow) {

12 struct window *w = (struct window *) jwindow;

13 set_focus(w);

14 }

(a) Interface code to C library

15 class Client {
16 public void m() {
17 opaque int w = GUILib.makeWin(1);
18 // ok − 1 is enum1, which is ≤ enum2

19 opaque int v = GUILib.makeWin(4);
20 // error − 4 is enum4, which is 6≤ enum2

21 setFocus(w); // ok − opaque int passed in
22 setFocus(42); // error − created ints are transparent
23 setFocus(w + 3); // error − manipulated ints are transparent
24 transparent int t = w; // ok − opaque treated as transparent
25 t++; // ok − t is transparent
26 setFocus(t ); // error − transparent not opaque
27 }
28 }

(b) Java client of GUILib

Figure 1. Examples of JNI qualifier usage

property that tainted (i.e., untrusted) data is never used in
untainted (i.e., trusted) positions [42].

In addition to passing C pointers across the JNI, we found
that native C code sometimes accepts integers from Java that
are treated as enums in C, meaning they should be within
a certain range. For example, an enum parameter might be
used to select different attributes of a GUI widget. In this
case, Java code could pass an out-of-range value to C, and
although the C compiler itself may not complain about this
kind of problem, we can detect it with type qualifiers.

We assume that enumerations are contiguous and start
from 0. Then for an enum with maximum value i, we intro-
duce a new qualifier enumi, which we also assign to occur-
rences of the integer i in Java. We add the subtype ordering
enumi < enumj for i < j, since the range [0..i] is included
in the range [0..j] for i < j. As before, our application is
specialized to the JNI, but this basic idea could be applied to
enforce similar range-checking properties.

Figure 1 shows an example of using opaque, transpar-
ent, and enum qualifiers. Part (a) shows the “glue code”
that connects Java to a hypothetical C library. Lines 1–4
define a class GUILib with two native methods, makeWin
and setFocus. The C code for these methods is shown on
lines 5–14. Line 5 declares the C type struct window, and
line 6 declares enum windowType containing values 0–2.

Then lines 7–9 declare the C function corresponding to the
native makeWin method—note the mangled function name,
which is part of the JNI specification [28]. (We have hid-
den some other details of using the JNI for clarity.) Because
the C function is declared to take an enum windowType, the
Java native method on line 2 takes an enum2 int as a param-
eter, to specify the three possible permitted values. Then on
lines 8–9, we see that a pointer type is passed back to Java,
and hence on line 2, the return type of the method is marked
as opaque. Similarly, lines 11–14 define the C function cor-
responding to the setFocus method. The function takes an
integer as an argument and casts it to a pointer, and hence
setFocus’s parameter is also opaque on line 3.

Figure 1(b) shows sample client code that uses GUILib’s
methods correctly and incorrectly. On line 17, we call
makeWin to create a new window, passing argument 1. This
is allowed because 1 has the qualifier enum1, which is com-
patible with the qualifier enum2 of the formal parameter.
The return value of makeWin is stored in an opaque inte-
ger, since it represents a C pointer. On line 19, the call to
makeWin is forbidden, because we try to pass in an integer
that is out of range. Next, on line 21, we pass w to setFocus,
which is allowed because w is opaque. On the other hand,
we may not pass setFocus an integer created (line 22) or
manipulated (line 23) by Java. We are allowed to copy an
opaque integer to a transparent integer, but since we then
may manipulate it (line 25), we cannot pass transparent in-
tegers back to C (line 26).

In our experiments (Section 4.1), we found that C point-
ers and enumerations are generally treated safely in Java
code, but there are some places where insufficient encap-
sulation allows opportunities for library clients to pass Java
integers to opaque positions.

2.2 Inferring Immutability Properties
The second application we explored is inferring immutabil-
ity in Java. Immutability, the guarantee that particular mem-
ory locations will not be updated, is a useful property that
can make programs easier to understand. For example, a
caller might want to know whether passing an object to a
method could cause that object to change. In Java, the pro-
grammer can use final to mark fields whose values cannot
be changed,1 but this enforces only one aspect of immutabil-
ity. Ernst et al have proposed a language extension called
Javari [8, 47] that adds reference immutability to Java. In
Javari, a variable marked with the qualifier readonly cannot
be used to write to fields of the object it refers to. Ordinary
variables without this restriction have the qualifier mutable.

We can use JQual to infer Javari-style qualifiers in Java
and, at the same time, infer final. There are some differences
between our qualifiers and Javari, which we discuss below.

1 The keyword final can also annotate classes and methods, in which case it
prevents subclassing and overriding, respectively. We ignore these uses of
final in this paper.



1 class C {
2 nonfinal mutable C c;
3 nonfinal int x;
4 }
5 class D {
6 void foo() {
7 final mutable C f = new C();
8 f .x = 17; // ok − writes field of final variable
9 f = new C(); // error − assigns to final variable

10
11 nonfinal readonly C r = new C();
12 r = new C(); // ok − assigns to nonfinal
13 r .x = 17; // error − writes field of readonly reference
14 r .c.x = 17; // error − writes field of readonly reference
15
16 nonfinal mutable C m;
17 m = r; // error − assigns readonly to mutable
18 m.x = 17; // ... which would allow write to field
19 r = m; // ok − may assign mutable to readonly
20 }
21 }
22 class E {
23 nonfinal int x;
24 void bar() mutable { // bar() is mutable ...
25 x = 17; // ... because it modifies a field of this
26 }
27 void baz() {
28 nonfinal readonly r = new C();
29 r .bar (); // error − calls mutable method of readonly ref .
30 }
31 nonfinal readonly C f ;
32 public E() {
33 f .x = 17; // ok − may write to readonly field in constructor
34 }
35 }

Figure 2. Examples of immutability qualifier usage

We introduce four qualifiers for this application: readonly,
mutable, final, and nonfinal, where the last qualifier explic-
itly marks variables and fields that are not final. We illustrate
the desired behavior for these qualifiers in Figure 2.

Lines 1–4 define a class C with two fields, c and x. Both
fields are explicitly annotated with nonfinal, which in Java
would normally be denoted by the absence of final. The field
c is also mutable. Note that it would not make sense to mark
x as mutable, because it contains a primitive.

The next part of the figure shows a class D with a method
foo. On line 7, we create a new instance of C and store it in
a final, mutable variable f. Since f is mutable, we may write
through it on line 8 to modify one of its fields. However, the
assignment on line 9 is forbidden, because it would modify
f itself, which is final. Notice that final and nonfinal are
properties of the location of field f, and thus we say that
final and nonfinal are reference level qualifiers. In particular,
they specify whether we can modify what is stored in f,
but they do not place any constraints on what we can do
with the contents of f (e.g., we can freely write through it).
This contrasts with the qualifiers used in the JNI application,
which all refine the types of values (in particular, integers),
and so are value level qualifiers.

Next on line 11, we initialize r, which is nonfinal and
readonly. Therefore on line 12, we may modify r because
it is nonfinal, but on lines 13 and 14 we may not write to
any of r’s fields, either directly or transitively. Notice that
readonly and mutable are properties of the contents of r, and
not of the location r itself, and thus readonly and mutable
are value level qualifiers.

Line 17 tries to write a readonly variable to the muta-
ble variable m declared on line 16. This must be forbidden,
because otherwise on line 18 we could write through m to
change a field of r, which would break the property that start-
ing from r we can never write to any of the fields. On the
other hand, as line 19 shows, we may assign a mutable vari-
able to a readonly variable, because strictly fewer operations
are permitted on readonly variables. Putting these together,
we choose the qualifier order mutable < readonly. There is
no need to choose an order among final and nonfinal, since
field locations are not first-class values in Java.

