
Program Verification
with Flow-Effect Types

Paritosh Shroff
Johns Hopkins University

(joint work with Chris Skalka and Scott Smith)

Refinements in Type Theory

Operational Awareness
� Simple types (int, bool, τ → τ)
� Polymorphic types (′a, ′b, ′a → ′b)
� Subtypes (τ <: τ)
� Subtyping constraint types (t \ {τ1 <: τ2, τ3 <: τ4, …})
� Effect types (τ τ)
� Singleton types ({0}, {true})
� Flow-effect types

� incorporate flow-sensitivity

⎯→⎯σ

unordered data-flow
i.e. flow-insensitive

Temporally Ordered Data-Flow

let x = ref 5 in
x := true;

!x ∧ false

Flow-sensitivity

x 5

No ML-style value restriction

Temporally Ordered Data-Flow

let x = ref 5 in
x := true;

!x ∧ false

Flow-sensitivity

x true

No ML-style value restriction

Flow-Effect Types

z Embody all of the computational structure of
programs

z akin to A-normalized expressions
z explicitly order atomic computation steps (δ)

(1 + 2) + 3 ½
let x1 C {1} + {2} in
let x2 C x1 + {3} in
x2

let x1 C δ1 in
let x2 C δ2 in
…
let xn C δ

n
in

xn

Flow-Effect “Types”?
z Origins in type theory and shared methodology
z subtyping constraints (data-flow) + trace-based effects
z Sequence of data-flows

[δ1 <: x1 ; δ2 <: x2 ; … ; δn <: xn]

let x1 C δ1 in
let x2 C δ2 in
…
let xn C δ

n
in

xn

…as opposed to unordered set
{δ1 <: x1 , δ2 <: x2 , … , δn <: xn}

λx.e ½ λx.let x1 C δ1 in
let x2 C δ2 in
…
let xn C δ

n
in

xn

[δ1 <: x1 ; δ2 <: x2 ; … ; δ
n

<: xn]
x xn≅

function body is the effect

Flow-Effect Type Closure
z Idealized expression computation

z abstract interpretation [Cousot and Cousot]
z higher-order
z trace-based [Colby and Lee, POPL’96]

z Naϊve Closure: mimics expression computation i.e. runs them
z non-diverging computations ⇒ no problem
z (λid.id(5) + 1; id(true)) (λx.x)

z diverging computations ⇒ diverging closures
z (λx.x x) (λx.x x)

¾ Goal: Find a sound approximation for diverging
naïve closures

Diverging Computations

z Execute some piece of code infinitely often
z unbounded recursion ⇒ unbounded stack size
z (λx.x x) (λx.x x)

¾ Crux of a Sound Decidable Closure
(Ω-Closure)
¾ bounded stack size
¾ fix-point for recursive computations

¾ prune-rerun technique

Structure of Recursion
λsumn. if n = 0 then

0
else

sum (n – 1) + n

sum (n)
n = 0

true

false

0

sum (n – 1)
rn – 1 + n

rn – 1

Control-flow graph (CFG) for operational behavior of ‘sum’

down cycle

up cycle

…will tweak this CFG to bound the stack

Abstract Int/Bool (…for now)

sum (n)
n = {0}

{true}

{false}

{0}

sum (n – {1})
rn – 1 + n

rn – 1

sum (n) assert
(n = int)

int

sum (int)

rn – 1

assert
(rn – 1 = int)

int

CFG for operational behavior of abstracted ‘sum’

only data is abstracted
not the control-flow

prune-rerun Technique

sum (n) assert
(n = int)

int

sum (int)

rn – 1

assert
(rn – 1 = int)

int

CFG for type closure of ‘sum’ via prune-rerun technique

sum (n) assert
(n = int)

sum (int) B r′

int B r

int B r

r

assert
(r′ = int)prune

rerun

prune ≡ “short-circuit” function call

Ω−Closure: sum (int)

n a int

n a int
r′a r

n a int
r′a r
r a int

sum (int) assert
(n = int)

sum (int) B r′

prune

int B r

int B r

r

assert
(r′ = int)

inchoate

not fix-point
(rerun)

sum (int)

n a int
r′a r
r a int

assert
(n = int)

sum (int) B r′

prune

int B r

int B r

r

assert
(r′ = int)

rerun

n a int
r′a r
r a int

n a int
r′a r
r a int

choate now ☺

fix-point
(done ☺)

inchoate ∼ futures

Summary of Ω-Closure

z Environment-based
z monotonic

z Non Recursive Computations
z simply run

z Recursive Computations
z prune recursive calls

z rerun until fix-point (or an error) is found

Extensions to Ω-Closure

A. Singleton Types via Type Operators
� {true}, {false}, {1}, {2}, …
� ∧, ∨, =, +, –, *, /, …
� {1} + {2}, {true} ∧ {false}

