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Abstract

Today’s software systems communicate over the Internet using standard protocols
that have been heavily scrutinized, providing some assurance of resistance to mali-
cious attacks and general robustness. However, the software that implements those
protocols may still contain mistakes, and an incorrect implementation could lead to
vulnerabilities even in the most well-understood protocol. The goal of this work is to
close this gap by introducing a new technique for checking that a C implementation
of a protocol matches its description in an RFC or similar standards document. We
present a static (compile-time) source code analysis tool called Pistachio that checks
C code against a rule-based specification of its behavior. Rules describe what should
happen during each round of communication, and can be used to enforce constraints
on ordering of operations and on data values. Our analysis is not guaranteed sound
due to some heuristic approximations it makes, but has a low false negative rate
in practice when compared to known bug reports. We have applied Pistachio to
two different implementations of SSH2 and an implementation of RCP. Pistachio
discovered a multitude of bugs, including security vulnerabilities, that we confirmed
by hand and checked against each project’s bug databases.

1 Introduction

Networked software systems communicate using protocols designed to provide
security against attacks and robustness against network glitches. There has
been a significant body of research, both formal and informal, in scrutinizing
abstract protocols and proving that they meet certain reliability and safety re-
quirements [1–5] (to name only a few). These abstract protocols, however, are
ultimately implemented in software, and an incorrect implementation could
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lead to vulnerabilities even in the most heavily-studied and well-understood
protocol.

In this paper we present a tool called Pistachio that helps close this gap. Pis-
tachio is a static (compile-time) analysis tool that checks that each commu-
nication step taken by a protocol implementation matches an abstract spec-
ification. Because it starts from a detailed protocol specification, Pistachio
is able to check communication properties that generic tools such as buffer
overflow detectors do not look for. Our static analysis algorithm is also very
fast, enabling Pistachio to be deployed regularly during the development cycle,
potentially on every compile.

The input to our system is the C source code implementing the protocol and
a rule-based specification of its behavior, where each rule typically describes
what should happen in a “round” of communication For example, the IETF
current draft of the SSH connection protocol [6] specifies that “When either
party wishes to terminate the channel, it sends SSH MSG CHANNEL CLOSE.
Upon receiving this message, a party must send back a SSH MSG CHANNEL CLOSE . . ..”

This statement translates into the following rule (slightly simplified):

recv( , in, )

in[0] = SSH MSG CHANNEL CLOSE

⇒

send( , out, )

out[0] = SSH MSG CHANNEL CLOSE

This rule means that after seeing a call to recv() whose second argument
points to memory containing SSH MSG CHANNEL CLOSE, we should reply
with the same type of message. The full version of such a rule would also
require that the reply contain the same channel identifier as the initial message.

In addition to this specification language, another key contribution of Pista-
chio is a novel static analysis algorithm for checking protocol implementations
against their rule-based specification. Pistachio performs symbolic execution,
based on abstract interpretation [7], to simulate the execution of program
source code, keeping track of the state of program variables and of ghost vari-
ables representing abstract protocol state, such as the last value received in
a communication. Using a fully automatic theorem prover, Pistachio checks
that whenever it encounters a statement that triggers a rule (e.g., a call to
recv), on all paths the conclusion of the rule is eventually satisfied (e.g., send
is called with the right arguments). Although this seems potentially expen-
sive, our algorithms run efficiently in practice because the code corresponding
to a round of communication is relatively compact. Our static analysis is not
guaranteed to find all rule violations, both because it operates on C, an unsafe
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language, and because the algorithm uses some heuristics to improve perfor-
mance. In practice, however, our system missed only about 5% of known bugs
when measured against a bug database.

We applied Pistachio to three benchmarks: the LSH and OpenSSH imple-
mentations of SSH2 and the RCP implementation from Cygwin. Our SSH2
specification was originally developed with only LSH in mind, and we found
that only two out of 96 rules needed to be adjusted to accurately cover both
LSH and OpenSSH, suggesting that our approach is easily portable. Analy-
sis took less than a minute for all of the test runs, and Pistachio detected a
multitude of bugs in the implementations, including many security vulnera-
bilities. For example, Pistachio found a known problem in LSH that causes
it to leak privileged information [8]. Pistachio also found a number of buffer
overflows due to rule violations, although Pistachio does not detect arbitrary
buffer overflows. We confirmed the bugs we found against bug databases for
the projects, and we also found two new, unconfirmed security bugs in LSH:
a buffer overflow and an incorrect authentication failure message when using
public key authentication.