Finally, the last part of Figure 2 shows a class E that il-
lustrates some other features of readonly and mutable. Just
as variables and fields may be qualified, so too may be ar-
guments and return values. Moreover, we allow qualifiers on
this, written after the method. Lines 24–26 show an exam-
ple, in which bar is marked as mutable because it writes
to a field this. Therefore on line 29, we may not invoke
r.bar(), because r was declared readonly on line 28. Only
readonly methods may be invoked on readonly objects. Fol-
lowing Javari, we do allow readonly to be violated in con-
structors. On line 33, the write through readonly field f is
permitted. We also allow writes to final fields in construc-
tors. (Java technically allows only one write to a final field,
whereas in JQual we permit multiple writes.)

Differences from Javari As this example suggests, these
four qualifiers provide a concise but rich way of specifying
immutability properties of variables and fields. Our version
of these qualifiers is slightly different than Ernst’s Javari pro-
posal [47], which they are modeled after. In Javari, classes
may also be marked readonly to indicate that all of their
instances are as well, and JQual supports but does not in-
fer this behavior. Javari allows the programmer to explicitly
add generic immutability annotations on classes. We support
field- and context-sensitivity during inference (Sections 3.2
and 3.3), which are equivalent, but currently do not include
source-level notation for them.

Javari also allows somewhat finer control of the writeabil-
ity of fields. In JQual, a readonly reference cannot be used
to modify any fields of the object it refers to, while in Javari,
this behavior can be adjusted on a field-by-field basis.

One of the more important differences between JQual and
Javari is in method subtyping. Javari does not allow method
overriding on the basis of immutability. Instead, a change
to mutability between the method of a supertype and the
method of a subtype causes the method to be overloaded.
In contrast, JQual ignores qualifiers when determining over-



riding versus overloading, since deciding between the two
while inferring qualifiers would be difficult. JQual therefore
allows qualifiers to be in a subtyping relationship among
overriding and overridden methods.

Lastly, Javari inserts runtime checks to allow for safe
downcasts and reflection. This is beyond the scope of the
current work on JQual, which focuses on static analysis
rather than code transformation, and so we track qualifiers
through casts and ignore calls to the reflection API.

2.3 Other Potential Applications
We believe type qualifier inference for Java has a wide vari-
ety of applications. In general, JQual is effective for source-
sink problems, which involve tracking the flow of data from
a set of sources to a set of sinks. To use qualifier inference
for such problems, the programmer only needs to add qual-
ifier annotations to the sources and sinks, and then qualifier
inference determines the intermediate qualifiers in the rest
of the program. Assuming there are relatively few sources
and sinks, the annotation burden for using qualifiers can be
quite minimal. Also, for the applications in this paper, we
use JQual as a whole program analysis. However, since it is
based on types, JQual can also be used to analyze a module
in isolation, as long as qualifier information is provided at
the module boundary. We discuss several potential applica-
tions of JQual briefly.

Earlier we mentioned that we could use JQual to track
tainted data through Java and ensure it does not reach un-
tainted positions. This analysis could be especially useful
for Java-based web applications [21], which are vulnerable
to attacks using unchecked inputs, including SQL injection
queries, cross-site scripting, cookie poisoning, and reflection
injection [30]. For example, we could mark as tainted the re-
turn values of methods that receive input from users, such as
those in the HttpServletRequest class [3], and then annotate
appropriate positions with untainted.

Another potential application of type qualifiers is to dis-
tinguish among different kinds of Strings. For example, we
could use a url qualifier to annotate strings that are URL-
encoded, an html qualifier for strings that represent valid
HTML, or an sql qualifier for strings that are supposed to be
SQL queries. JQual would not by itself verify that the strings
have valid contents, but it can ensure that they are passed to
and from methods that expect strings of those types. Simi-
larly, byte arrays could be qualified with utf8, utf16, or sim-
ilar to denote the encoding of their contents, and then JQual
could ensure they are manipulated by the correct methods.

Lastly, JSR 305 proposes to develop standard annotations
for Java programs to allow tools to check a variety of cor-
rectness properties [35]. Suggested standard annotations in-
clude ones to specify nullness, tainting, concurrency prop-
erties, and internationalization. JQual may be able to check
and infer several of these properties.

P ::= L∗

L ::= class C extends D {F1; . . . ;M1; . . .}
T ::= C | CQ
F ::= T f
M ::= T0 m(T1 x1, . . . , Tn xn) T {e}
e ::= x | null | e1; e2 | e.f | e1.f := e2

| e.m(e1, . . . , en) | (T ) e | new T

C ::= Object | 〈class names〉
Q ::= κ | 〈qualifier constants〉
x ::= this | 〈variable names〉
f ::= 〈field names〉
m ::= 〈method names〉

Figure 3. Java-like source language

3. Type Qualifier Inference
Next we present JQual’s type inference system formally. We
present three type systems: Core JQual, which is a field-
based, context-insensitive inference system, FS JQual, a
field-sensitive extension, and CS/FS JQual, which further
adds context-sensitivity.

We describe both systems for the source language in
Figure 3, which is a variation of Featherweight Java [22] that
has been extended with qualifiers. Programs P consists of a
sequence of class definitions L. Each class extends exactly
one other class, and there is a built-in base class Object. A
class definition contains a sequence of field declarations F
and method declarations M . Types T that appear in the
source code may either be ordinary Java types C or qualified
types CQ. A qualifier Q is either a qualifier variable κ,
which is an unknown that must be solved for, or a qualifier
constant such as readonly or opaque. We assume the set of
qualifier constants is fixed in advance, and without loss of
generality we allow only one qualifier constant per type [15].
Qualifier variables do not appear in the program text.

Field declarations contain a type T , and method declara-
tions may also contain qualified types for their arguments
and returns. In a method declaration, the type T that ap-
pears just after the parameter list is the type of this within
the method, which is our mechanism for supplying a quali-
fier on this.

When a method is invoked, it evaluates to its body, which
is an expression e. Expressions include variables x (either
this or a parameter name), the special value null, sequenc-
ing e1; e2, field access e.f , field assignment e1.f := e2,
and method invocation e.m(e1, . . . , en). We also allow type
casts (T ) e on expressions. We assume that the class in such
a cast is checked at run time, but the qualifier is not. Finally,
the expression new T creates a new instance of class de-
scribed by T , with its fields initialized to null. Note that un-
like Featherweight Java, we do not include constructors or
calls to super in our language.



τ ::= null | CQ
o ::= {f1 : φ1; . . . ; m1 : µ1; . . .}
φ ::= ref Q(τ)
µ ::= (τ1 × · · · × τn) τ → τ0

(a) Inference types

fresh(C) = Cκ κ fresh
fresh(CQ) = CQ

create(C) = {create(F1); . . . ; create(M1); . . .}
where P ` class C extends C′ {F1; . . . ;M1; . . .}
create(T f) = f : ref κ(fresh(T )) κ fresh
create(T0 m(T1 x1, . . . , Tn xn) T {e}) =

(fresh(T1)× · · · × fresh(Tn)) fresh(T )→ fresh(T0)

(b) Translation from source to inference types

(SUB-NULL)

null ≤ τ

(SUB-QTYPE)
Q ≤ Q′

CQ ≤ DQ
′

(SUB-METHOD)
τ ′i ≤ τi i ∈ 1..n τ ′ ≤ τ τ0 ≤ τ ′0

(τ1 × . . .× τn) τ → τ0 ≤ (τ ′1 × . . .× τ
′
n) τ ′ → τ ′0

(c) Subtyping rules

(CTCLASS)
CT(C) = create(C)

CT ` mtype(m,C) ≤ mtype(m,D) ∀m ∈ C
CT ` C extends D {. . . ;M1; . . . ;Mn}

(MTYPE-IN)
P ` C extends D {. . . ;M1; . . . ;Mn}

Mi = . . . m(. . .) . . .

