Program Verification
with Flow-Effect Types

Paritosh Shroff
Johns Hopkins University

(joint work with Chris Skalka and Scott Smith)

Refinements in Type Theory

Operational Awareness

a Simple types (int, bool, 7— 1)

a Polymorphic types (a, 'b, 'a — 'b)

QO Subtypes (7 <: 7)

QO Subtyping constraint types (1 \ {7, <: 7, 7y < 7, ...})

o Effecttypes (77 7)

2 Singleton types ({0}, {irue)) srordered cata o |
a0 Flow-effect types

0O incorporate flow-sensitivity

Flow-sensitivity

Temporally Ordered Data-Flow

let X = ref 5 In
X = true;
IXx A False

No ML-style value restriction

Flow-sensitivity

Temporally Ordered Data-Flow

let X = ref 5 In
X = true;
IXx A False

true

No ML-style value restriction

let x, <8, In
let X, <18, In

Flow-Effect Types et %, <15 _in

X

e Embody all of the computational structure of
programs

e akin to A-normalized expressions
explicitly order atomic computation steps (o)

let x, < {1} + {2} In
(1+2)+3 — letx,< x,+{3}in
X2

let x, <8, In
let X, <18, In

Flow-Effect “Types™? iix <5

X

e Origins in type theory and shared methodology
e subtyping constraints (data-flow) + trace-based effects

® Sequence of data-flows ...as opposed to unordered set

Ax.e — AX.let X, <1 8, in
let x, < 8, 1In ~
let x, <3 _In
n
X

function body is the effect

n

Flow-Effect Type Closure

e |dealized expression computation

o abstract interpretation [Cousot and Cousof]

higher-order
trace-based [Colby and Lee, POPL’96]

e Naive Closure: mimics expression computation i.e. runs them
e non-diverging computations =- no problem

(vid.id(5) + 1; id(true)) (x-x)
e diverging computations =- diverging closures

(OXx.x X) (AX.X X)

» Goal: Find a sound approximation for diverging
naive closures

Diverging Computations

e Execute some piece of code infinitely often
e unbounded recursion = unbounded stack size

o (OWX.X X) (AX.X X)

» Crux of a Sound Decidable Closure
(Q2-Closure)

> bounded stack size
fix-point for recursive computations

> prune-rerun technique

Structure of Recursion

[down cycle

AeymN- 1f N =0 then
0
else
sum(n—1)+n

IO
an(n—ﬂ 7)
~=7r +n —

Control-flow graph (CFG) for operational behavior of ‘sum’

...will tweak this CFG to bound the stack

Abstract Int/Bool (...for now)

sum (n) () {true} {0}
n=
________ -0

only data is abstracted

not the control-flow
sum (n) assert int
(n =int)
o -0

sum (int) - 7int ff
« 7 assert p
. (g = 'Qt)f’ M _1

- -

CFG for operational behavior of abstracted ‘sum’

000
0000
0000
- e
prune-rerun Technique s
sum (n) assert int
(h=int) ~ N)O
\im int) .- |nt ;‘f
g assert ’
: |nt) 7 r _
sum (n assert /—N >r r
n = int
e >
N \im (int) > r~int>r o
. assert R rerut
. prune (r'= int) .-
H““nxh__ - ﬁ,ﬂ’”f prune = “short-circuit” function call

CFG for type closure of ‘sum’ via prune-rerun technique

000
0000
0000
1
Q—-Closure: sum (int) :
N+ int
s | Mot fix-point
n — int s int (rerun)
sum (int) as(sert_ " r
n=in
. Q inchoate ~ futures
prune (I"= int)
"""""""""""" n — int Fipoint

T (done ©)

\ : niintl . r int
. sum (Int) asser . r'H ; INt>r -
(n = int) ot 7 |
‘~>. r— int Q
N int w |
/Cchoate now @j

rsr
r — int

Summary of Q-Closure

e Environment-based
monotonic

e Non Recursive Computations
simply run

e Recursive Computations
prune recursive calls

rerun until fix-point (or an error) is found

Extensions to Q-Closure

A. Singleton Types via Type Operators
{true}, {false}, {1}, {2}, ...
N, V, =+ = 5
{1} + {2}, {true} A {false}
B. Higher-Order Parametric Polymorphism via

