
LOCKPICK: Lock Inference for
Atomic Sections

Jeffrey S. Foster
Michael Hicks

Polyvios Pratikakis

University of Maryland, College Park

Lock Inference for Atomic Sections – p. 1/11



Introduction

Concurrent programming is “notoriously difficult”

More parallelism is good, too much is wrong

Less parallelism is easier, but it slows down the program

Synchronization is done using locks

Locks are difficult to program

Alternative, higher level synchronization abstraction: atomic
sections

Lock Inference for Atomic Sections – p. 2/11



Atomic Sections

int x, y;

thread1() {

atomic {

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Atomic sections usually use optimistic concurrency

This work: atomic sections with pessimistic concurrency

Lock Inference for Atomic Sections – p. 3/11



LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Lock Inference for Atomic Sections – p. 4/11



LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Inefficient: large number of locations ⇒ large number of locks

Lock Inference for Atomic Sections – p. 4/11



LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Lock Inference for Atomic Sections – p. 4/11



LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Inefficient: many locations are always referenced together

Lock Inference for Atomic Sections – p. 4/11



LOCKPICK at a glance

Find all memory locations ρ that are shared between threads

Create a mutex `ρ for each memory location ρ
Create a total ordering on all `ρ to avoid deadlock

For every atomic block, if ρ is referenced, then acuire `ρ at the
beginning

Find and remove unnecessary locks

Maintain maximum parallelism (for the given points-to
analysis)

, with small number of locks

Lock Inference for Atomic Sections – p. 4/11



Example

int x, y;

thread1() { atomic {

x = 42;

y = 43;

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.

Lock Inference for Atomic Sections – p. 5/11



Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

x = 42;

y = 43;

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.

Lock Inference for Atomic Sections – p. 5/11



Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.

Lock Inference for Atomic Sections – p. 5/11



Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

unlock(Lx); unlock(Ly);

} }

thread2() { atomic {

x = 44;

} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.

Lock Inference for Atomic Sections – p. 5/11



Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

unlock(Lx); unlock(Ly);

} }

thread2() { atomic {

lock(Lx);

x = 44;

unlock(Lx);
} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.

Lock Inference for Atomic Sections – p. 5/11



Example

int x, y;

mutex t Lx, Ly;
thread1() { atomic {

lock(Lx); lock(Ly);

x = 42;

y = 43;

unlock(Lx); unlock(Ly);

} }

thread2() { atomic {

lock(Lx);

x = 44;

unlock(Lx);
} }

Whenever Ly is locked, Lx is also locked

Lx dominates Ly

Ly is unnecessary, only adds overhead

Optimization: when ρ dominates ρ′, protect ρ′ with `ρ.
Lock Inference for Atomic Sections – p. 5/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic {

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Lock Inference for Atomic Sections – p. 6/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic {

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Each atomic section dereferences a set of locations

Lock Inference for Atomic Sections – p. 6/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic {

x = 44;

}

}

Each atomic section dereferences a set of locations

Lock Inference for Atomic Sections – p. 6/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations

Lock Inference for Atomic Sections – p. 6/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations Atomic section
α is a set of the locations it dereferences

Lock Inference for Atomic Sections – p. 6/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations Atomic section
α is a set of the locations it dereferences α1 = {x,y}, α2 = {x}

Lock Inference for Atomic Sections – p. 6/11



Example: The Dominates Algorithm

int x, y;

thread1() {

atomic α1{

x = 42;

y = 43;

}

}

thread2() {

atomic α2{

x = 44;

}

}

Each atomic section dereferences a set of locations Atomic section
α is a set of the locations it dereferences α1 = {x,y}, α2 = {x}
x > y

Lock Inference for Atomic Sections – p. 6/11



Remarks

Domination algorithm reduces the number of used locks

Always retains maximum parallelism

Sound: it never introduces races

May not find minimum number of locks

Minimizing the number of locks is NP-hard

Proof: reduction from Edge Clique Cover

Lock Inference for Atomic Sections – p. 7/11



Example: Limitation of the algorithm

atomic {

x = 1;

y = 2;
}

atomic {

y = 3;

z = 4;

}

atomic {

z = 5;

x = 6;
}

α1 = {x,y} α2 = {y,z} α3 = {x,z}

No “dominates” relation holds

No parallelism possible

The program can be synchronized with one lock

Lock Inference for Atomic Sections – p. 8/11



What is shared?

Inefficiency:

Atomic blocks might dereference many locations

Only a few are shared between threads

Optimization: Only protect shared locations

Find continuation effects

Intersect effects of threads to find shared locations

Lock Inference for Atomic Sections – p. 9/11



Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

Lock Inference for Atomic Sections – p. 10/11



Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

Lock Inference for Atomic Sections – p. 10/11



Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

Lock Inference for Atomic Sections – p. 10/11



Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

Lock Inference for Atomic Sections – p. 10/11



Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

Lock Inference for Atomic Sections – p. 10/11



Continuation Effects: Example

ε1

ε2

ε3

ε4

ε5

ε6

ε7

munge

int x, y;

main() {

x = 1;

pthread create(&thread1);

y = 2;

}

thread1() {

x = 42;

y = 43;

}

shared = ε4 ∩ ε6 = {y}
Lock Inference for Atomic Sections – p. 10/11



Conclusions

Contributions:

Atomic sections can be implemented with pessimistic
concurrency

Heuristic algorithm to reduce number of locks without losing
parallelism

Finding the minimum number of locks is NP-hard

Precise sharing analysis to further reduce needed locks

Implementation under construction: LOCKPICK

Fine grain locking for shared data-structures

Lock Inference for Atomic Sections – p. 11/11


	Introduction
	Atomic Sections
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance
		extsc {Lockpick} at a glance

	Example
	Example
	Example
	Example
	Example
	Example

	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm
	Example: The Dominates Algorithm

	Remarks
	Example: Limitation of the algorithm
	What is shared?
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example
	Continuation Effects: Example

	Conclusions