CT ` mtype(m,C) = CT(C)(m)

(MTYPE-NIN)
P ` C extends D {. . . ;M1; . . . ;Mn}

∀i.m 6= Mi

CT ` mtype(m,C) = mtype(m,D)

(FTYPE-IN)
τ = CQ P ` C extends D {F1; . . . ;Fn; . . .} Fi = T t

CT ` ftype(f, τ) = CT(C)(f)

(FTYPE-NIN)
τ = CQ P ` C extends D {F1; . . .} ∀i.Fi 6= T t

CT ` ftype(f, τ) = ftype(f,DQ)

(d) Class table construction and type lookup

(CLASS)
CT `Mi i ∈ 1..n

CT ` C extends D {. . . ;M1; . . . ;Mn}

(METHOD)
class(T ) = C CT ` mtype(m,C) = (τ1 × · · · × τn) τ → τ0

CT, [this 7→ τ, xi 7→ τi] ` e : τ ′ i ∈ 1..n τ ′ ≤ τ0
CT ` T0 m(T1 x1, . . . , Tn xn) T {e}

(VAR)
x ∈ dom(Γ)

CT,Γ ` x : Γ(x)

(NULL)

CT,Γ ` null : null

(SEQ)
CT,Γ ` e1 : τ1 CT,Γ ` e2 : τ2

CT,Γ ` e1; e2 : τ2

(NEW)

CT,Γ ` new T : fresh(T )

(CAST-QTYPE)
CT,Γ ` e : τ τ ′ = fresh(CQ)

CT,Γ ` (CQ) e : τ ′

(CAST-TYPE)
CT,Γ ` e : τ τ ′ = fresh(C) τ ≤ τ ′

CT,Γ ` (C) e : τ ′

(FREAD)
CT,Γ ` e : τ

CT ` ftype(f, τ) = ref Q
′
(τ ′)

CT,Γ ` e.f : τ ′

(FWRITE)
CT,Γ ` e1 : τ

CT ` ftype(f, τ) = ref Q
′
(τ ′)

CT,Γ ` e2 : τ ′′ τ ′′ ≤ τ ′

CT,Γ ` e1.f = e2 : τ ′′

(INVOKE)
CT,Γ ` e : τe

CT ` mtype(m, class(τe)) = (τ1 × · · · × τn) τ → τ0
CT,Γ ` ei : τ ′i τ ′i ≤ τi i ∈ 1..n τe ≤ τ

CT,Γ ` e.m(e1, . . . , en) : τ0

(e) Class, method, and expression typing rules

Figure 4. Qualifier inference — Core JQual

3.1 Qualifier Inference
Figure 4 presents Core JQual, our basic type inference sys-
tem. We assume throughout that the input program is correct
with respect to the standard Java types, and thus the job of
Core JQual is only to reason about qualifiers. Part (a) of the
figure describes the types used in inference. Types τ are ei-

ther null, which is compatible with any other type, or are
qualified types CQ. We write class(τ) for the class compo-
nent of type τ , which is undefined for null. During infer-
ence, we create a global class table CT that assigns types to
class members. For a class C, the type CT(C) is an object
type o that maps field and method names to field types φ and



method types µ, respectively. Core JQual is field-based be-
cause field types are stored in the global CT, no matter what
instance they come from.

Field types have the form ref Q(τ). Here τ is the contents
type and includes the value-level qualifier, and Q is the
reference-level qualifier on the field itself. For example, a
final mutable field has type ref final(Cmutable). Method types
have the form (τ1 × · · · × τn) τ → τ0. Here τ0 is the return
type, the other τi are the argument types, and τ type of this
within the method. As a shorthand, we write o(fi) to mean
the φi corresponding to fi in τ , and similarly for o(mj).

To perform inference, JQual needs to translate source
types T , which may or may not contain qualifiers, into in-
ference types. Figure 4(b) defines this translation. The first
two lines define the function fresh(T ), which qualifies type
T with a fresh qualifier variable if needed. The next line de-
fines create(C), which our type rules use to build the class
table CT. The notation P ` L means program P contains
the class definition L (the program P is an implicit global
here). The function create makes an object type from a class
by adding fresh qualifiers to field and method types, where
needed. Note that we always create a fresh reference-level
qualifier here for simplicity, and elide the detail of applying
qualifier constants according to their level.

Subtyping The next step is to extend the subtype order
among qualifiers to an ordering on types, as shown in Fig-
ure 4(c). (SUB-NULL) makes null a subtype of any other
type, and (SUB-QTYPE) propagates subtyping from quali-
fied types to qualifiers. Note that we ignore the base types,
because we assume that the program is correct with respect
to the standard types.

The third rule, (SUB-METHOD), propagates subtyping
contravariantly to the domain and covariantly to the range.
Subtyping on methods arises from overriding inherited
methods, and thus if we assume the input program passes
the Java type checker, then the types τi and τ ′i must in fact
have equal base types, though they may differ in their quali-
fiers. (SUB-METHOD) treats the type of this contravariantly,
since the receiver object is a method input. This constraint
only makes sense because (SUB-QTYPE) does not check the
base class types, which are covariant in method overriding.

Class Table Construction Figure 4(d) presents the first
stage of type inference, constructing the class table CT by
applying (CTCLASS) once to each class definition in the
program. This rule uses create to build an object type for
each class. This rule also constrains any methods in C to
be subtypes of methods they override, using the auxiliary
function mtype(m,C), which looks up methodm in classC.
The subtyping constraint is ignored if mtype(m,D) does not
exist. The function mtype is defined by (MTYPE-IN), which
applies if m is a member of C, and (MTYPE-NIN), which
applies otherwise and looks up the method in the parent
class. The base class Object has no methods or fields.

In essence, by adding subtyping constraints between
overriding and overridden methods, we are pre-computing
a class hierarchy analysis [12], in which we assume that a
call to a method m of class C might invoke any method that
overrides m in a subclass. Though this approach is less pre-
cise than other methods, it fits well with a source-level type
system extension, since a programmer would most likely
expect that sub- and superclass qualifiers must be related.

We analogously define a function ftype(f, τ), which
looks up field f in C = class(τ). We pass ftype a τ in-
stead of a C in anticipation of FS JQual (Section 3.2). As
before, if f is a member of C then (FTYPE-IN) returns its
type in CT(C), and otherwise (FTYPE-NIN) returns its type
from the parent of C.

Type Inference Rules Figure 4(e) shows the next stage
of type inference, which traverses the method bodies in
the program and generates subtyping constraints. The base
judgment CT ` L, defined by (CLASS), infers types for
the methods. Note that fields have no initializers in this
language, and hence there is nothing to check for them.
(METHOD) retrieves the type for m from CT and infers the
type of e, assuming types for this and method parameters
as given by CT. Notice that we need not re-translate the T
types here, because class table construction has already done
so. The last hypothesis of this rule constrains the type of e to
be a subtype of the method return type.

The remaining rules prove judgments of the form CT,Γ `
e : τ , meaning expression e has type τ with class table
CT and type environment Γ. (VAR), (NULL), and (SEQ) are
standard, and (NEW) creates a freshly qualified type from T .

