
Existential Label Flow Inference via CFL Reachability

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks

University of Maryland, College Park
{polyvios,jfoster,mwh}@cs.umd.edu

Abstract. In programming languages, existential quantification is useful for de-
scribing relationships among members of a structured type. For example, we may
have a list in which there exists some mutual exclusion lock l in each list element
such that l protects the data stored in that element. With this information, a static
analysis can reason about the relationship between locks and locations in the
list even when the precise identity of the lock and/or location is unknown. To
facilitate the construction of such static analyses, this paper presents a context-
sensitive label flow analysis algorithm with support for existential quantification.
Label flow analysis is a core part of many static analysis systems. Following Re-
hof et al, we use context-free language (CFL) reachability to develop an efficient
O(n3) label flow inference algorithm. We prove the algorithm sound by reducing
its derivations to those in a system based on polymorphically-constrained types,
in the style of Mossin. We have implemented a variant of our analysis as part of
a data race detection tool for C programs.

1 Introduction

Many modern static program analyses are context-sensitive, meaning they can analyze
different calls to the same function without conservatively attributing results from one
call site to another. While this technique is very useful, it often aids little in the analysis
of data structures. In particular, a typical alias analysis, even a context-sensitive one,
conflates all elements of the same data structure, resulting in a “blob” of indistinguish-
able pointers [1] that cannot be precisely analyzed.

One way to solve this problem is to use existential quantification [2] to express
relations among members of each individual data structure element. For example, an
element might contain a buffer and the length of that buffer [3]; a pointer to data and
the lock that must be held when accessing it [4, 5]; or a closure, consisting of a function
and a pointer to its environment [6]. The important idea is that such relations are sound
even when the identity of individual data structure elements cannot be discerned.

This paper presents a context-sensitive label flow analysis algorithm that supports
existential quantification. Label flow analysis attempts to answer queries of the form
“During program execution, can a value v flow to some expression e?” Answering such
queries is at the core of a variety of static analyses, including points-to analysis [7,
8], information flow [9], type qualifier inference [10–12], and race detection [4]. Our
goal is to provide a formal foundation for augmenting such analyses with support for
existential quantification. The core result of this paper is a provably sound and efficient
type inference system for label flow that supports existential quantification. This paper
makes the following contributions:

let id = λa.a in

(idi 1L1) +L3 ...;

(idk 2L2) +L4 ...

id

La

L1

L2
Lr

L3

L4

→

LaiL1 Lri L3

id

La Lr

→

LakL2 Lrk L4

copy

copy

id

La

L1
(i

L2 (k

Lr

L3
)i

L4)k

→

(a) Source program (b) Monomorphic analysis (c) COPY-based analysis (d) CFL-based analysis

Fig. 1. Universal Types Example

– We present COPY, a subtyping-based label-flow system in the style of Mossin [13].
In COPY, context sensitivity for functions corresponds to universal types (paramet-
ric polymorphism). Our contribution is to show how to support existential quantifi-
cation using existential types [2], applying the duality of ∀ and ∃. We prove that the
resulting system is sound. (Sect. 3)

– We present CFL, an alternative to COPY that supports efficient inference. Following
Rehof et al [14, 15], determining flow in CFL is reduced to a context-free language
(CFL) reachability problem, and the resulting inference system runs in time O(n3)
in the worst case. Our contribution is to show that existentially-quantified flow can
also be expressed as a CFL problem, and to prove that CFL is sound by reducing
it to COPY. These results are interesting because existential types are first-class in
our system, as opposed to universal types, which in the style of Hindley-Milner
only appear in type environments. To make inference tractable, we require the pro-
grammer to indicate where existential types are used, and we restrict the interaction
between existentially bound labels and free labels in the program. (Sect. 4)

– We briefly discuss how a variation of CFL is used as part of LOCKSMITH, a race
detection tool [4] for C programs that correlates memory locations to mutual exclu-
sion locks protecting them. LOCKSMITH uses existential quantification to precisely
relate locks and locations that reside within dynamic data structures, thereby elim-
inating a source of false alarms. (Sect. 2.3)

2 Polymorphism via Context-Free Language Reachability

We begin by introducing type-based label flow analysis, presenting the encoding of
context sensitivity as universal types, and sketching our new technique for supporting
first-class existential types. We also describe our application of these ideas to LOCK-
SMITH, a race detection tool for C [4]. Sects. 3 and 4 formally develop the label flow
systems introduced here.

2.1 Universal Types and Label Flow

The goal of label flow analysis is to determine which values may flow to which opera-
tions. In the program in Fig. 1(a), values 1 and 2 are annotated with flow labels L1 and
L2, respectively, and the two + operations are labeled with L3 and L4. Therefore label
flow analysis should show that L1 flows to L3 and L2 flows to L4. In this program we
annotate calls to id with indices i and k, which we will explain shortly.

To compute the flow of labels, we perform a type- and constraint-based analysis in
which base types are annotated with labels. For our example, the function id is given
the type intLa → intLr, where La and Lr label the argument and return types, re-
spectively. The body of id returns its argument, which is modeled by the constraint
La ≤ Lr. The call idi yields constraints L1 ≤ La and Lr ≤ L3, and the call idk yields
constraints L2 ≤ La and Lr ≤ L4. Pictorially, constraints form the directed edges in
a flow graph, as shown in Fig. 1(b), and flow is determined by graph reachability. Thus
the graph accurately shows that L1 flows to L3 and L2 flows to L4. However, the graph
conflates the two calls to id—its type is monomorphic—and therefore suggests possible
flows from L1 to L4 and from L2 to L3, which is sound but imprecise.

The precision of the analysis can be improved by adding context sensitivity using
Hindley-Milner style universal types. The standard approach [13], shown in Fig. 1(c),
is to give id a polymorphically constrained universal type ∀La,Lr[La ≤ Lr].intLa →
intLr, where we have annotated id’s type with the flow constraints needed to type its
body. Each time id is used, we instantiate its type and constraints, effectively “inlining”
a fresh copy of id’s body. At the call idi, we instantiate the constraint with the substitu-
tion [La 7→ Lai, Lr 7→ Lri], and then apply the constraints from the call site, yielding
L1 ≤ Lai ≤ Lri ≤ L3, as shown. Similarly, at the call idk we instantiate again, this
time yielding L2 ≤ Lak ≤ Lrk ≤ L4. Thus we see that L1 could flow to L3, and L2
could flow to L4, but we avoid the spurious flows from the monomorphic analysis.

While this technique is effective, explicit constraint copying can be difficult to im-
plement, because it requires juggling various sets of constraints as they are duplicated
and instantiated, and may require complicated constraint simplification techniques [16–
18] for efficiency. An alternative approach is to encode the problem in terms of a slightly
different graph and use CFL reachability to compute flow, as suggested by Rehof et al
[14]. This solution adds call and return edges to the graph and labels them with paren-
theses indexed by the call site, as shown in Fig. 1(d) with dashed lines. Edges from
idi are labeled with (i for inputs and)i for outputs, and similarly for idk. To compute
flow in this graph, we find paths with no mismatched parentheses. In this case the paths
from L1 to L3 and from L2 to L4 are matched, while the other paths are mismatched
and hence not considered. Rehof et al [14] have shown that using CFL reachability with
matched paths can be reduced to a type system with polymorphically constrained types.