Argument Tagging
(rid.id (5) + 1; id (true) A false) (Ax-Xx)
CPA-style [Ole Agesen, ECOOP’95]

c. Mutable State via Abstract Heap

000
. f 0000
Singleton Types via sels
| X J
Type Operators |
n— {5}
6= =L not fix-point
n - {5} = r’ . (rerun)
sum (5} n - {5} r=r+n
n = {0} n—n-—{1} r
@ r'r | O
{false}™sum (n={1H > "+ npr \\‘rerun
prune] n H{S;
___ n—n-—{1} s
rer -point
N {5} s e (after one more rerun)

t n—n-{1} r - {0}
sum {5} . {0}{ rVﬂ N {)\} > r -
\\\}. | Q
N

Higher-Order Parametric
Polymorphism via Argument Tagging

(Mid.id {5} + {1}: id {true} A {false}) (Ax.x)

l

id {5} + {1}; id {true} A {false}

id = AX.X

l

x + {1}; id {true} A {false}

id > AX.X
X — {5}

l

id {true} A {false}

l

id > AX.X
X — {5}

X A {false}

id — AX.X
X - {5}

X > {true}

Higher-Order Parametric
Polymorphism via Argument Tagging

(Mid.id {5} + {1}: id {true} A {false}) (Ax.x)

l

id {5} + {1}, id {true} A {false} id - Ax.x

l

x + {1}: id {true} A {false) o
: l id > AX.X
id {true} A {false} x{5} 1 {5}
l id > AX.X
xitruer A {false} x(} i {5}
l xitruet s ftrue}

{false}

Mutable State via
Abstract Heap

e Mutable abstract heap
e ref, get, set mimic run-time heap operations

e Recursive data structures
collapsed to single abstract heap locations
E.g. linked-list
e No need for ML-style value restriction
heap operations are flow-sensitive
memory-based fixed points

> Verifying Temporal Heap Properties [Yahav et al,
ESOP’03]

Properties of Q-Closure

«» Soundness If e has a type closure then it
either diverges or computes to a value.

finite automaton simulates the execution of e
«» Computability Type closure is computable
for any e.
bounded stack depth, to number of functions in e

monotonic environment
no new type creation = bounded environment

Conjectures about Q-Closure

+» Completeness Q-closure based flow-effect
type system is HM-complete.

ordered subtyping constraint closure

«» Complexity Q-closure is computable in
exponential time.

Applications

e Model Checking
finite automaton of program execution
control-flow + data-flow

e Automated Verification of Programs

higher-order
akin to ESP, ARCHER, SLAM for first-order

assert (x = vy): verify program equivalences
e Program Analysis in Compilers

Future Work

e Apply to Java and ML-like languages
object-oriented = higher-order features

e Path-sensitivity
tag branches before merging
split branches based on tag when needed

e |Inductive Assertions
assert (n > 0)

e Static array bounds check

Download

Q-Closure based type system has been implemented

www.cs. Jhu.edu/~pari/floweffecttypes

	Program Verification with Flow-Effect Types
	Refinements in Type Theory
	Flow-sensitivity
	Flow-sensitivity
	Flow-Effect Types
	Flow-Effect “Types”?
	Flow-Effect Type Closure
	Diverging Computations
	Structure of Recursion
	Abstract Int/Bool (…for now)
	prune-rerun Technique
	-Closure: sum (int)
	Summary of -Closure
	Extensions to -Closure
	Singleton Types via � Type Operators
	Higher-Order Parametric Polymorphism via Argument Tagging
	Higher-Order Parametric Polymorphism via Argument Tagging
	Mutable State via � Abstract Heap
	Properties of -Closure
	Conjectures about -Closure
	Applications
	Future Work
	Download