There are two type cast rules. (CAST-QTYPE) applies
when the cast-to type contains a qualifier. This rule creates a
freshly qualified type τ ′ for the type of the cast. Notice that
there is no relation between τ and τ ′ here—the cast “breaks
the flow” of qualifiers. On the other hand, (CAST-TYPE)
applies when the cast-to type is a bare type C. In this case,
we make a constraint τ ≤ τ ′ between the cast-from and the
cast-to type. Recall that (SUB-QTYPE) ignores base types,
and so this constraint in effect only relates the qualifiers on
τ and τ ′. We provide these two distinct type casts to give
the programmer flexibility in specifying whether qualifiers
propagate through casts.

(FREAD) infers the type τ of the expression e, looks up
field f in CT, and returns the type of its contents. (FWRITE)
is similar, and it also constrains the type of e2 to be a
subtype of the field contents type. Lastly, (INVOKE) looks
up a method type using mtype, and then constrains the actual
argument types to be subtypes of the formal arguments. We
also require the type of the receiver object to be a subtype of
this’s type in m.

Constraint Resolution We view the type rules in Fig-
ure 4(c)–(e) as generating the subtyping constraints they
have in their hypotheses. These constraints have the forms
τ ≤ τ ′, µ ≤ µ′, and Q ≤ Q′. By applying the rules in



• = tracked
◦ = not tracked

fresh(C) = (Cκ, create•(C)) κ fresh
fresh(CQ) = (CQ, create•(C))

createt(C) = {createt(F1); . . . ; createt(M1); . . .}
where P ` class C extends D {F1; . . . ;M1; . . .}

createt(T ft′ ) = f : ref κ(fresh(T )) t = t′, κ fresh
createt(T ft′ ) = ∅ t 6= t′

createt(T0 m(T1 x1, . . . , Tn xn) T {e}) = t = ◦
(fresh(T1)× · · · × fresh(Tn)) fresh(T )→ fresh(T0)

createt(T0 m(T1 x1, . . . , Tn xn) T {e}) = ∅ t = •

(a) Translation from source to inference types

(SUB-QTYPE)
Q ≤ Q′ o ≤ o′

(CQ, o) ≤ (DQ
′
, o′)

(SUB-FIELD)
Q ≤ Q′ τ ≤ τ ′ τ ′ ≤ τ

ref Q(τ) ≤ ref Q
′
(τ ′)

(SUB-OTYPE)
φi ≤ φ′i i ∈ 1..n

{f1 : φ1; . . . ; fn : φn} ≤ {f1 : φ′1; . . . ; fn : φ′n}

(b) Subtyping rules

(CTCLASS)
CT(C) = create◦(C)

CT ` mtype(m,C) ≤ mtype(m,D) ∀m ∈ C
CT ` C extends D {. . . ;M1; . . . ;Mn}

(FTYPE-TRACK)
τ = (CQ, o) o = {. . . ; f : φ; . . .}

CT ` ftype(f, τ) = φ

(FTYPE-IN)
τ = (CQ, o) P ` C extends D {F1; . . . ;Fn; . . .}

f 6∈ dom(o) Fi = T f◦

CT ` ftype(f, τ) = CT(C)(f)

(FTYPE-NIN)
τ = (CQ, o) P ` C extends D {F1; . . . ;Fn; . . .}

f 6∈ dom(o) ∀i.Fi 6= T f◦

CT ` ftype(f, τ) = ftype(f, (DQ, o))

(c) Class table construction and field lookup

Figure 5. Qualifier inference — FS JQual (modifications only)

Figure 4(c), we can eliminate the first two kinds of con-
straints, so that we are left with a set of qualifier con-
straints Q ≤ Q′. Assuming that the partial order on qualifier
constants is a lattice, we can solve these constraints using
graph reachability to look for inconsistent paths through the
graph [15]. For example, a path from readonly to mutable
would be inconsistent, since it corresponds to a constraint
readonly ≤ mutable. If the constraints have a solution, then
we have found a valid typing, and if not, then we report a
type qualifier error. Section 3.3, below, gives several exam-
ples of constraint graphs.

3.2 Field-Sensitivity
As mentioned in the introduction, one important tradeoff
when performing a static analysis is between field-based
and field-sensitive analysis. To understand the difference,
consider the following code snippet:

1 class C extends Object { int f ; }
2 C c1 = new C;
3 C c2 = new C;
4 opaque int x = c1.f ;

Line 1 defines a class C with a field f. Then lines 2 and 3
create two instances of C, and line 4 stores c1.f in an opaque
integer. Therefore c1.f must itself be opaque, since trans-
parent integers may not be passed to opaque positions. In
Core JQual, all instances of C share the same field types, no

matter how often C is instantiated. Thus c2.f would also be
considered opaque in this example. On the other hand, in a
field-sensitive analysis, each syntactic occurrence of a class
is given its own set of field types. Thus we would infer that
c1.f is opaque, but c2.f could be transparent, since the type
of c2.f is unconstrained.

Clearly a field-sensitive analysis can be much more pre-
cise than a field-based analysis, but field-sensitivity might
not make sense for all applications—after all, in standard
Java classes, there are many fields with non-generic types.
Additionally, the more polymorphism there is in a type,
the harder it may be to understand, especially when poly-
morphism is combined with subtyping. Field-based analy-
sis can also be more efficient than field-sensitive analysis,
since there is less information to track about the program.
Indeed, our current implementation of JQual (Section 4) typ-
ically runs out of memory when trying to perform full field-
sensitive analysis on our larger benchmark programs, and
efficient field-sensitive analysis is an active area of research
[27, 31, 43, 44, 48].

JQual solves this problem by asking the programmer to
mark fields that should be treated field-sensitively. We call
such fields tracked. In our experience, we found that it is
usually easy to determine what fields to make tracked, and
that only a few tracked fields are needed.

We designed Core JQual carefully so that FS JQual, our
field-sensitive inference system, is a minimal extension to it.



1 class D extends Object {
2 C id(C x) {
3 return x;
4 }
5 void main() {
6 C c1 = new C(); C c2 = new C();
7 C c3 = id(c1); C c4 = id(c2);
8 }
9 }

(i

(j

x

c2

c1
)i

)j c4

c3
return

Figure 6. Context-sensitivity example and constraint graph

Formally, field declarations in the source code are now of the
form T ft, where t is either • for a tracked field, or ◦ for a
non-tracked field. We extend types τ to the form

τ ::= null | (CQ, o)

Here the CQ component is as before, and the object type o
maintains tracked fields. Non-tracked fields are stored in the
class table. For example, suppose C is declared as

class C extends D { T f•; T ′ g◦}

Then CT maps class C to a type {g : φ′}, and each occur-
rence ofC in the program text has a type τ = (CQ, {f : φ}).
During inference, when we look up f in type τ , we return φ,
while when we look up g in type τ , we find its type in CT
and return φ′—and thus in our example, each separate occur-
rence of C will have its own type for field f , but they will all
share the type of field g. We define class((CQ, o)) = C.

Figure 5 shows the necessary changes to the typing rules.
Part (a) of this figure redefines fresh to return a τ where
the object type portion of the τ is constructed with a call to
create•. The create function now has a subscript t indicating
whether the object type it returns should include tracked
or non-tracked fields. In particular, when create•(T ft′) is
called, it generates a field type for f if t′ is tracked, and
otherwise it does not, denoted by returning ∅. Calling create◦
does the opposite. Methods are shared across all instances,
and thus they reside only in CT and are generated with
create◦, and create• never creates method types.

Notice that if createt is applied to a recursive type with
a tracked field, we could potential enter an infinite loop,
unrolling the type indefinitely. To prevent this, when we
encounter an occurrence of class C nested at any depth
within class C, we force them to share the same object type
(not shown in the figure).