2.2 Existential Types and Label Flow

The goal of this paper is to show how to use existential quantification during static
analysis to efficiently model properties of data structures more precisely. Consider the
example shown in Fig. 2(a). In this program, functions f and g add an unspecified
value to their argument. As before, we wish to determine which integers flow to which
+ operations. In the third line of this program we create existentially-quantified pairs
using pack operations in which f is paired with 1 and g with 2. Using an if, we then
conflate these two pairs, binding one of them to p. In the last line we use p by applying
its first component to its second component. (We use pattern matching in this example
for simplicity, while the language in Sect. 3 uses explicit projection.)

In this example, no matter which pair p is assigned, f is only ever applied to 1, and
g is only ever applied to 2. However, an analysis like the one described above would

let f = λa.a +L3 · · · in
let g = λb.b +L4 · · · in
let p = if · · · then
packi (f, 1L1)

else

packk (g, 2L2) in
unpack (p1, p2) = p in

p1 @ p2

f

La

L3

•

→
Lxi

•

→

×

Lyi

L1

)i (i

Lx •

→

×

Ly

p

g

Lb

L4

•

→
Lxk

•

→ Lyk

L2

)k (k

×∃ ∃

(a) Source program (b) Flow graph

Fig. 2. Existential Types Example

conservatively conflate the types at the two pack sites, generating spurious constraints
L1 ≤ L4 and L2 ≤ L3. To solve this problem, Sect. 3 presents COPY, a system
that can model p precisely by giving it a polymorphically constrained existential type
∃Lx,Ly[Ly ≤ Lx].(intLx → int) × intLy , indicating that p contains a pair whose
second element flows to the argument position of its first element. (The uninteresting
labels are omitted for clarity.) At packi, this type is instantiated to yield L1 ≤ La, and
since La ≤ L3 we have L1 ≤ L3 transitively. Instantiating at packk yields L2 ≤ Lb ≤
L4. Thus we precisely model that 1L1 only flows to +L3 and 2L2 only flows to +L4.

To support existential types, we have extrapolated on the duality of universal and
existential quantification. Intuitively, we give a universal type to id in Fig. 1 because
id is polymorphic in the label it is called with—whatever it is called with, it returns.
Conversely, in Fig. 2 we give an existential type to p because the rest of the program
is polymorphic in the pairs—no matter which pair is used, the first element is always
applied to the second.

The key contribution of this paper is to show how to perform inference with exis-
tential types efficiently using CFL reachability, as presented in Sect. 4. Fig. 2(b) shows
the flow graph generated for our example program. When packing the pair (f, 1L1), in-
stead of normal flow edges we generate edges labeled by i-parentheses, and we generate
edges labeled by k-parentheses when packing (g, 2L2). Flow for this graph again corre-
sponds to paths with no mismatched parentheses. For example, in this graph there is a
matched path from L2 to L4, indicating that the value 2L2 may flow to +L4, and there
is similarly a path from L1 to L3. Notice that restricting flow to matched paths again
suppresses spurious flows from L2 to L3 and from L1 to L4. Thus, the two existential
packages can be conflated without losing the flow relationships of their members.

2.3 Existential Quantification and Race Detection

Our interest in studying existential label flow arose from the development of LOCK-
SMITH, a C race detection tool [4]. LOCKSMITH uses label flow analysis to determine
what locations ρmay flow to each assignment or dereference in the program, and we use
a combination of label flow analysis and linearity checking to determine which locks `
are definitely held at that point. Here ρ and ` are just like any other flow labels, and we
use different symbols only to emphasize the quantities they label.

struct cache_entry { int refs; pthread_mutex_t refs_mutex; ... };

void cache_entry_addref(cache_entry *entry) { ...

pthread_mutex_lock(&entry->refs_mutex);

entry->refs++;

pthread_mutex_unlock(&entry->refs_mutex);

... }

Fig. 3. Example code with a per-element lock

Each time a location ρ is accessed with lock ` held, LOCKSMITH generates a cor-
relation constraint ρ B `. After analyzing the whole program, LOCKSMITH ensures
that, for each location ρ, there is one lock consistently held for all accesses. Correlation
constraints can be easily integrated into flow graphs, and we use a variant of the CFL
reachability closure rules to solve for correlations context-sensitively.

During our experiments we found several examples of code similar to Fig. 3, which
is taken from the knot multithreaded web server [19]. Here cache_entry is a linked
list with a per-node lock refs_mutex that guards accesses to the refs field. With-
out existential quantification, LOCKSMITH conflates all the locks and locations in the
data structure. As a result, it does not know exactly which lock is held at the write to
entry->refs, and reports that entry->refs may not always be accessed with the
same lock held, falsely indicating a potential data race.

With existential quantification, however, LOCKSMITH is able to model this idiom
precisely. We add annotations to specify that in type cache_entry, the fields refs and
refs_mutex should be given existentially quantified labels. Then we add pack anno-
tations when cache_entry is created and unpack annotations wherever it is used,
e.g., within cache_entry_addref. The result is that, in terms of polymorphically
constrained types, the entry parameter of cache_entry_addref is given the type
∃`, ρ[ρ B `].{refs : ref ρ int, refs mutex : lock `, . . .}, and thus LOCKSMITH can
verify that the lock refs_mutex always guards the refs field in a given node.

While our prior work sketches the use of existential types, it gives neither type rules
nor proofs for them, which are the main contributions of this paper. The remainder of
this paper focuses exclusively on existential types for label flow, and we refer the reader
to our other paper for details on LOCKSMITH [4].

3 Label Flow with Polymorphically Constrained Types

We begin our formal presentation by studying label flow in the context of a polymor-
phically-constrained type system COPY, which is essentially Mossin’s label flow sys-
tem [13] extended to include existential types. Note that COPY supports label poly-
morphism but not polymorphism in the type structure. We use the following source
language throughout the paper:

e ::= nL | x | λLx.e | e1@
Le2 | if0L e0 then e1 else e2 | (e1, e2)

L | e.Lj
| let f = e1 in e2 | fix f.e1 | f i | packL,i e | unpackL x = e1 in e2

In this language, constructors and destructors are annotated with constant labels L.
The goal of our type system is to determine which constructor labels flow to which

[Id]
C; Γ, x : τ `cp x : τ

[Int]
C ` L ≤ l

C; Γ `cp nL : intl

[Lam]
C; Γ, x : τ `cp e : τ ′ C ` L ≤ l

C; Γ `cp λLx.e : τ →l τ ′
[App]

C; Γ `cp e1 : τ →l τ ′

C; Γ `cp e2 : τ C ` l ≤ L

C; Γ `cp e1@
Le2 : τ ′

[Pair]

C; Γ `cp e1 : τ1 C; Γ `cp e2 : τ2

C ` L ≤ l

C; Γ `cp (e1, e2)
L : τ1 ×l τ2

[Proj]

C; Γ `cp e : τ1 ×l τ2

C ` l ≤ L j ∈ {1, 2}
C; Γ `cp e.Lj : τj

[Cond]

C; Γ `cp e0 : intl C ` l ≤ L
C; Γ `cp e1 : τ C; Γ `cp e2 : τ

C; Γ `cp if0L e0 then e1 else e2 : τ
[Sub]

C; Γ `cp e : τ1

C; ∅ ` τ1 ≤ τ2

C; Γ `cp e : τ2

Fig. 4. COPY Monomorphic Rules

destructor labels. For example, in the expression (λLx.e)@L′
e′, the label L flows to

the label L′. Our language includes integers, variables, functions, function application
(written with @ to provide a position on which to write a label), conditionals, pairs, and
projection, which extracts a component from a pair. Our language also includes binding
constructs let and fix, which introduce universal types. Each use of a universally
quantified function f i is indexed by an instantiation site i. Expressions also include
existential packages, which are created with packL,i and consumed with unpack. Here
L labels the package itself, since existentials are first-class and can be passed around
the program just like any other value, and i identifies this pack as an instantiation site.
Instantiation sites are ignored in this section, but are used in Sect. 4.

