
William Pugh, Nathaniel Ayewah

University of Maryland Unit Testing Concurrent Software

MultithreadedTC

Deterministic and repeatable unit tests for concurrent abstractions

http://www.cs.umd.edu/projects/PL/multithreadedtc/

The MultithreadedTC framework was created to

make it easier to test small concurrent abstrac-

tions. It enables test designers to validate each

interleaving of two or more threads separately,

even in the presence of blocking and timing

issues. It also detects deadlock situations.

class BoundedBufferTest extends MultithreadedTestCase {

BoundedBuffer buf;

void initialize() { buf = new BoundedBuffer(1); }

public void thread1() {

buf.put(42);

buf.put(17);

assertTick(1);

}

public void thread2() {

waitForTick(1);

assertTrue(buf.take() == 42);

assertTrue(buf.take() == 17);

}

void finish() { assertTrue(buf.isEmpty()); }

}

Simple Clock MultithreadedTC provides a

clock which test designers can use to

regulate the activities in multiple threads.

But the clock is not a timer. It advances to

the next requested tick when all threads are

blocked.

Just Java Each test case is a Java class.

Threads are specified using thread methods

which return void, have no arguments and

have names prefixed with the word “thread”.

Java 1.4 compatible version available.

Integrates with JUnit Run the test

framework from a JUnit test. Use JUnit

assertions to verify the current clock tick.

Exceptions thrown in threads will cause

entire test to fail.

Concise Code MultithreadedTC eliminates

much of the scaffolding code needed when

writing concurrent tests, e.g. setting up and

tearing down threads, joining threads, using

Thread.sleep()

FEATURES

Lines of Code

7356ConAn Java Driver
1119

2800ConAn Script

70708003TCK tests for JSR166

MTCOriginal

Constructs removed from TCK Tests

313Thread’s sleep() method

106try-catch blocks

239Thread’s join() method

257Anonymous inner classes

Method-call sequence

initialize() thread2()

thread3()

thread1()

clock thread

finish()

Thread Status (Example)

Waiting for Tick 2thread4

TIMED WAITINGthread3

BLOCKEDthread2

RUNNINGthread1

StatusThread

Clock Thread Loop

Sleep 5 ms

Any threads alive?

Any threads

RUNNING?

Any thread waiting
for a tick?

Any threads in

TIMED WAITING?

Advance clock to next

requested tick
(releases any threads

waiting on this tick)

Running too long?

Done

DeadLock!

Timeout!

No

Yes

No

Yes

No

Yes

No

Yes

NoYes

EXAMPLE

public void testBoundedBuffer()

throws Throwable {

TestFramework.runOnce(

new BoundedBufferTest()

);

}

� waitForTick(tick): cause

the host thread to block until the

clock reaches tick

� assertTick(tick): compare

tick with the current clock and

throw an assertion error if they

do not match

USEFUL METHODS

P. B. Hansen, Reproducible testing of monitors,

Software: Practice and Experience, 1978. Early

work on regulating test threads with a clock.

ConAn (Concurrency Analyzer) is a script-based

test framework that uses a clock to synchronize the

actions in multiple threads. It uses a timer-based

clock, and a custom scripting syntax to break up

test into tick blocks.

RELATED WORK

Let us validate some properties of a bounded blocking buffer
with a capacity of 1 element. We want to ensure that:

(a) The assertion take = 42 occurs after the call to put 17

(b) The call to put 17 blocks thread 1

Solution 1: Use Thread.sleep() to delay the first statement in
thread 2. This introduces unnecessary timing
dependence (test does not work well in a debugger

or with an ill-timed garbage collector).

Solution 2: Use a latch to coordinate activities in both threads.
This will not work because the call to put 17
blocks thread 1 before the latch can be released.

Solution 3: Use MultithreadedTC!

JUnit Test

run simultaneously in different threads

all tests extend base class

verify unblocking does

not occur until tick 1

waits until all

threads are

blocked

� getThread(threadID): returns a

reference the the Thread object

corresponding to threadID

� freezeClock(): prevent the clock from

advancing until unfreezeClock() is

called. Useful when doing tests that

involve timed waiting and you don’t want

to advance the clock during the wait.

ConTest is a Java testing framework that

uses a deterministic replay algorithm to

record and replay specific interleavings

that lead to faults.

JUnit, TestNG, GroboUtils, and ConTest

all provide facilities for running concurrent

tests many times to hopefully generate a

representative set of interleavings.

waitForTick 1put 42put 42

take = 42take = 42

Thread 1 Thread 2

put 17

(blocks)

put 17

(blocks)

take = 17take = 17
assertTick 1

tick 0

tick 1