Figure 5(b) shows the necessary changes to the subtyp-
ing rules. (SUB-QTYPE) is modified to propagate subtyping
to object types. (SUB-FIELD) handles subtyping on fields.
Since ref is a nonvariant constructor, we require that τ and
τ ′ are equal. Lastly, (SUB-OTYPE) propagates subtyping
from an object type to its components covariantly. Note that
we only apply this rule to object types representing tracked
fields, and thus the object types do not contain methods. Also
notice that this rule requires that the sub- and superclass have
the same fields and methods, i.e., it does not allow width sub-

typing. We need this feature in practice to propagate quali-
fiers on tracked fields through up- and down-casts. For ex-
ample, consider the code

Foo f = ...; Object x = f; Foo g = (Foo) x;

If Foo contains a tracked field, we must add it to x’s type so
that its qualifiers reach g.

Finally, Figure 5(c) gives the new rules for class table
construction and field lookup. (CTCLASS) is the same as
before, but we use create◦ to make object types with non-
tracked fields. When applying ftype(f, τ) to look up a field
type, there are three cases. (FTYPE-TRACK) applies when f
is part of the object type stored in τ , i.e., when f is tracked.
Otherwise, (FTYPE-IN) and (FTYPE-NIN) retrieve the field
from the class table as before.

The class, method, and expression typing rules from
Core JQual are unchanged in FS JQual. The modifications to
the field lookup rules do essentially all the necessary work.
For example, (FRREAD) still invokes ftype(f, τ) to compute
a type for e.f , but it uses the new field lookup rules in Fig-
ure 5. Similarly, constraints such as τ ′i ≤ τi generated in
(INVOKE) now operate on types (CQ, o), using the addi-
tional subtyping rules. Constraint resolution is also the same
process as in Core JQual: We generate subtyping constraints,
reduce them to qualifier constraint Q ≤ Q′, and the solve
the constraints using graph reachability.

3.3 Context-Sensitivity
Along with field-sensitivity, another major tradeoff in a static
analysis is whether to use context-sensitivity (a.k.a. para-
metric polymorphism for type systems [32]). Consider the
code example shown on the left in Figure 6. Line 1 defines
a class D, and lines 2–4 define an identity method id on
some other class C. On lines 6–7 we create two instances,
c1 and c2, and pass them through id, storing the results in c3
and c4, respectively. Since Core and FS JQual are context-
insensitive, they would determine that the qualifiers on c1
and c2 flow to (i.e., are subtypes of) the qualifiers on both c3
and c4. This is imprecise, because at run time, c1 only flows
to c3, and c2 only flows to c4. We can solve this problem
by introducing context-sensitivity, so that we can distinguish
the two calls to id.

JQual incorporates context-sensitivity using a technique
proposed by Reps et al [38] and Rehof et al [36]. In this



(INST-FIELD)
Q �jρ Q′ τ �jρ τ ′ τ �j−ρ τ

′

ref Q(τ) �jρ ref Q
′
(τ ′)

(INST-QTYPE)
Q �jρ Q′ o �jρ o′

(CQ, o) �jρ (DQ
′
, o′)

(INST-OTYPE)
φi �jρ φ′i i ∈ 1..n

{f1 : φ1; . . . ; fn : φn} �jρ {f1 : φ′1; . . . ; fn : φ′n}

(a) Instantiation rules

(FTYPE-IN)
τ = (CQ, o) P ` C extends D {F1; . . . ;Fn; . . .}

f 6∈ dom(o) Fi = T f◦
φ = CT(C)(f) φ �∗+ φ φ �∗− φ

CT ` ftype(f, τ) = φ

(b) Field lookup

(INVOKE)
CT,Γ ` e : τe

CT ` mtype(m, class(τe)) = (τ1 × · · · × τn) τ → τ0
τ0 �j+ τ0

′ CT,Γ ` ei : τ ′i τi �j− τ
′
i i ∈ 1..n τ �j− τe

CT,Γ ` e.mj(e1, . . . , en) : τ0
′

(c) Invoke expression typing

Figure 7. Qualifier inference — CS/FS JQual (modifications only)

approach, we reduce context-sensitive inference to the prob-
lem of context-free language (CFL) reachability on a con-
straint graph. As is well-known, context-sensitive analysis
can be more expensive than context-insensitive analysis, but
CFL reachability has proved to be very scalable in practice
[15, 36, 43, 44].

We can think of a regular qualifier constraint Q ≤ Q′

as an edge Q −→ Q′ in a graph, where the nodes in the
graph are qualifier constants and variables. As mentioned
earlier, we solve a set of qualifier constraints by looking for
inconsistent paths in the constraint graph. We add context-
sensitivity by introducing edges labeled with indexed paren-
theses. We pick a fresh index j for each call site in the
program. Then instead of regular edges, when qualifiers are
passed into a method at call site j, we add instantiation edges
labeled with (j . Similarly, when qualifiers are returned from
the same call, we use instantiation edges labeled with )j .
To check satisfiability, we use context-free language reach-
ability to propagate qualifiers only along paths that have no
mismatched parentheses.

For example, the right part of Figure 6 shows the key
portion of the constraint graph for the sample program. Here
the first call to id is indexed by i, and the second call is
indexed by j. Notice that the path from c1 to c3 is valid,
because (i matches )i, and similarly for the path from c2 to
c4. However, the path from c1 to c4 is invalid, because (i
does not match )j , and similarly for the path from c2 to c3.
Thus we have gained precision by excluding unrealizable
paths from our analysis, which correspond to non-matched
call and return sequences [38]. Notice that these paths would
have been valid under a monomorphic analysis, which would
produce the same graph but with no edge labels.

Figure 7 shows the changes necessary for CS/FS JQual,
which extends FS JQual with context-sensitivity using the
approach just outlined. Formally, labeled edges in the con-
straint graph correspond to instantiation constraints of the
form Q �jρ Q′. Here j indicates the call site, and ρ is the
variance, either − for contravariant positions or + for co-
variant positions. The constraintQ �j+ Q′ corresponds to an
edge Q −→)j Q′, and the constraint Q �j− Q′ corresponds
to an edge Q′ −→(j Q (notice that we flip the direction of
the arrow for this last constraint [36]).

Part (a) of the figure extends instantiation constraints to
types. (INST-FIELD) propagates an instantiation constraint
from a reference type to its components. Here −ρ is the op-
posite of the variance ρ, and notice that, just as with subtyp-
ing, references are both co- and contravariant in their con-
tents types. (INST-QTYPE) and (INST-OTYPE) both prop-
agate an instantiation constraint covariantly to the compo-
nents of the types. Rather than give a separate rule for null,
we assume we always apply subtyping to turn null types into
non-null types before using then in instantiation constraints.

The field lookup rules for CS/FS JQual are the same as
FS JQual, except (FTYPE-IN), as shown in Figure 7(b). This
rule applies to non-tracked fields, which are shared across
all instances, and thus must be considered global by the
analysis. To allow propagation of qualifiers through these
fields from any call site to any call site, (FTYPE-IN) adds
the constraints φ �∗ρ φ for ρ = + and ρ = −. The label ∗ is
a special index that matches any call site in the program, and
thus these constraints, which correspond to self-loops in the
constraint graph, allow the correct flow for globals [36]. In
our implementation, we also add these constraints for static
fields, since they are global as well. We illustrate self-loops
in an example shortly.