We categorized the rules in our specifications according to their use, and found
that all of the rule categories contribute significantly to Pistachio’s warnings—
or, put another way, programmers make mistakes in all aspects of protocols.
We also categorized the underlying code defects using a subset of Beizer’s
bug taxonomy [9]. We found that there were relatively few defects related to
misuse of interfaces, perhaps because the network protocol implementations
are spread across few modules, but that otherwise defects range over the usual
space of mistakes.

Based on our results, we believe that Pistachio can be a valuable tool in ensur-
ing the safety and security of network protocol implementations. In summary,
the main contributions of this work are:

• We present a rule-based specification language for describing network pro-
tocol implementations. Using pattern matching to identify routines in the
source code and ghost variables to track state, we can naturally represent
the kinds of English specifications made in documents like RFCs. (Section 2)

• We describe a static analysis algorithm for checking that an implementa-
tion meets a protocol specification. Our approach uses symbolic execution
to simulate the program and an automatic theorem prover to determine
whether the rules are satisfied. (Section 3)

• We have applied our implementation, Pistachio, to LSH, OpenSSH, and
RCP. Pistachio discovered a wide variety of known bugs, including secu-
rity vulnerabilities, as well as two new, unconfirmed bugs. Overall Pistachio
missed about 5% of known bugs and had a 38% false positive rate. (Sec-
tion 4)
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An earlier version of this work appeared in the Usenix Security conference [10].
There are several new contributions of this version of the paper. First, we ex-
tended our experimental evaluation and ran Pistachio on OpenSSH, whereas
the original paper only used LSH and RCP. This allowed us to evaluate the
portability of rule specifications from one version to another, as well as to
compare the warning and bug distributions for the two versions of the same
protocol. Second, our experimental results now uses a bug classification sys-
tem, derived from Beizer [9], which allows us to categorize defects in a more
systematic way and compare defects in protocol implementations to defects
in general software. Third, we describe a fact substitution process that occurs
during rule checking, which was omitted from the conference version, and ad-
justed our rule checking algorithms slightly to show rule firing more clearly.
Fourth, we include a brief discussion of rule specification for library functions.
Lastly, we added two new appendices, describing the language grammar and
our choice of theorem prover. We also made numerous small improvements
throughout the paper.

2 Rule-Based Protocol Specification

The first step in using Pistachio is developing a rule-based protocol specifica-
tion, usually from a standards document. As an example, we develop a spec-
ification for a straightforward extension of the alternating bit protocol [11].
Here is a straw-man description of the protocol:

The protocol begins by sending the value n = 1. In each round, if n is received
then send n + 1; otherwise resend n.

Fig. 1 gives a sample C implementation of this protocol. Here recv() and
send() are used to receive and send data, respectively. Notice that this imple-
mentation is actually flawed—in statement 6, val is incremented by 2 instead
of by 1.

To check this protocol, we must first identify the communication primitives in
the source code. In this case we see that the calls to send() in statements 2
and 7 and the call to recv() in statement 4 perform the communication.
More specifically, we observe that we will need to track the value of the sec-
ond argument in the calls, since that contains a pointer to the value that is
communicated.

We use patterns to match these function calls or other expressions in the
source code. Patterns contain pattern variables that specify which part of the
call is of interest to the rule. For this protocol, we use pattern send( , out,
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0 int main(void) {
1 int sock, val = 1, recval;
2 send(sock, &val, sizeof(int));
3 while(1) {
4 recv(sock, &recval, sizeof(int));
5 if (recval == val)
6 val += 2;
7 send(sock, &val, sizeof(int));
8 }
9 }

Fig. 1. Simple alternating bit protocol implementation

) to bind pattern variable out to the second argument of send(), and we
use pattern recv( , in, ) to bind in to the second argument of recv().
For other implementations we may need to use patterns that match different
functions. Notice that in both of these patterns, we are already abstracting
away some implementation details. For example, we do not check that the
last parameter matches the size of val, or that the communication socket is
correct, i.e., these patterns will match calls even on other sockets.