The types and environments used by COPY are given by the following grammar:

types τ ::= intl | τ →l τ | τ ×l τ | ∃l~α[C].τ schemes σ ::= ∀~α[C].τ | τ
labels l ::= L | α constraints C ::= ∅ | {l ≤ l} | C ∪ C
env. Γ ::= · | Γ, x : σ

Types include integers, functions, pairs, and existential types. All types are annotated
with flow labels l, which may be either constant labels L from the program text or
label variables α. Type schemes include normal types and polymorphically-constrained
universal types of the form ∀~α[C].τ . Here C is a set of flow constraints each of the form
l ≤ l′. In our type rules, substitutions φmap label variables to labels. The universal type
∀~α[C].τ stands for any type φ(τ) where φ(C) is satisfied, for any substitution φ. When
l ≤ l′, we say that label l flows to label l′. The type ∃l~α[C].τ stands for the type φ(τ)
where constraints φ(C) are satisfied for some substitution φ. Universal types may only
appear in type environments while existential types may appear arbitrarily. The free
labels of types (fl(τ)) and environments (fl(Γ)) are defined as usual.

The expression typing rules are presented in Figs. 4 and 5. Judgments have the form
C;Γ `cp e : τ , meaning in type environment Γ with flow constraints C, expression
e has type τ . In these type rules C ` l ≤ l′ means that the constraint l ≤ l′ is in the

[Let]

C′; Γ `cp e1 : τ1 C; Γ, f : ∀~α[C′].τ1 `cp e2 : τ2

~α ⊆ (fl(τ1) ∪ fl(C′)) \ fl(Γ)

C; Γ `cp let f = e1 in e2 : τ2

[Fix]

C′; Γ, f : ∀~α[C′].τ `cp e : τ C ` φ(C′)
~α ⊆ (fl(τ) ∪ fl(C′)) \ fl(Γ)

C; Γ `cp fix f.e : φ(τ)

[Inst]
C ` φ(C′)

C; Γ, f : ∀~α[C′].τ `cp f i : φ(τ)

[Pack]
C; Γ `cp e : φ(τ) C ` φ(C′) C ` L ≤ l

C; Γ `cp packL,i e : ∃l~α[C′].τ

[Unpack]

C; Γ `cp e1 : ∃l~α[C′].τ C ∪ C′; Γ, x : τ `cp e2 : τ ′

~α ⊆ (fl(τ) ∪ fl(C′)) \ (fl(Γ) ∪ fl(C) ∪ fl(τ ′)) C ` l ≤ L

C; Γ `cp unpackL x = e1 in e2 : τ ′

Fig. 5. COPY Polymorphic Rules

transitive closure of the constraints in C, and C ` C ′ means that all constraints in C ′

are in the transitive closure of C.
Fig. 4 contains the monomorphic typing rules, which are as in the standard λ calcu-

lus except for the addition of labels and subtyping. The constructor rules ([Int], [Lam]
and [Pair]) require C ` L ≤ l, i.e., the constructor label L must flow to the corre-
sponding label of the constructed type. The destructor rules ([Cond], [App] and [Proj])
require the converse. The subtyping rule [Sub] is discussed below.

Fig. 5 contains the polymorphic typing rules. Universal types are introduced by
[Let] and [Fix]. As is standard, we allow generalization only of label variables that are
not free in the type environment Γ . In both these rules, the constraints C ′ used to type
e1 become the bound constraints in the polymorphic type. Whenever a variable f with
a universal type is used in the program text, written f i where i identifies this occurrence
of f , it is type checked by [Inst]. This rule instantiates the type of f , and the premise
C ` φ(C ′) effectively inlines the constraints of f function into the caller’s context.

Existential types are manipulated using pack and unpack. To understand [Pack]
and [Unpack], recall that ∀ and ∃ are dual notions. Notice that ∀ introduction ([Let])
restricts what can be universally quantified, and instantiation occurs at ∀ elimination
([Inst]). Thus ∃ introduction ([Pack]) should perform instantiation, and ∃ elimination
([Unpack]) should restrict what can be existentially quantified.

In [Pack], an expression ewith a concrete type φ(τ) is abstracted to a type ∃l~α[C ′].τ .
Notice that the substitution maps abstract τ and C ′ to concrete φ(τ) and φ(C ′)—
creating an existential corresponds to passing an argument to “the rest of the program,”
as if that were universally quantified in ~α, and the constraints C ′ are determined by
how the existential package is used after it is unpacked. Similarly to [Inst], the [Pack]
premise C ` φ(C ′) inlines the abstract constraints φ(C ′) into the current constraints.

[Sub-Label-1]
l, l′ 6∈ D C ` l ≤ l′

C; D ` l ≤ l′
[Sub-Label-2] l ∈ D

C; D ` l ≤ l

[Sub-Pair]

C; D ` l ≤ l′

C; D ` τ1 ≤ τ ′1
C; D ` τ2 ≤ τ ′2

C; D ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2
[Sub-Fun]

C; D ` l ≤ l′

C; D ` τ ′1 ≤ τ1

C; D ` τ2 ≤ τ ′2

C; D ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

[Sub-Int]
C; D ` l ≤ l′

C; D ` intl ≤ intl′
[Sub-∃]

C1 ` C2 D′ = D ∪ ~α
C; D′ ` τ1 ≤ τ2 C; D ` l1 ≤ l2

C; D ` ∃l1~α[C1].τ1 ≤ ∃l2~α[C2].τ2

Fig. 6. COPY Subtyping

Rule [Unpack] binds the contents of the type to x in the scope of e2. This rule places
two restrictions on the existential package. First, e2 must type check with the constraints
C ∪C ′.1 Thus, any constraints among the existentially bound labels ~α needed to check
e2 must be in C ′. Second, the labels ~α must not escape the scope of the unpack (as is
standard [2]), which is ensured by the subset constraint.

The [Sub] rule in Fig. 4 uses the subtyping relation shown in Fig. 6. These rules are
standard structural subtyping rules extended to labeled types. We use a simple approach
to decide whether one existential is a subtype of another. Rule [Sub-∃] requires C1 `
C2, since an existential type can be used in any position inducing the same or fewer
flows between labels. We allow subtyping among existentials of a “similar shape.” That
is, they must have exactly the same (alpha-convertible) bound variables, and there must
be no constraints between variables bound in one type and free in the other. We use a set
D to track the set of bound variables, updated in [Sub-∃].2 Rule [Sub-Label-2] permits
subtyping between identical bound labels (l ∈ D), whereas rule [Sub-Label-1] allows
subtyping among non-identical labels only if neither is bound.