B. Higher-Order Parametric Polymorphism via
Argument Tagging
� (λid.id (5) + 1; id (true) ∧ false) (λx.x)
� CPA-style [Ole Agesen, ECOOP’95]

C. Mutable State via Abstract Heap

Singleton Types via
Type Operators

n a {5}
n a {5}
n a n – {1}
r′a r

n a {5}
n a n – {1}
r′a r
r a r′ + n

sum {5} n = {0}

sum (n – {1}) B r′

prune

r′ + n B r

r

not fix-point
(rerun)

{false}

sum {5}

prune

rerun

{0} B r
r

fix-point
(after one more rerun)

n = {0}

n a {5}
n a n – 1
r′a r
r a r′ + n

{false}

{true}

r′ + n B rsum (n – {1}) B r′

n a {5}
n a n – {1}
r′a r
r a r′ + n

n a {5}
n a n – {1}
r′a r
r a r′ + n
r a {0}

Higher-Order Parametric
Polymorphism via Argument Tagging

(λid.id {5} + {1}; id {true} ∧ {false}) (λx.x)

id {5} + {1}; id {true} ∧ {false} id a λx.x

x + {1}; id {true} ∧ {false} id a λx.x
x a {5}

id {true} ∧ {false} id a λx.x
x a {5}

x ∧ {false}
id a λx.x
x a {5}
x a {true}

Type Error

Higher-Order Parametric
Polymorphism via Argument Tagging

id a λx.x

id a λx.x
x{5} a {5}

id a λx.x
x{5} a {5}

id a λx.x
x{5} a {5}
x{true} a {true}

{false}

(λid.id {5} + {1}; id {true} ∧ {false}) (λx.x)

id {5} + {1}; id {true} ∧ {false}

x{5} + {1}; id {true} ∧ {false}

id {true} ∧ {false}

x{true} ∧ {false}

Mutable State via
Abstract Heap

z Mutable abstract heap
z ref, get, set mimic run-time heap operations
z Recursive data structures

z collapsed to single abstract heap locations
z E.g. linked-list

z No need for ML-style value restriction
z heap operations are flow-sensitive
z memory-based fixed points

¾ Verifying Temporal Heap Properties [Yahav et al,
ESOP’03]

Properties of Ω-Closure

� Soundness If e has a type closure then it
either diverges or computes to a value.
� finite automaton simulates the execution of e

� Computability Type closure is computable
for any e.
� bounded stack depth, to number of functions in e
� monotonic environment
� no new type creation ⇒ bounded environment

Conjectures about Ω-Closure

� Completeness Ω-closure based flow-effect
type system is HM-complete.
� ordered subtyping constraint closure

� Complexity Ω-closure is computable in
exponential time.

Applications

z Model Checking
z finite automaton of program execution
z control-flow + data-flow

z Automated Verification of Programs
z higher-order
z akin to ESP, ARCHER, SLAM for first-order

z assert (x = y): verify program equivalences
z Program Analysis in Compilers

Future Work

z Apply to Java and ML-like languages
z object-oriented ⇒ higher-order features

z Path-sensitivity
z tag branches before merging
z split branches based on tag when needed

z Inductive Assertions
z assert (n ≥ 0)

z Static array bounds check

Download

Ω-Closure based type system has been implemented

www.cs.jhu.edu/~pari/floweffecttypes

	Program Verification with Flow-Effect Types
	Refinements in Type Theory
	Flow-sensitivity
	Flow-sensitivity
	Flow-Effect Types
	Flow-Effect “Types”?
	Flow-Effect Type Closure
	Diverging Computations
	Structure of Recursion
	Abstract Int/Bool (…for now)
	prune-rerun Technique
	-Closure: sum (int)
	Summary of -Closure
	Extensions to -Closure
	Singleton Types via � Type Operators
	Higher-Order Parametric Polymorphism via Argument Tagging
	Higher-Order Parametric Polymorphism via Argument Tagging
	Mutable State via � Abstract Heap
	Properties of -Closure
	Conjectures about -Closure
	Applications
	Future Work
	Download