Patterns can be used to match any function calls. For example, we have found
that protocol implementers often create higher-level functions that wrap send
and receive operations, rather than calling low-level primitives directly. Using
patterns to match these functions can make for more compact rules that are
faster to check, though this is only safe if those routines are trusted.

2.1 Rule Encoding

Once we have identified the communication operations in the source code, we
need to write rules that encode the steps of the protocol. Rules are of the form

(PH , H) ⇒ (PC , C,G)

where H is a hypothesis and C is a conclusion, PH and PC are patterns, and G

is a set of assignments to ghost variables representing protocol state. In words,
such a rule means: If we find a statement s in the program that matches pattern
PH , and the facts in H do not contradict the current state, then assume that
H holds, and make sure that on all possible execution paths from s there is
some statement matching PC , and moreover at that point the conditions in
C must hold. If a rule is satisfied in this manner, then the side effects G to
ghost variables hold after the statements matching PC . Appendix A describes
the concrete grammar for rules used in our implementation.
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Rule Description

(1) ε ⇒

send( , out, )

out[0..3] = 1

n := 1

The protocol begins by
sending the value 1

(2)
recv( , in, )

in[0..3] = n
⇒

send( , out, )

out[0..3] = in[0..3] + 1

n := out[0..3]

If n is received then
send n + 1

(3)
recv( , in, )

in[0..3] 6= n
⇒

send( , out, )

out[0..3] = n
Otherwise resend n

Fig. 2. Rule-based protocol specification

As an example, Fig. 2 contains the rules for our alternating bit protocol. Rule
(1) is triggered by the start of the program, denoted by the special pattern ε.
The hypothesis of this rule is empty, i.e., true. This rule says that on all paths
from the start of the program, send() must be called, and its second argument
must point to a 4-byte block containing the value 1. We can see that this rule
is satisfied by statement 2 in Fig. 1. As a side effect, the successful conclusion
of rule (1) sets the ghost variable n to 1. Thus the value of n corresponds to the
data stored in val. Notice that there is a call to send() in statement 7 that
could match the conclusion pattern—but it does not, because we interpret
patterns in rules to always mean the first occurrence of a pattern on a path.

Rule (2) is triggered by a call to recv(). It says that if recv() is called, then
assuming that the value n is received in the first four bytes of in, the function
send() must eventually be called with in + 1 as an argument, and as a side
effect the value of n is incremented. Similarly to rule (1), this rule matches
the first occurrence of send() following recv(). In our example code this rule
is not satisfied. Suppose rule (1) has triggered once, so the value of n is 1,
and we trigger rule (2) in statement 4. Then if we assume n is received in
statement 4, then statement 7 will send n + 2. Hence Pistachio signals a rule
violation on this line.

Suppose instead that the implementation had been correct (line 6 had in-
cremented val by 1), and rule (2) had succeeded. Then as a side effect of
satisfying rule (2), we would set n = 2 on line 7 and continue iterating the
body of the loop, which matches rule (2) again, this time with a different value
of n. We would then need to continue iterating to check that the rule was sat-
isfied again. Since this process could continue indefinitely, Pistachio repeats
the check until it either finds a fixpoint or until it iterates a fixed maximum
number of times.

Finally, rule (3) is triggered on the same call to recv() in statement 4. It
says that if we assume the value of n is not received in in, then eventually
send() is called with n as the argument. This rule will be satisfied by the
implementation, because when we take the false branch in statement 5 we will
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resend val, which always contains n after rules (1) or (3) fire.

2.2 Developing Rule-Based Specifications

As part of our experimental evaluation (Section 4), we developed rule-based
specifications for the SSH2 protocol and the RCP protocol. In both cases we
started with a specification document such as an RFC or IETF standard. We
then developed rules from the textual descriptions in the document, using the
following three steps; Section 4.1 discusses the actual rule-based specifications
we developed for our experiments.