1 class D extends Object {
2 static C f ;
3 C foo(C x) {
4 C temp = this.f ;
5 this . f = x;
6 return temp;
7 }
8 void main() {
9 C c1 = new C(); C c2 = new C();

10 C c3 = foo(c1); C c4 = foo(c2);
11 }
12 }

(i

(j

x

c2

c1 )i

)j c4

c3

f

return
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)*

temp

Figure 8. Self-loops in constraint graphs

Figure 7(c) shows the one change necessary to the expres-
sion type rules. The revised (INVOKE) rule creates instanti-
ation edges rather than subtyping constraints at the call site.
Argument types and the receiver object type are contravari-
ant, and the return type is covariant. For example, consider
Figure 6 again. At the first call to id, this rule generates two
constraints (ignoring the receiver): x �i− c1, corresponding
to the edge from c1 to x, and the constraint return �i+ c2,
corresponding to the edge from return to c2. The edges for
the second call to id are similar.

Notice that (INVOKE) generates instantiation constraints
on the method based on the compile-time type of e. By
(CTCLASS) from Figure 4, we have already added appro-
priate constraints between this method type and the types
of methods related to it by overriding in the class hierarchy.
Thus in essence, (INVOKE) instantiates the type of a method
that represents all possible run-time objects represented by e.

To understand the need for self-loops in (FTYPE-IN),
consider the example in Figure 8. The method foo on lines
3–7 stores the value of its argument x in a static field f, and
then returns the old value of f. Then on lines 9–10, we create
new instances c1 and c2 and pass them through foo, storing
the results in c3 and c4, respectively. Notice that when this
code runs, the value of c1 will be stored in c4.

The right part of the figure shows the constraints gener-
ated for this example. Since f is a static field, we treat it like
a non-tracked field and add self-loops labeled with (∗ and )∗.
Thus there is a matched path from c1 to c4 that crucially uses
the self-loops on D.f. Notice that without these self-loops,
we would miss this path in the graph and be unsound.

While context-sensitivity does increase the complexity of
the inference algorithm (up to cubic time [36]), our experi-
ments (Section 4.2) show that it is scalable in practice and
increases precision.

4. Implementation and Experiments
We implemented JQual as an Eclipse plug-in. JQual per-
forms its analysis on source code, using Eclipse’s Java De-
velopment Toolkit for parsing. JQual generates and solves
constraints using CQual’s back-end, and if any constraints

are unsatisfiable, meaning that some value in the program
has inconsistent inferred qualifiers, then the constraint solver
issues a warning message that includes an inference path il-
lustrating the error [15]. CQual uses heuristics to suppress
excess warnings, but we found that they did not always work,
and so the counts of warning messages in our experiments do
not include warnings with duplicate paths.

The input to JQual is a set of source files to analyze and a
configuration file describing the order among the qualifier
constants. Type qualifier annotations are given in source
code as Javadoc comments with custom tags. We allow
methods, fields, variables, and type casts to have qualifier
annotations, and fields may also be annotated as tracked.
We chose Javadoc instead of Java 1.5-style annotations [6]
because the latter cannot appear in every position that we
needed for our experiments. (JSR 308 proposes a solution
to this problem [13].) Qualifier annotations also indicate
whether to apply the qualifier to the reference or value level
of a variable.

When the user runs JQual, they can choose whether to
enable field-sensitivity, context-sensitivity, both, or neither.
In our formalism, the function create• always creates fresh
qualified types for each tracked field, but this would be
prohibitively expensive in practice. Instead, JQual creates
fields lazily, on-demand. Initially, create• returns a type with
an empty set of fields. Then when ftype(f, τ) is called, we
add f to τ if it is a possible tracked field of the object. As
a heuristic, when we generate a regular subtyping constraint
(CQ, o) ≤ (DQ′

, o′), we unify o and o′, so that they share
tracked field sets. This results in little lost precision because
fields are reference types, and so in any case the fields’
value-level qualifiers would be equal after such a constraint.
We do not unify field sets across instantiation constraints.

JQual handles a number of features of Java not included
in our formal system. Constructors are modeled similarly to
ordinary methods, except the return type is the same as the
newly constructed object type. JQual is a whole-program
analysis, and so it requires source code for all necessary
classes. JQual begins from the initial set of source files, tran-
sitively finds all classes they reference, and analyzes them.
JQual aims to be sound, but has three potential sources of



unsoundness: Implicit super() constructor calls are ignored,
we do not track the flow of qualifiers from throw to catch
clauses, and we do not model native method or reflective
API calls specially, and so they can lose flow of qualifiers.
We do not feel that any of these are significant limitations.

We performed all of our experiments on an 2.4GHz AMD
Athlon 4600 processor with 4GB of memory.

4.1 Qualifiers for the JNI
For our first experiment with JQual, we checked the JNI
qualifiers described in Section 2.1 on a small benchmark
suite. Rather than add qualifier annotations manually, we
developed a simple tool do to so automatically. Our tool uses
CIL [33] to analyze C code and find places where parameters
and return values of native methods are directly cast from an
int to some C type T or vice-versa. If T is a pointer type,
then we mark the corresponding int as opaque, and if T is an
enumeration with maximum value i, we mark it as enumi.
Any other parameter or return types are not qualified. Note
that our analysis may omit some qualifier annotations due to
its handling of certain C constructs, and because it ignores
any transitive flow of Java ints through the C code.

After performing this first step, we then add the quali-
fiers to the Java code. Rather than modify the actual Java
source, we used a separate auxiliary file to specify quali-
fiers. We also extended JQual so that any integers manipu-
lated by Java, such as numeric literals or the results of arith-
metic operations, are transparent. Additionally, several of
the benchmarks we analyzed form a library that is intended
to be used in many different applications. Without knowing
exactly what the client code is, we wanted to check whether
any transparent values could be used in opaque positions.
Thus we modified JQual so that any ints that could come
from outside the scope of the library package, namely pub-
lic method arguments and public fields, are transparent. Fi-
nally, in this analysis, we do not model the Java standard li-
brary, and we do not generate any constraints when referring
to unavailable code. These choices introduce some potential
unsoundness, but keep the experiment simple.

Figure 9 summarizes our benchmark suite and the results
of running JQual. The first set of benchmarks, listed above
the line, is a collection of related libraries for accessing the
Gimp Toolkit (GTK). We analyzed each of these in isolation
and then together, listed on the top line. The other two
benchmarks in the chart, listed below the line, are separate
programs. The second column of the table lists the number of
lines of code of each benchmark. The third column lists the
number of qualifiers added to native methods based on our C
code analysis, and the fourth column counts the total number
of parameter and return positions on native methods. Over
all the benchmarks, roughly 28% of the possible positions
were annotated with qualifiers, indicating that passing C
pointers and enumerations between Java and C is relatively
common in the JNI.

To apply JQual to these benchmarks, we used the fol-
lowing procedure. We began by running JQual context-
and field-insensitively. We found that this generated a very
large number of warnings, and so we immediately enabled
context-sensitivity. The resulting warning counts, still field-
insensitive, are shown in the fifth column in Figure 9. We
felt that this was still a large number of warnings, and so
we inspected the output to identify fields that seemed like
good candidates for field-sensitivity, which we then marked
as tracked. We continued re-running the analysis and look-
ing for tracked fields until we could not identify any more
good candidates. The results of the final context- and field-
sensitive experiment are shown in the last three columns of
Figure 9. The first column lists the running time in seconds
(one run) the next column lists the total number of tracked
fields, and the last column lists the number of warnings re-
ported by JQual.