These restrictions on existentials forbid some clearly erroneous judgments such as
C ` ∃α[∅].intα ≤ ∃α[∅].intβ . The two existential types in this example quantify
over the same label; however, the subtyping is invalid because it would create a con-
straint between a bound label and an unbound label. However, these restrictions also
forbid some valid existential subtyping, such as C ` (∃α, β[α ≤ β].intα → intβ) ≤
(∃α, β[∅].intα → intα), which is permissible because β is a bound variable with no
other lower bounds except α, hence it can be set to α without losing information. How-
ever, our typing rules do not allow this. In our experience with LOCKSMITH we have
not found this restriction to be an issue, and we leave it as an open question whether it
can be relaxed while still maintaining efficient CFL reachability-based inference.

We prove soundness for COPY using subject reduction. Using a standard small-step
operational semantics e −→ e′, we define a flow-preserving evaluation step as one

1 Note that we could have chosen this hypothesis to be C′; Γ, x : τ `cp e2 : τ ′ and still had a
sound system, but this choice simplifies the reduction from CFL to COPY discussed in Sect. 4.

2 Our technical report [20] uses an equivalent version of D that makes the reduction proof easier.

whose flow is allowed by some constraint set C. Then we prove that if a program is
well-typed according to C then it always preserves flow.

Definition 1 (Flow-preserving Evaluation Step). Suppose e −→ e′ and in this reduc-
tion a destructor (if0, @, .j, unpack) labeled L′ consumes a constructor (n, λ, (·, ·),
pack, respectively) labeled L. Then we write C ` e −→ e′ if C ` L ≤ L′. We also
write C ` e −→ e′ if no value is consumed during reduction (for let or fix).

Theorem 1 (Soundness). If C;Γ `cp e : τ and e −→∗ e′, then C ` e −→∗ e′.

Here, −→∗ denotes the reflexive and transitive closure of the −→ relation. The proof is
by induction on C;Γ `cp e : τ and is presented in a companion technical report [20].

4 CFL-Based Label Flow Inference

The COPY type system is relatively easy to understand and convenient for proving
soundness, but experience suggests it is awkward to implement directly as an infer-
ence system. This section presents a label flow inference system CFL based on CFL
reachability, in the style of Rehof et al [14, 15]. This system uses a single, global set
of constraints, which correspond to flow graphs like those shown in Figs. 1(d) and 2.
Given a flow graph, we can answer queries “Does any value labeled l1 flow to a de-
structor labeled l2?”, written l1 l2, by using CFL reachability. We first present type
checking rules for CFL and then explain how they are used to interpret the flow graph in
Fig. 2. Then we explain how the rules can be interpreted to yield an efficient inference
algorithm. Finally, we prove that CFL reduces to COPY and thus is sound.

Types in CFL are as follows:

types τ ::= intl | τ →l τ | τ ×l τ | ∃l~α.τ schemes σ ::= (∀~α.τ,~l) | τ

In contrast to COPY, universal types (∀~α.τ,~l) and existential types ∃l~α.τ do not include
a constraint set, since we generate a single, global flow graph. Universal types contain
a set ~l of labels that are not quantified [14, 21]. For clarity universal types also include
~α, the set of labels that are quantified, but it is always the case that ~α = fl(τ) \ ~l.
Existential types do not include a set ~l, because we assume that the programmer has
specified which labels are existentially quantified. We check that the specification is
correct when existentials are unpacked (more on this below).

Typing judgments in CFL have the form I;C;Γ ` e : τ , where I and C describe
the edges in the flow graph. C has the same form as in COPY, consisting of subtyping
constraints l ≤ l′ (shown as unlabeled directed edges in Figs. 1 and 2). I contains
instantiation constraints [14] of the form l �i

p l′. Such a constraint indicates that l
is renamed to l′ at instantiation site i. (Recall that each instantiation site corresponds
to a pack or a use of a universally quantified type.) The p indicates a polarity, which
describes the flow of data. When p is + then l flows to l′, and so in our examples we
draw the constraint l �i

+ l′ as an edge l −→)i l′. When p is − the reverse holds,
and so we draw the constraint l �i

− l′ as an edge l′ −→(i l. Instantiation constraints
correspond to substitutions in COPY, and they enable context-sensitivity without the

[Id]
I; C; Γ, x : τ `cfl x : τ

[Int]
C ` L ≤ l

I; C; Γ `cfl nL : intl

[Lam]

I; C; Γ, x : τ `cfl e : τ ′

C ` L ≤ l

I; C; Γ `cfl λLx.e : τ →l τ ′
[App]

I; C; Γ `cfl e1 : τ →l τ ′

I; C; Γ `cfl e2 : τ C ` l ≤ L

I; C; Γ `cfl e1@
Le2 : τ ′

[Pair]

I; C; Γ `cfl e1 : τ1 I; C; Γ `cfl e2 : τ2

C ` L ≤ l

I; C; Γ `cfl (e1, e2)
L : τ1 ×l τ2

[Proj]

I; C; Γ `cfl e : τ1 ×l τ2

C ` l ≤ L j ∈ {1, 2}
I; C; Γ `cfl e.Lj : τj

[Cond]

I; C; Γ `cfl e0 : intl C ` l ≤ L
I; C; Γ `cfl e1 : τ I; C; Γ `cfl e2 : τ

I; C; Γ `cfl if0L e0 then e1 else e2 : τ
[Sub]

I; C; Γ `cfl e : τ1

C; ∅; ∅ ` τ1 ≤ τ2

I; C; Γ `cfl e : τ2

Fig. 7. CFL Monomorphic Rules

need to copy constraint sets. A full discussion of instantiation constraints is beyond the
scope of this paper; see Rehof et al [14] for a thorough description.

The monomorphic rules for CFL are presented in Fig. 7. With the exception of
[Sub] and the presence of I , these are identical to the rules in Fig. 4. Fig. 8 presents
the polymorphic CFL rules. In these type rules I ` l �i

p l
′ means that the instantiation

constraint l �i
p l

′ is in I . We define fl(τ) to be the free labels of a type as usual, except
fl(∀~α.τ,~l) = (fl(τ) \ ~α) ∪ ~l. Rules [Let] and [Fix] bind f to a universal type. As is
standard we cannot quantify label variables that are free in the environment Γ , which we
represent by setting ~l = fl(Γ) in type (∀~α.τ1,~l). The [Inst] rule instantiates the type τ
of f to τ ′ using an instantiation constraint I; ∅ ` τ �i

+ τ ′ : φ. This constraint represents
a renaming φ, analogous to that in COPY’s [Inst] rule, such that φ(τ) = τ ′. All non-
quantifiable labels, i.e., all labels in ~l, should not be instantiated, which we model by
requiring that any such label instantiate to itself, both positively and negatively.

Rule [Pack] constructs an existential type by abstracting a concrete type τ ′ to ab-
stract type τ . In COPY’s [Pack], there is a substitution such that τ ′ = φ(τ), and thus
CFL’s [Pack] has a corresponding instantiation constraint τ �i

− τ ′. The instantiation
constraint has negative polarity because although the substitution is from abstract τ to
concrete τ ′, the direction of flow is the reverse, since the packed expression e flows to
the packed value. In [Pack] the choice of ~α is not specified. As in other systems for
inferring first-class existential and universal types [22–25], we expect the programmer
to choose this set. In contrast to [Inst], we do not generate any self-instantiations in
[Pack], because we enforce a stronger restriction for escaping variables in [Unpack].