Identifying patterns. The specification writer can either choose the low-level
communication primitives as the primary patterns, as in Fig. 2, or write
rules in terms of higher-level routines. We attempted both approaches when
developing our specifications, but decided in favor of the first method for
more future portability. This approach allowed us to use a single specification
for checking both LSH and OpenSSH, which use different wrapper functions
around the same low-level send and receive primitives.

Defining the rules. The main task in constructing a rule-based specification is,
of course, determining the basic rules. The specification writer first needs to
read the standards document carefully to discover what data is communicated
and how it is represented. Then to discover the actual rules they should study
the sections of the specification document that describe the protocol’s behav-
ior. We found that phrases containing must are good candidates for such rules.
(For a discussion of terms such as must, may, and should in RFC documents,
see RFC 2223 [12].)

For instance, as we read the SSH2 standard we learned that the message
format for SSH user authentication starts with the message type, followed by
the user name, service name, and method name. Furthermore, we found that
the use of “none” as the authentication method is strongly discouraged by
the specification except for debugging purposes. This suggested a potential
security property: To prevent anonymous users from obtaining remote shells,
we should ensure that If we receive a user authentication request containing
the none method, we must return SSH MSG USERAUTH FAILURE. Once
we determine this rule, it is easy to encode it in Pistachio’s notation, given
our knowledge of SSH message formats.

Describing state. Finally, as we are constructing the rules, we may discover that
some protocol steps are state-based. For instance, in the SSH2 protocol, any
banner message has to be sent before the server sends SSH MSG USERAUTH SUCCESS.
To keep track of whether we have sent the success message, we introduce a
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1. val =12. send(_, &val, _)4. recv(_, &recval, _)5. recval == val6. val += 27. send(_, &val, _)
Rule (1)

Hyp: facts = ∅

Concl: stmt 2 matches, facts = {val = 1}

Need to show: {val = 1} ∧ {&val = out} ⇒ out[0..3] = 1

Action: n := 1

Rule (3)

Hyp: stmt 4 matches,

facts = {n = 1, val = 1, in = &recval, in[0..3] 6= n} = F

Branch: Since assumptions ⇒ (recval 6= val), false branch taken

Concl: stmt 7 matches, same facts F as above

Need to show: F ∧ {&val = out} ⇒ out[0..3] = n

Action: none

Rule (2)

Hyp: stmt 4 matches,

facts = {n = 1, val = 1, in = &recval, in[0..3] = n}

Branch: Since assumptions ⇒ (recval = val), true branch taken

Concl: stmt 7 matches, facts are

F = {n = 1, val = 3, in = &recval, in[0..3] = n}

Need to show: F ∧ {&val = out} ⇒ (out[0..3] = in[0..3] + 1)

Fails to hold; issue warning

(a) Control-flow graph (b) Algorithm trace

Fig. 3. Static checking of example program

new ghost variable called successSent that is initially 0 (here we assume for
simplicity that we only have one client). We modify our rules to set successSent
to 1 or 0 in the appropriate cases. Then the condition on banner messages can
be stated as Given that successSent is 1 and for any message received, the
output message type is different from SSH MSG USERAUTH BANNER. Our
experience is that coming up with the ghost variables is the least-obvious part
of writing a specification and requires some insight. In the SSH2 and RCP
protocols, the state of the protocol usually depends on the previous message
that was sent, and so our rules use ghost variables to track the last message.