As these results show, most of the opaque and enum-
qualified integers are used safely in the Java code, since there
are few warnings overall. We inspected the final warnings
for combined gtk and the two standalone benchmarks man-
ually, and found they fell into four categories. We did not
find any outright errors, but 7 of the warnings occur because
integers arguments of public methods could flow to opaque
arguments of native methods. This is a bad programming
practice because it allows library clients to pass transparent
integers to opaque positions. The remaining warnings are all
false positives. Seven of the warnings occur when the integer
literal 0, which our analysis qualifies as enum0, is passed to
an opaque position, meaning it is used as the C null pointer.
Two of the warnings are from our assumption about enu-
meration types in C. In this case, rather than representing a
range of values, the enumerations represented bit flags, and
our analysis marked the results of bit operations as transpar-
ent, even though they formed legitimate values. Another 23
warnings were related to our analysis of enumeration types,
but involved inference paths that appear to be unrealizable.
The last warning was due to an extra cast inserted by CIL
that caused our C code analysis to qualify to an integer that
is not a pointer or enumeration.

4.2 Immutability Inference
For our second experiment with JQual, we used JQual to
infer readonly qualifiers for a selection of Java programs.
To add these qualifiers to JQual, we modified two typing
rules as shown in Figure 10. In (FREAD), we generate a new
constraint Q ≤ Qf , where Qf is the qualifier on the type of
e.f and Q is the qualifier on e. In this way, if Q is readonly,
then Qf will be as well, i.e., if e is readonly, then so is e.f .
In (FWRITE), we generate a new constraint Q ≤ mutable,
since field f is written to. Here Q is f ’s reference-level
qualifier. We also generate a constraintQ′ ≤ nonfinal, where
Q′ is the value-level qualifier on field f . Here we can clearly
see that nonfinal is a reference level qualifier and mutable is
value level qualifier. As mentioned in Section 2.2 we allow



Fld Ins Fld Sens
Benchmark KLoC Qual Pos Wrn Time Trck Wrn

combined gtk 40.6 4,929 17,562 187 2:18s 22 37
libgtk-java-2.6.2 32.4 4,029 13,844 151 2:07s 20 11
libvte-java-0.11.11 0.2 47 158 0 0:00s 0 0
libglade-java-2.10.1 1.0 5 20 0 0:03s 0 0
libgconf-java-2.10.1 0.7 148 504 0 0:00s 0 0
libgnome-java-2.10.1 5.1 632 2,652 3 0:06s 0 0
libgtkmozembed-java-1.7.0 0.5 18 80 0 0:00s 0 0
libgtkhtml-java-2.6.0 0.7 50 304 1 0:01s 2 1

jnetfilter 1.2 77 432 24 0:04s 6 3
libreadline-java-0.8.0 0.3 2 36 0 0:00s 0 0

Figure 9. Results of JNI Experiments

(FREAD)
CT,Γ ` e : τ τ = (CQ, o)

CT ` ftype(f, τ) = ref Q
′
(τ ′) τ ′ = (DQf , o′) Q ≤ Qf

CT,Γ ` e.f : τ ′

(FWRITE)
CT,Γ ` e1 : τ τ = (CQ, o)

CT ` ftype(f, τ) = ref Q
′
(τ ′)

CT,Γ ` e2 : τ ′′ τ ′′ ≤ τ ′ Q ≤ mutable Q′ ≤ nonfinal

CT,Γ ` e1.f = e2 : τ ′′

Figure 10. Modified inference rules for immutability

constructors to write to readonly and final fields, and so
when analyzing constructors we use the original versions of
(FREAD) and (FWRITE) rather than the modified versions.

We applied immutability inference to a variety of Java
programs. Figure 11 summarizes the results. The programs
beginning with underscores are part of the SPEC JVM
benchmark suite [2]. The others are open source programs
downloaded from SourceForge [1]. For the SPEC bench-
marks, we included the code of the SPEC JVM execution
framework in our analysis, and thus the line counts (KLoC)
are larger than a straight count of the benchmarks’ code. To
model library calls, we created a special stub version of the
libraries that included mutable and nonfinal annotations. We
also annotated fields of container classes as tracked, since we
expect containers to be used polymorphically.

We ran JQual with three of the four possible combi-
nations of context-insensitive (CI) versus context-sensitive
(CS) and field-based (FB) versus field-sensitive (FS). We
omitted CI/FS analysis, since context-insensitive construc-
tors would merge the fields of different instances, reducing
or eliminating the benefit for field-sensitivity. For the various
configurations, we report the number of readonly (RO) posi-
tions inferred on object types in method signatures (includ-
ing arguments, return, and this); then the number of fields
inferred to be final (FF); and then the running time (one run)
We do not include methods and fields from the library stubs
in our counts.

In the context-sensitive analyses, we counted a method
parameter or result as readonly if it could be used polymor-

phically as either mutable or readonly. For the field-based
analysis, we counted each field from a class once, since field
types are shared across all instances of a class. In the field-
sensitive analysis, we counted each instance of a tracked
field separately. We omit the FF column from the CS/FB ex-
periment because context-sensitivity does not change where
we may infer final.

The average percentage of readonly method positions
ranges from 48% to 62%, suggesting that large number of
parameters, return values, and receiver objects in methods
are readonly. A smaller, but still significant percentage of
fields are inferred to be final. As expected, the precision in-
creases with the addition of context- and field-sensitivity.
In most cases, increased precision comes at the cost of in-
creased running time, though in a few cases the running time
actually decreases, most likely because there are fewer valid
paths for propagating qualifiers.

To better understand the results of this experiment, we se-
lected fifty method signature positions, determined whether
they were readonly or mutable according to the analysis, and
then manually inspected the code. We found that the quali-
fiers inferred on 35 positions we looked at were non-trivial
and seemed quite useful, describing accurate properties of
the code. Another 3 positions were inferred readonly but
were Strings, which are clearly immutable, and 5 more were
return values of methods that are never called—hence the
return value is trivially readonly. Lastly, 7 of the positions
in method signatures were mutable, but seemed likely to be
readonly if we had made more fields tracked.

Overall, our results show that JQual is able to discover
many useful cases of immutability across our benchmarks.

5. Related Work
There are several threads of work related to JQual. In our
own prior work, we proposed type qualifiers as a general
mechanism for lightweight static checking and described
CQual [15], which adds type qualifiers to C. Among other
applications, CQual has been used to infer const quali-
fiers [14], to find format-string vulnerabilities [42], and
to find user-kernel pointer vulnerabilities [24] and dead-
locks [4, 16] in the Linux kernel. Several other researchers
have also used CQual [9, 18, 49], and our hope is that JQual



CI/FB CS/FB CS/FS
Benchmark KLoC RO (%) FF (%) Time RO (%) Time RO (%) FF (%) Time

jdbm 4.2 283 (33%) 182 (41%) 0:02s 379 (44%) 0:01s 402 (46%) 301 (52%) 0:02s
227 mtrt 5.7 358 (56%) 160 (22%) 0:02s 398 (62%) 0:02s 446 (70%) 261 (30%) 0:03s
201 compress 6.2 368 (53%) 190 (23%) 0:03s 418 (60%) 0:02s 466 (67%) 325 (32%) 0:03s
209 db 6.4 364 (53%) 162 (21%) 0:02s 408 (60%) 0:02s 456 (67%) 276 (31%) 0:03s
200 check 7.0 481 (62%) 206 (26%) 0:03s 527 (68%) 0:02s 576 (74%) 310 (33%) 0:04s
205 raytrace 7.7 521 (53%) 190 (21%) 0:03s 602 (61%) 0:02s 650 (66%) 325 (30%) 0:04s
202 jess 12.0 412 (57%) 164 (22%) 0:06s 460 (64%) 0:03s 508 (71%) 287 (31%) 0:05s

jgap 10.2 784 (41%) 460 (44%) 0:07s 1,003 (52%) 0:04s 1,087 (57%) 656 (53%) 0:06s
jgraph 11.9 1,167 (41%) 288 (29%) 0:10s 1,453 (51%) 0:06s 1,453 (51%) 3,828 (71%) 0:08s
jtds 21.5 1,040 (35%) 854 (48%) 0:10s 1,247 (42%) 0:05s 1,323 (44%) 927 (49%) 0:08s
213 javac 45.7 359 (56%) 160 (22%) 0:02s 399 (63%) 0:02s 448 (70%) 261 (30%) 0:03s

jfreechart 121.4 9,377 (46%) 2,098 (33%) 0:55s 11,190 (55%) 0:56s 11,444 (57%) 5,573 (55%) 1:12s
Average (48%) (29%) — (56%) — (62%) (42%) —

Figure 11. Immutability inference results

will similarly become a platform for experimentation with
lightweight static analysis of Java.