Rule [Unpack] treats the abstract existential type as a concrete type within e2, and
thus any uses of the unpacked value place constraints on its existential type. The last
premise of [Unpack] ensures that abstract labels do not escape, and moreover abstract
labels may not constrain any escaping labels in any way. Specifically, we require that
there are no flows (see below) between any labels in ~α and any labels in ~l, which is

[Let]

I; C; Γ `cfl e1 : τ1 I; C; Γ, f : (∀~α.τ1,~l) `cfl e2 : τ2

~α = fl(τ1) \~l ~l = fl(Γ)

I; C; Γ `cfl let f = e1 in e2 : τ2

[Fix]

I; C; Γ, f : (∀~α.τ,~l) `cfl e : τ ~α = fl(τ) \ fl(Γ) ~l = fl(Γ)

I; ∅ ` τ �i
+ τ ′ : φ I ` ~l �i

+
~l I ` ~l �i

− ~l

I; C; Γ `cfl fix f.e : τ ′

[Inst]
I; ∅ ` τ �i

+ τ ′ : φ I ` ~l �i
+

~l I ` ~l �i
− ~l

I; C; Γ, f : (∀~α.τ,~l) `cfl f i : τ ′

[Pack]
I; C; Γ `cfl e : τ ′ I; ∅ ` τ �i

− τ ′ : φ dom(φ) = ~α C ` L ≤ l

I; C; Γ `cfl packL,i e : ∃l~α.τ

[Unpack]

I; C; Γ `cfl e1 : ∃l~α.τ I; C; Γ, x : τ `cfl e2 : τ ′

~l = fl(Γ) ∪ fl(∃l~α.τ) ∪ fl(τ ′) ∪ L ~α ⊆ fl(τ) \~l C ` l ≤ L

∀l ∈ ~α, l′ ∈ ~l.(I; C 6 `l l′ and I; C 6 `l′ l)

I; C; Γ `cfl unpackL x = e1 in e2 : τ ′

Fig. 8. CFL Polymorphic Rules

the set of labels that could escape. If this condition is violated, then the existentially
quantified labels ~α chosen by the programmer are invalid and the program is rejected.
The [Unpack] rule in COPY does not forbid interaction between free and bound labels,
and therefore CFL is strictly weaker than COPY. However, without this restriction we
can produce cases where mixing existentials and universals produces flow paths that
should be valid but have mismatched parentheses. Sect. 4.3 contains one such example.
In practice we believe the restriction is acceptable, as we have not found it to be an
issue with LOCKSMITH. We leave it as an open question whether the restriction can be
relaxed while still maintaining efficient CFL reachability-based inference.

Fig. 9 defines the subtyping relation used in [Sub]. The only interesting differ-
ence with COPY arises because of alpha-conversion. In COPY alpha-conversion is im-
plicit, and only trivial constraints are allowed between bound labels (by [Sub-Label-
2] of Fig. 6). We cannot use implicit alpha-conversions in CFL, however, because we
are producing a single, global set of constraints. Thus instead of the single D used
in COPY’s[Sub] rule, CFL uses two ∆i, which are sequences of ordered vectors of
existentially-bound labels, updated in [Sub-∃]. In the rules, the syntax ∆ ⊕ {l1, ..., ln}
means to append vector {l1, ..., ln} to sequence ∆. Rule [Sub-Ind-2] in Fig. 9, which
corresponds to [Sub-Label-2] in Fig. 6, does allow subtyping between bound labels lj
and l′j—but only if they occur in exactly the same quantification position. Thus these
subtyping edges actually correspond to alpha-conversion. We could also allow this in
the COPY system, but it adds no expressive power and complicates proving soundness.

Fig. 10 defines instantiation constraints on types in terms of instantiation constraints
on labels. Judgments have the form I;D ` τ �i

p τ
′ : φ, where φ is the renaming defined

by the instantiation and D is the same as in Fig. 6—we do not need to allow alpha-

[Sub-Ind-1]
C ` l ≤ l′

C; ∅; ∅ ` l ≤ l′
[Sub-Int]

C; ∆1; ∆2 ` l ≤ l′

C; ∆1; ∆2 ` intl ≤ intl′

[Sub-Ind-2]
C ` lj ≤ l′j

C; ∆1 ⊕ {l1, . . . , ln}; ∆2 ⊕ {l′1, . . . , l′n} ` lj ≤ l′j

[Sub-Ind-3]
C; ∆1; ∆2 ` l ≤ l′ l 6= li l′ 6= l′j ∀i, j ∈ [1..n]

C; ∆1 ⊕ {l1, . . . , ln}; ∆2 ⊕ {l′1, . . . , l′n} ` l ≤ l′

[Sub-Pair]
C; ∆1; ∆2 ` l ≤ l′ C; ∆1; ∆2 ` τ1 ≤ τ ′1 C; ∆1; ∆2 ` τ2 ≤ τ ′2

C; ∆1; ∆2 ` τ1 ×l τ2 ≤ τ ′1 ×l′ τ ′2

[Sub-Fun]
C; ∆1; ∆2 ` l ≤ l′ C; ∆1; ∆2 ` τ ′1 ≤ τ1 C; ∆1; ∆2 ` τ2 ≤ τ ′2

C; ∆1; ∆2 ` τ1 →l τ2 ≤ τ ′1 →l′ τ ′2

[Sub-∃]

∆′
1 = ∆1 ⊕ ~α1 ∆′

2 = ∆2 ⊕ ~α2 φ(~α2) = ~α1

C; ∆′
1; ∆

′
2 ` τ1 ≤ τ2 C; ∆1; ∆2 ` l1 ≤ l2

C; ∆1; ∆2 ` ∃l1 ~α1.τ1 ≤ ∃l2 ~α2.τ2

Fig. 9. CFL Subtyping

conversion here, because we can always apply [Sub] if we wish to alpha-rename. Thus
[Inst-Ind-1] permits instantiation of unbound labels, and [Inst-Ind-2] forbids renaming
bound labels. For example, if we have an ∃ type nested inside a ∀ type, instantiating the
∀ type should not rename any of the bound variables of the ∃ type. Aside from this the
rules in Fig. 10 are standard, and details can be found in Rehof et al [14].

Given a flow graph described by constraints I andC, Fig. 11 gives inference rules to
compute the relation l1 l2, which means label l1 flows to label l2. Rule [Level] states
that constraints in C correspond to flow (represented as unlabeled edges in the flow
graph). Rule [Trans] adds transitive closure. Rule [Match] allows flow on a matched
path l0 −→(i l1 l2 −→)i l3. This rule corresponds to “copying” the constraint
l1 l2 to a constraint l0 l3 at instantiation site i. Rule [Constant] adds a “self-loop”
that permits matching flows to or from any constant label. We generate these edges
because constants are global names and thus are context-insensitive.

