LOCKPICK: Lock Inference for
Atomic Sections

Jeffrey S. Foster
Michael Hicks
Polyvios Pratikakis

University of Maryland, College Park

o Concurrent programming is “notoriously difficult”

» More parallelism is good, too much is wrong

» Less parallelism is easier, but it slows down the program
» Synchronization is done using locks

o Locks are difficult to program

» Alternative, higher level synchronization abstraction: atomic
sections

int x, vy;
threadl () { thread2 () {
atomic { atomic {
X = 42; x = 44;
y = 43; h
} }
h

» Atomic sections usually use optimistic concurrency

» This work: atomic sections with pessimistic concurrency

» Create a mutex £, for each memory location p
» Create a total ordering on all £, to avoid deadlock

» For every atomic block, if p is referenced, then acuire ¢, at the
beginning

» Maintain maximum parallelism (for the given points-to
analysis)

» Create a mutex £, for each memory location p
» Create a total ordering on all ¢, to avoid deadlock

» For every atomic block, if p is referenced, then acuire £, at the
beginning

» Maintain maximum parallelism (for the given points-to
analysis)

Inefficient: large number of locations = large number of locks

» Find all memory locations p that are shared between threads
» Create a mutex £, for each memory location p
» Create a total ordering on all ¢, to avoid deadlock

» For every atomic block, if p is referenced, then acuire £, at the
beginning

» Maintain maximum parallelism (for the given points-to
analysis)

» Find all memory locations p that are shared between threads
» Create a mutex £, for each memory location p
» Create a total ordering on all ¢, to avoid deadlock

» For every atomic block, if p is referenced, then acuire £, at the
beginning

» Maintain maximum parallelism (for the given points-to
analysis)

Inefficient: many locations are always referenced together

» Find all memory locations p that are shared between threads
» Create a mutex £, for each memory location p
» Create a total ordering on all ¢, to avoid deadlock

» For every atomic block, if p is referenced, then acuire £, at the
beginning

» Find and remove unnecessary locks

» Maintain maximum parallelism (for the given points-to
analysis)

int x, y;

threadl () { atomic {
thread2 () { atomic {
x = 42;

x = 44,
y = 43;

- I

int x, y;
mutex_t Lx, Ly;
threadl () { atomic { |
thread2 () { atomic {
x = 42;

x = 44,
y = 43;

-)

int x, y;
mutex_t Lx, Ly,
threadl() { atomic {
lock (Lx); lock(Ly);
x = 42;
y = 43;

thread2() { atomic {
x = 44,

-)

int x, y;
mutex_t Lx, Ly,
threadl() { atomic {

thread2() { atomic {
lock (Lx); lock(Ly);

X = 42; 14
x = 44;

y = 43;

unlock (Lx); unlock (Ly); VY

)

int x, y;
mutex_t Lx, Ly,
threadl() { atomic {

thread2() { atomic {
lock (Lx); lock(Ly);

lock (Lx) ;
X = 42; ;4)

X = ;
y = 43;

unlock (Lx) ;
unlock (Lx); unlock (Ly); VY

)

int x, y;
mutex_t Lx, Ly;
threadl () { atomic {
lock (Lx); lock(Ly);
x = 42;
y = 43;
unlock (Lx); unlock(Ly);

thread2 () { atomic {
lock (Lx) ;
x = 44,

unlock (Lx) ;

- ;o

» Whenever Ly is locked, Lx is also locked

» Lx dominates Ly

Ly is unnecessary, only adds overhead

» Optimization: when p dominates p’, protect p’ with /.
ook Inference for Atomic Sections —p. 511

int x, vy;
threadl () { thread2 () {
atomic { atomic {
X = 42; X = 44;
y = 43; f
} i
}

int x, vy;
threadl () { thread2 () {
atomic { atomic {
X = 42; X = 44;
y = 43; h
} h
h

Each atomic section dereferences a set of locations

int x, vy;
threadl () { thread2 () {
atomic oq atomic {
X = 42; X = 44;
y = 43; h
} h
h

Each atomic section dereferences a set of locations

int x, vy;
threadl () { thread2 () {
atomic o{ atomic op{
X = 42; x = 44;
y = 43; i
h h
h

Each atomic section dereferences a set of locations

int x, vy;
threadl () { thread2 () {
atomic o{ atomic op{
X = 42; x = 44;
y = 43; i
h h
h

Each atomic section dereferences a set of locations Atomic section
o 1S a set of the locations it dereferences

int x, vy;
threadl () { thread2 () {
atomic o{ atomic op{
X = 42; x = 44;
y = 43; i
h h
h

Each atomic section dereferences a set of locations Atomic section
o is a set of the locations it dereferences o} = {x,v}, 0y = {x}

int x, vy;
threadl () { thread2 () {
atomic o{ atomic op{
X = 42; X = 44;
y = 43; i
h h
h

Each atomic section dereferences a set of locations Atomic section
o is a set of the locations it dereferences o, = {x,v}, oy = {x}
X >y

» Domination algorithm reduces the number of used locks
» Always retains maximum parallelism

» Sound: it never introduces races

o May not find minimum number of locks

» Minimizing the number of locks is NP-hard

» Proof: reduction from Edge Clique Cover

atomic { atomic { atomic {

x = 1; = 3; z = 5;
y = 2; z = 4; X = 6;
} } h

:{X7Y} OCZ:{Yaz} 063:{X,Z}

» No “dominates” relation holds
» No parallelism possible

» The program can be synchronized with one lock

Inefficiency:
» Atomic blocks might dereference many locations
» Only a few are shared between threads
Optimization: Only protect shared locations
» Find continuation effects

» Intersect effects of threads to find shared locations

pthread_create (&threadl);

y = 2j
h
threadl () {

x = 42;

y = 43;

pthread_create (&threadl);

y = 2j
h
threadl () {

x = 42;

y = 43;

pthread_create (&threadl);

y = 2j
h
threadl () {

x = 42;

y = 43;

pthread_create (&threadl);

y = 2j
h
threadl () {

x = 42;

y = 43;

pthread_create (&threadl);

y = 2j
h
threadl () {

x = 42;

y = 43;

pthread_create (&threadl);

y = 2;
h
threadl () {

x = 42;

y = 43;
1

shared = e4Neg = {y}
S Lock Inference for Atomic Sections —p. 10/11

Contributions:

» Atomic sections can be implemented with pessimistic
concurrency

» Heuristic algorithm to reduce number of locks without losing
parallelism

» Finding the minimum number of locks is NP-hard

» Precise sharing analysis to further reduce needed locks

» Implementation under construction: LOCKPICK

» Fine grain locking for shared data-structures

	Introduction
	Atomic Sections
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance

	Example
	Example
	Example
	Example
	Example
	Example

	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm

	Remarks
	Example: Limitation of the algorithm
	What is shared?
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example

	Conclusions