There are several challenges in performing static anal-
ysis of Java code as compared to C. We encountered the
same issues that have been previously identified by other re-
searchers [40, 26]. In Java, method invocations are almost
all via dynamic dispatch, as opposed to C, where function
pointer calls occur regularly but much less often. Thus we
need to model the call graph in some way, and JQual’s choice
is class-hierarchy analysis, to match Java’s type system. An-
other difference is that Java does not have pointers to the
stack or pointer arithmetic, though it does have many dy-
namic allocation sites. The Java standard libraries are quite
large, and analyzing them requires significant resources. In
our experiments, we used a stubbed version of the library
with annotations. Lastly, reflection [30], dynamic class load-
ing, and native methods make it difficult to achieve sound-
ness in a static analysis of Java. These remain open problems
in the research community and for JQual.

Type qualifier inference is closely related to the problem
of points-to analysis, which has been an active area of re-
search in recent years. The goal of points-to analysis for
Java is to determine how run-time objects flow through the
program. Similarly, in type qualifier inference, our goal is
to determine how qualifiers flow through the program, and
then additionally to check that the flow is valid with respect
to the programmer-supplied qualifier ordering. Thus we may
be able to use others’ techniques for points-to analysis to per-
form type qualifier inference. However, it is unclear whether
arbitrary points-to analyses can support the extra conditions
for readonly, in which reads through readonly references
produce new readonly references, and whether they include
analysis of the flow of integers, which we need for opaque
and enum inference. In general, type qualifiers are intended
as a lightweight, source-level specification and checking sys-
tem, whereas points-to analysis is a core static analysis that
is not directly reported to the programmer.

As discussed in Section 2.2, our readonly and mutable
qualifiers are based on Javari [8, 47]. Tschantz [46] presents

an inference algorithm for Javari qualifiers. Tschantz’s algo-
rithm includes some specialized notions of field-sensitivity,
expressed by inferring bounds on instantiated type variables,
as well as context-sensitivity, expressed with a romaybe
qualifier. It is unclear exactly how these relate to the gen-
eral notions of field- and context-sensitivity in JQual. Ad-
ditionally, Tschantz reports only one result of his inference
algorithm and suggests the implementation is incomplete.

Pratikakis et al [34] present a framework for program-
ming with proxies in Java. Their system uses a proxy qual-
ifier to mark proxied objects, and qualifier inference deter-
mines where these objects are used and hence must be de-
manded at run time. Their qualifier system is specialized to
handle proxy, while JQual is general-purpose. An interesting
future direction is using JQual to infer proxy qualifiers.

Chin et al [10] propose semantic type qualifiers, in which
programmers specify user-defined type qualifiers for C us-
ing a type refinement rule language. In this framework,
the refinement rules are automatically incorporated into the
source language type checker and proven sound with respect
to the qualifier semantics. Later work adds monomorphic
type qualifier and refinement rule inference [11]. In contrast,
JQual uses a fixed set of qualifier rules that can only be mod-
ified by editing JQual’s source code (e.g., the tweaks neces-
sary for readonly and opaque checking), but JQual applies
to Java and includes context- and field-sensitivity. Andreae
et al [5] bring semantic type qualifiers to Java, but do not
investigate qualifier inference.

Several researchers [27, 31, 39, 41] have developed anal-
yses for discovering whether Java methods have side ef-
fects. This is similar to inferring readonly, but these sys-
tems are designed mostly for compiler optimization, rather
than source-level specification. Liu and Milanova propose
immutability inference for fields in Java [29]. This is differ-
ent than the reference immutability for arguments and results
inferred by JQual. Artzi et al [7] propose a combined static
and dynamic mutability analysis for Java, using a different
notion of parameter mutability than readonly.



Type qualifiers are related to the refinement types of Free-
man and Pfenning [19]. While similar in spirit, refinement
types are significantly more complex, based on the theory
of intersection types, while qualifiers include only atomic
subtyping. Qualifiers cannot express as rich a set of proper-
ties but may provide a simpler programming interface and
allow a more efficient implementation. The work of Strom
and Yemini [45] on typestate verification similarly provides
static checking of properties orthogonal to standard types,
although the emphasis is on flow-sensitive properties.

We briefly discuss some approaches to points-to analysis
for Java. Milanova et al [31] present an object-sensitive alias
analysis for Java, in which each set of calls to a method with
a different receiver class type is analyzed separately. They
show that this limited form of context-sensitivity enhances
precision while remaining efficient. JQual, in contrast, uses
full context-sensitivity.

Sridharan et al [43, 44] express points-to analysis for Java
as a context-free language (CFL) reachability problem. In
their encoding, they use CFL reachability both for polymor-
phic method calls and for field-sensitivity. Since this leads to
a potentially undecidable problem, to remain tractable they
use an approximation and refinement scheme when solv-
ing the constraint graph. In contrast, JQual places fields
structurally inside of types, and does not use CFL edges
for field access. JQual’s approach is much simpler tech-
nically, but in our experience does not scale if we enable
full field-sensitivity. However, because we only enable field-
sensitivity for individual fields, we avoid the scaling problem
while still being precise enough for our applications.

Lhotak [27] describes a BDD-based framework for de-
veloping various static analyses of Java, including points-to
analysis. Whaley and Lam [48] show how to use BDDs to
compute a context-sensitive, field-sensitive alias analysis of
Java that scales to large programs. Lam et al [25] general-
ize this approach to a number of different static analyses of
Java. Both of these systems provide a generic infrastructure
for program analysis, and may be useful for type qualifiers.

Reps has shown that using CFL reachability for both
context- and field-sensitivity is undecidable [37]. We avoid
this problem in CS/FS JQual by only using CFL reachability
for context-sensitivity. We achieve field-sensitivity by repre-
sented tracked fields in the structure of types, and we “tie the
knot” for recursive types whenever we encounter them. This
last part, which is an approximation, maintains decidability.

Finally, our qualifiers for the JNI can be considered a
follow on to prior work in which we performed type safety
checking across the JNI [20]. Our prior work checked that
C code used Java types safely, whereas in this paper we use
JQual to check that Java code uses C types safely.

6. Conclusion
We have presented JQual, a system for adding type quali-
fiers and type qualifier inference to Java. We formalized Core

JQual, a field-based, context-insensitive type qualifier infer-
ence system for a variant of Featherweight Java. We then
presented FS JQual, a small extension to this system that
adds field-sensitivity, and CS/FS JQual, which further adds
context-sensitive inference using CFL reachability. We stud-
ied two major applications of JQual: checking that pointer
and enum values passed through a JNI API are used correctly
in a Java program, and inferring readonly and final qualifiers
in Java source code. JQual found several examples of poten-
tial opaque violations in a small benchmark suite, and was
able to infer that many positions are readonly or final. These
results suggest that user-defined type qualifiers can provide
beneficial, lightweight, application-specific static checking
for Java.
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