Note that our relation corresponds to the m relation from Rehof et al [14],
wherem stands for “matched paths.” The Rehof et al system also includes so-called PN
paths, which allow extra parentheses that are not matched by anything, e.g., extra open
parentheses at the beginning of the path, or extra closed parentheses at the end. In our
system we concern ourselves only with constants, which by [Constant] have all possible
self-loops (this rule is not included in the Rehof et al system). These self-loops mean
that any flow from one constant to another via a PN path is also captured by a matched
path between the constants. Thus for purposes of showing soundness, matched paths
suffice. We could add PN paths to our system with no difficulty to allow queries on
intermediate flows, but have not done so for simplicity.

[Inst-Ind-1]
l, l′ 6∈ D I ` l �i

p l′

I; D ` l �i
p l′ : ∅

[Inst-Ind-2] l ∈ D

I; D ` l �i
p l : φ

[Inst-Pair]

I; D ` l �i
p l′ : φ

I; D ` τ1 �i
p τ ′1 : φ

I; D ` τ2 �i
p τ ′2 : φ

I; D ` τ1 ×l τ2 �i
p τ ′1 ×l′ τ ′2 : φ

[Inst-Fun]

I; D ` l �i
p l′ : φ

I; D ` τ1 �i
p̄ τ ′1 : φ

I; D ` τ2 �i
p τ ′2 : φ

I; D ` τ1 →l τ2 �i
p τ ′1 →l′ τ ′2 : φ

[Inst-Int]
I; D ` l �i

p l′ : φ

I; D ` intl �i
p intl′ : φ

[Inst-∃]

D′ = D ∪ ~α I; D′ ` τ1 �i
p τ2 : φ

I; D ` l1 �i
p l2 : φ

I; D ` ∃l1~α.τ1 �i
p ∃l2~α.τ2 : φ

Fig. 10. CFL Instantiation

[Level]
C ` l1 ≤ l2

I; C ` l1 l2
[Trans]

I; C ` l0 l1 I; C ` l1 l2
I; C ` l0 l2

[Constant]
I; C ` L �i

p L
[Match]

I ` l1 �i
− l0 I; C ` l1 l2 I ` l2 �i

+ l3

I; C ` l0 l3

Fig. 11. Flow

4.1 Example

Consider again the example in Fig. 2. The expression packi(f, 1L1) is given the type

∃Lxi, Lyi.(intLxi → int)× intLyi

by the [Pack] rule. [Pack] also instantiates the pair’s abstract type to its concrete type
using the judgment

I;C ` (intLxi → int)× intLyi �i
− (intLa → int)× intL1

Proving this judgment requires appealing in several places to [Inst-Ind-1], whose premise
I ` l �i

p l
′ requires that I contain constraints Lyi �i

− L1 and Lxi �i
+ La, among oth-

ers. These are shown as dashed, labeled edges in the figure. Notice that the direction of
the renaming is opposite the direction of flow: The concrete labels flow to the abstract
labels, but the abstract type is instantiated to the concrete type. Hence the instantiation
has negative polarity. This instantiated existential type flows via subtyping to the type
of p shown at the center of the figure. The directed edges between the type components
are induced by subtyping (applying [Sub-∃] at the top level).

The unpack of p is typed by the [Unpack] rule. Within the body of the unpack,
we apply the second part of the pair (p2) to the first part (p1). Here, p2 has type intLy

while p1 has type intLx → int, and thus to apply the [App] rule, we must first prove
(among other things) that C; ∅; ∅ ` intLy ≤ intLx. This requires that Ly ≤ Lx be in
C according to [Sub-Ind-1], and is shown as an unlabeled edge in the figure. With this

edge we have I;C ` L1 L3 and I;C ` L2 L4 (but I;C 6 `L1 L4). The
final premises of [Unpack] are satisfied because the bound labels Ly and Lx only flow
among themselves or to variables bound in existential types, which are not free.

4.2 An Inference Algorithm

CFL has been presented thus far as a checking system in which the flow graph, described
by C and I , is assumed to be known. To infer this flow graph automatically requires
a simple reinterpretation of the rules. The algorithm has three stages and runs in time
O(n3), where n is the size of the type-annotated program.

First, we type the program according to the rules in Figs. 7-10. As usual the non-
syntactic rule [Sub] can be incorporated into the remaining rules to produce a syntax-
directed system [26]. During typing, we interpret a premise C ` l ≤ l′ or I ` ~l �i

p
~l

as generating a constraint; i.e., we add l ≤ l′ (or ~l �i
p
~l) to the set of global constraints

C (or I). Free occurrences of l in the rules are interpreted as fresh label variables.
For example, in [Int] we interpret l as a fresh variable α and add L ≤ l to C. When
choosing types (e.g., τ in [Lam] or τ ′ in [Inst]) we pick a type τ of the correct shape
with fresh label variables in every position. After typing we have a flow graph defined
by constraint sets C and I .

Next, we compute all flows according to the rules in Fig. 11. Excluding the final
premise of [Unpack] and the D’s in [Sub] and [Inst], performing typing and computing
all flows takes time O(n3) [14]. To implement [Sub-Ind-i] efficiently, rather than main-
tain D sets explicitly and repeatedly traverse them, we temporarily mark each variable
with a pair (i, j) indicating its position in D and its position in ~α as we traverse an
existential type. We can assume without loss of generality that |~α| ≤ |fl(τ)| in an exis-
tential type, so traversing ~α does not increase the complexity. Then we can select among
[Sub-Ind-1] and [Sub-Ind-2] in constant time for each constraint C;∆1;∆2 ` l ≤ l′,
so this does not affect the running time, and similarly for [Inst-Ind-i].

Finally, we check the last reachability condition of [Unpack] to ensure the pro-
grammer chose a valid specification of existential quantification. Given that we have
computed all flows, we can easily traverse the labels in ~α and check for paths to ~l and
vice-versa. Since each set is of size O(n), this takes O(n2) time, and since there are
O(n) uses of [Unpack], in total this takes O(n3) time. Thus the algorithm as a whole is
O(n3) +O(n3) = O(n3).

4.3 Differences between COPY and CFL

As mentioned in Sect. 4, if we weaken CFL’s [Unpack] rule to permit existentially
bound labels to interact with free labels, then we can construct examples with mis-
matched flow. Fig. 12(a) shows one such example. Here the function g takes an argu-
ment z, packs it, and then returns the result of calling function f with the package.
Function f unpacks the existential and returns its contents. Thus g is the identity func-
tion, but with complicated data flow. On the last line, the function g is applied to 1L1,
and the result is added using +L2. Thus L1 flows to L2. Let us assume that at packk,
the programmer wishes to quantify the type of the packed integer, and then compare
COPY and CFL as applied to the program.

let g = λz.
let f = (λx. unpack y = x in y) in

let p = packk z in

f i p
in

(gm 1L1) +L2 · · ·

→

Lz

(k

int∃

Lp

Louti

Lz'

→

int∃

Lx

Lout

)i ffi

L1 L2(m)m

(a) Source program (b) Flow graph

Fig. 12. Example with Mismatched Flow

The COPY types rules assign f the type scheme

f : ∀Lout[∅].
(
∃Lx[Lx ≤ Lout].intLx

)
→ intLout

Notice that since f unpacks its argument and returns the contents, there is a constraint
between Lx, the label of the packed integer, and Lout, the label on f ’s result type.
The interesting thing here is that Lx is existentially bound and Lout is not, which is
acceptable in COPY (technically, we need an application of [Sub] to achieve this), but
not allowed in CFL. At the call to f , we instantiate f ’s type as

f i :
(
∃Lx[Lx ≤ Louti].intLx

)
→ intLouti

Let Lz be the label on g’s parameter, and let Lz′ be the label on g’s return type. Then
when we pack z and bind the result to p, we instantiate the abstract Lx to concrete Lz
and thus generate the constraint Lz ≤ Louti. Then g returns the result of f i, and hence
we have Louti ≤ Lz′. Putting these together and generalizing g’s type, we get

g : ∀Lz, Lz′, Louti[Lz ≤ Louti, Louti ≤ Lz′].intLz → intLz′

Finally, we instantiate this type at gm, and we get L1 ≤ Lzm ≤ Loutim ≤ Lz′m ≤ L2,
and thus we have flow from L1 to L2.

Now consider applying CFL to the same program. Fig. 12(b) shows the resulting
flow graph. The type of f , shown at the right of the figure, is (∀Lout.(∃Lx.intLx) →
intLout, ∅) where in the global flow graph there is a constraint Lx ≤ Lout. As before,
this is a constraint between an existentially bound and free variable, which is forbidden
by the strong non-escaping condition in CFL’s [Unpack] rule. However, assume for the
moment that we ignore this condition. Then the type of f i, shown in the left of the
figure, is

(
∃Lp.intLp

)
→ intLouti where we have an instantiation constraint Lout �i

+

Louti, drawn as a dashed edge labeled)i in the figure. (Note that we have also applied
an extra step of subtyping to make the figure easier to read and drawn an edge Lp ≤ Lx,
although we could also set Lp = Lx.) Since the result of calling f i is returned, we have
Louti ≤ Lz′, where again Lz′ is the label on the return type of g. Moreover, at packk,
we instantiate the abstract type of p to its concrete type, resulting in the constraint
Lp �k

− Lz, where Lz is the label on g’s parameter. Finally, at the instantiation of g we
generate constraints Lz �m

− L1 and Lz′ �m
+ L2.

Notice that there is no path from L1 to L2, because (k does not match)i. The
problem is that instantiation i must not rename Lp, and instantiation k must not rename

Louti. In CFL, we prevent instantiations from renaming labels by adding “self-loops,”
as in [Inst] in Fig. 8. In this case, we should have Lp �i

± Lp and Louti �k
± Louti. We

expended significant effort trying to discover a system that would add exactly these self-
loops, but we were unable to find a solution that would work in all cases. For example,
adding a self-loop on Louti seems particularly problematic, since Louti is created only
after f i is instantiated, and not at the pack or the unpack points. Moreover, because we
have (m and)m at the beginning and end of the mismatched path, the self-loops on
L1 and L2 do not help. Thus in [Unpack] in Fig. 8, we require existentially-quantified
labels to not have any flow with escaping labels to forbid this example.

4.4 Soundness

We have proven that programs that check under CFL are reducible to COPY. The first
step is to define a translation function ΨC,I that takes CFL types and transforms them
to COPY types. For monomorphic types ΨC,I is simply the identity. To translate a poly-
morphic CFL type (∀~α.τ,~l) or ∃l~α.τ into a COPY type ∀~α[C ′].τ or ∃l~α[C ′].τ , respec-
tively, ΨC,I needs to produce a bound constraint set C ′. Rehof et al [14, 15] were able to
choose C ′ = CI = {l1 ≤ l2 | I;C ` l1 l2}, i.e., the closure of C and I . However,
the addition of first class existentials causes this approach to fail, because, for example,
instantiating a ∀ type containing a type ∃l~α[CI].τ could rename some variables in CI

(since CI contains all variables used in the program) and thereby violate the inductive
hypothesis. Thus we introduce a projection function ψS , where we define

ψS(l) =
{
l l ∈ S ∪ L⊔
{l′ ∈ S ∪ L | CI ` l′ ≤ l} otherwise

where t represents the union of two labels. Then for a universal type, ΨC,I sets C ′ =
ψ(~α∪~l)(C

I), and for an existential type ΨC,I sets C ′ = ψ~α(CI). We extend ΨC,I to type
environments in the natural way and define CI

S = ψS(CI). Now we can show:

Theorem 2 (Reduction from CFL to COPY). Let D be a normal CFL derivation of
I;C;Γ `cfl e : τ . Then CI

fl(Γ)∪fl(τ);ΨC,I(Γ) `cp e : ΨC,I(τ).

Proof. The proof is by induction on the derivation D. There are two key parts of the
proof. The first is a lemma that shows that the bound constraint sets chosen by ΨC,I

for universal and existential types are closed under substitutions at instantiation sites,
so that when we translate an occurrence of [Inst] or [Pack] from CFL to COPY we can
prove the hypothesis C ` φ(C ′). The other key part occurs in translating an occurrence
of [Unpack] from CFL to COPY. In this case, by induction on the typing derivation
for e2 we have CI

fl(Γ)∪fl(τ)∪fl(τ ′);ΨC,I(Γ), x : ΨC,I(τ) `cp e2 : ΨC,I(τ ′). By the
last hypothesis of [Unpack] in CFL, we know that there are no constraints between the
quantified labels ~α and any other labels. Thus we can partition the constraints on the
left-hand side of the above typing judgment into two disjoint sets:CI

(fl(Γ)∪fl(τ)∪fl(τ ′))\~α

and CI
~α. The former are the constraints needed to type check e1 in COPY, and the latter

are those bound in the existential type of e1 by ΨC,I . These two constraint sets form
the sets C and C ′, respectively, needed for the [Unpack] rule of COPY. A full, detailed
proof can be found in our companion technical report [20].

By combining Theorems 1 and 2, we then have soundness for the flow relation
computed by CFL. Notice that we have shown reduction but not equivalence. Rehof et
al [14, 15] also only show reduction, but conjecture equivalence of their systems. In our
case, equivalence clearly does not hold, because of the extra non-escaping condition on
[Unpack] in CFL. We leave it as an open question whether this condition can be relaxed
to yield provably equivalent systems.

5 Related Work

Our work builds directly on the CFL reachability-based label flow system of Rehof
et al [14]. Their cubic-time algorithm for polymorphic recursive label flow inference
improves on the previously best-known O(n8) algorithm [13]. The idea of using CFL
reachability in static analysis is due to Reps et al [27], who applied it to first-order
data flow analysis problems. Our contribution is to extend the use of CFL reachability
further to include existential types for modeling data structures more precisely.

Existential types can be encoded in System F [28] (p. 377), in which polymorphism
is first class and type inference is undecidable [29]. There have been several proposals
to support first-class polymorphic type inference using type annotations to avoid the
undecidability problem. In MLF [22], programmers annotate function arguments that
have universal types. Laufer and Odersky [23] propose an extension to ML with first-
class existential types, and Remy [24] similarly proposes an extension with first-class
universal types. In both systems, the programmer explicitly lists which type variables
are quantified. Packs and unpacks correspond to data structure construction and pattern
matching, and hence are determined by the program text. Our system also requires the
programmer to specify packs and unpacks as well as which variables are quantified, but
in contrast to these three systems we support subtyping rather than unification, and thus
we need polymorphically constrained types. Note that our solution is restricted to label
flow, and only existential types are first-class, but we believe adding first-class univer-
sals with programmer-specified quantification would be straightforward. We conjecture
that full first-class polymorphic type inference for label flow is decidable, and plan to
explore such a system in future work.

Simonet [25] extends HM(X) [30], a generic constraint-based type inference frame-
work, to include first-class existential and universal types with subtyping. Simonet re-
quires the programmer to specify the polymorphically constrained type, including the
subtyping constraints C, whereas we infer these (we assume we have the whole pro-
gram). Another key difference is that we use CFL reachability for inference. Once again,
however, our system is concerned only with label flow.

In ours and the above systems, both existential quantification as well as pack and
unpack must be specified manually. An ideal inference algorithm requires no work
from the programmer. For example, we envision a system in which all pairs and their
uses are considered as candidate existential types, and the algorithm chooses to quantify
only those labels that lead to a minimal flow in the graph. It is an open problem whether
such an algorithm exists.

6 Conclusion

Existential quantification can be used to precisely characterize relationships within el-
ements of a dynamic data structure, even when the precise identity of those elements
is unknown. This paper aims to set a firm theoretical foundation on which to build
efficient program analyses that benefit from existential quantification. Our main con-
tribution is a context-sensitive inference algorithm for label flow analysis that supports
existential quantification. Programmers specify where existentials are introduced and
eliminated, and our inference algorithm automatically infers the bounds on their flow.
Our algorithm is efficient, employing context free language (CFL) reachability in the
style of Rehof et al [14], and we prove it sound by reducing it to a system based on
polymorphically-constrained types in the style of Mossin [13]. We have adapted our
algorithm to improve the precision of LOCKSMITH, a tool that aims to prove the ab-
sence of race conditions in C programs [4] by correlating locks with the locations they
protect. We plan to explore other applications of existential label flow in future work.

Acknowledgments

We would like to thank Manuel Fähndrich, Mike Furr, Ben Liblit, Nik Swamy, and the
anonymous referees for their helpful comments. This research was supported in part by
NSF grants CCF-0346982, CCF-0346989, CCF-0430118, and CCF-0524036.

References

1. Das, M.: Unification-based Pointer Analysis with Directional Assignments. In: The
2000 Conference on Programming Language Design and Implementation, Vancouver B.C.,
Canada (2000) 35–46

2. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transactions on
Programming Languages and Systems 10 (1988) 470–502

3. Xi, H., Pfenning, F.: Dependent Types in Practical Programming. In: The 26th Annual
Symposium on Principles of Programming Languages, San Antonio, Texas (1999) 214–227

4. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Context-Sensitive Correlation Analy-
sis for Race Detection. In: The 2006 Conference on Programming Language Design and
Implementation, Ottawa, Canada (2006) To appear.

5. Flanagan, C., Abadi, M.: Types for Safe Locking. In Swierstra, D., ed.: 8th European Sym-
posium on Programming. Volume 1576 of Lecture Notes in Computer Science., Amsterdam,
The Netherlands, Springer-Verlag (1999) 91–108

6. Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: The 23rd Annual
Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida (1996)
271–283

7. Fähndrich, M., Rehof, J., Das, M.: Scalable Context-Sensitive Flow Analysis using Instan-
tiation Constraints. In: The 2000 Conference on Programming Language Design and Imple-
mentation, Vancouver B.C., Canada (2000) 253–263

8. Das, M., Liblit, B., Fähndrich, M., Rehof, J.: Estimating the Impact of Scalable Pointer Anal-
ysis on Optimization. In Cousot, P., ed.: Static Analysis, Eighth International Symposium,
Paris, France (2001) 260–278

9. Myers, A.C.: Practical Mostly-Static Information Flow Control. In: The 26th Annual Sym-
posium on Principles of Programming Languages, San Antonio, Texas (1999) 228–241

10. Foster, J.S., Johnson, R., Kodumal, J., Aiken, A.: Flow-insensitive type qualifiers. (ACM
Transactions on Programming Languages and Systems) To appear.

11. Kodumal, J., Aiken, A.: The Set Constraint/CFL Reachability Connection in Practice. In:
The 2004 Conference on Programming Language Design and Implementation, Washington,
DC (2004) 207–218

12. Johnson, R., Wagner, D.: Finding User/Kernel Bugs With Type Inference. In: The 13th
Usenix Security Symposium, San Diego, CA (2004)

13. Mossin, C.: Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, Department
of Computer Science, University of Copenhagen (1996)

14. Rehof, J., Fähndrich, M.: Type-Based Flow Analysis: From Polymorphic Subtyping to CFL-
Reachability. In: The 28th Annual Symposium on Principles of Programming Languages,
London, United Kingdom (2001) 54–66

15. Fähndrich, M., Rehof, J., Das, M.: From Polymorphic Subtyping to CFL Reachability:
Context-Sensitive Flow Analysis Using Instantiation Constraints. Technical Report MS-
TR-99-84, Microsoft Research (2000)

16. Flanagan, C., Felleisen, M.: Componential Set-Based Analysis. In: The 1997 Conference on
Programming Language Design and Implementation, Las Vegas, Nevada (1997) 235–248

17. Fähndrich, M., Aiken, A.: Making Set-Constraint Based Program Analyses Scale. In: First
Workshop on Set Constraints at CP’96. (1996) Available as CSD-TR-96-917, University of
California at Berkeley.

18. Fähndrich, M.: BANE: A Library for Scalable Constraint-Based Program Analysis. PhD
thesis, University of California, Berkeley (1999)

19. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: Scalable threads
for internet services. In: ACM Symposium on Operating Systems Principles. (2003)

20. Pratikakis, P., Hicks, M., Foster, J.S.: Existential Label Flow Inference via CFL Reachabil-
ity. Technical Report CS-TR-4700, University of Maryland, Computer Science Department
(2005)

21. Henglein, F.: Type Inference with Polymorphic Recursion. ACM Transactions on Program-
ming Languages and Systems 15 (1993) 253–289

22. Botlan, D.L., Rémy, D.: MLF —Raising ML to the Power of System F. In: The Eighth
International Conference on Functional Programming, Uppsala, Sweden (2003) 27–38

23. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM Trans-
actions on Programming Languages and Systems 16 (1994) 1411–1430

24. Rémy, D.: Programming objects with MLART: An extension to ML with abstract and
record types. In: The International Symposium on Theoretical Aspects of Computer Sci-
ence, Sendai, Japan (1994) 321–346

25. Simonet, V.: An Extension of HM(X) with Bounded Existential and Universal Data Types.
In: The Eighth International Conference on Functional Programming, Uppsala, Sweden
(2003) 39–50

26. Mitchell, J.C.: Type inference with simple subtypes. Journal of Functional Programming 1
(1991) 245–285

27. Reps, T., Horwitz, S., Sagiv, M.: Precise Interprocedural Dataflow Analysis via Graph
Reachability. In: The 22nd Annual Symposium on Principles of Programming Languages,
San Francisco, California (1995) 49–61

28. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
29. Wells, J.B.: Typability and type checking in System F are equivalent and undecidable. Ann.

Pure Appl. Logic 98 (1999) 111–156
30. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types. Theory and

Practice of Object Systems 5 (1999) 35–55