3 Static Analysis of Protocol Source Code

Given a set of rules as described in Section 2 and the source code of a C
program, Pistachio performs static analysis to check that the program obeys
the specified rules. Pistachio uses abstract interpretation [7] to symbolically
execute source code. The basic idea is to associate a set of facts with each
point during execution. In our system, the facts we need to keep track of
are the predicates in the rules and anything that might be related to them.
Each statement in the program can be thought of as a transfer function [13],
which is a “fact transformer” that takes the set of facts that hold before the
statement and determines the facts that hold immediately after:

• After an assignment statement var = expr, we first remove any previous
facts about var and then add the fact var = expr. For example, consider
the code in Fig. 1 again. If before statement 6, {val = n} is the set of facts
that hold, after the assignment in statement 6 the set {val = n + 2} holds.
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Pointers and indirect assignments are handled similarly, as discussed below.
• If we see a conditional if (p) s1 else s2, we add the fact that p holds on

the true branch, and that ¬p holds on the false branch. For example, at the
beginning of statement 6 in Fig. 1, we can always assume recval = val, since
to reach this statement the condition in statement 5 must have been true.

• If we see a function call f(x1, ..., xn), we propagate facts from the call site
through the body of f and back to the caller. In other words, we treat
the program as if all functions are inlined. As discussed below, we bound
the number of times we visit recursive functions to prevent infinite loop-
ing, although recursive functions are rare in practice for network protocol
implementations.

Facts in Pistachio can use most of the arithmetic and comparison expressions
supported by C, including the address-of operator &. Internally, Pistachio rep-
resents all variables in memory as byte arrays, and facts can use the notation
var[i..j] to denote the number represented by bytes i through j of var. Pis-
tachio facts may also use a len operator, which returns the length of a string
variable. A detailed grammar for Pistachio rules is given in Appendix A

We perform our analysis on a standard control-flow graph (CFG) constructed
from the program source code. In the CFG, each statement forms a node,
and there is an edge from s1 to s2 if statement s1 occurs immediately before
statement s2. For example, Fig. 3(a) gives the CFG for the program in Fig. 1.

Fig. 4 presents our symbolic execution algorithm more formally. The goal of
this algorithm is to update Out, a mapping such that Out(s) is the set of
facts that definitely hold just after statement s. The input to FactDerivation
is an initial mapping Out, a set of starting statements S, and a set of ending
statements T . The algorithm simulates the execution of the program from
statements in S to statements in T , updating Out as a side effect as it ex-
ecutes. In this pseudocode, we write pred(s) and succ(s) for the predecessor
and successor nodes of s in the CFG. Our algorithm uses an automatic theo-
rem prover to determine which way conditional branches are taken. We write
Theorem-prover(p) for the result of trying to prove p. This function may re-
turn yes if p is provably true, no if p is provably false, or maybe if the theorem
prover cannot show either.

In Fig. 4, we use a worklist Q of statements, initialized on line 1 to S. We
repeatedly pick statements from the worklist until it is empty. When we reach a
statement in T on line 6, we stop propagation along that path. Because the set
of possible facts is large (most likely infinite), simulation might not terminate
if the code has a loop. Thus on line 10 we heuristically stop iterating once we
have visited a statement max pass times, where max pass is a predetermined
constant bound. Based on our experiments, we set max pass to 75. We settled
on this value empirically by observing that if we vary the number of iterations,
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FactDerivation(Out, S, T )
Input:

Out — The initial facts at each program point
S — Program statements to start symbolic execution from
T — Program statements where symbolic execution ends

Output: Updates the set of facts Out
1 Q← S

2 while Q not empty do
3 s← dequeue(Q)
4 visit(s)← visit(s) + 1

5 In← ∩
s′∈pred(s)

{

Out(s′) ∪ {p} if s′ is “if(p) then s else s2”

Out(s′) ∪ {¬p} if s′ is “if(p) then s1 else s”

Out(s′) otherwise
6 if s ∈ T then
7 Out(s)← In
8 continue
9 end if

10 if visit(s) > max pass then
11 continue
12 end if
13 if s is assignment “var=expr” then
14 Out(s)← (In− {facts involving var}) ∪ {var=expr}
15 Q← Q ∪ succ(s)
16 else if s is “if(p) then s1 else s2” then
17 Out(s)← In
18 if Theorem-prover(Out(s)⇒ p) = yes then
19 Q← Q ∪ {s1}
20 else if Theorem-prover(Out(s)⇒ ¬p) = yes then
21 Q← Q ∪ {s2}
22 else
23 Q← Q ∪ {s1, s2}
24 end if
25 else if s is “f(x1, . . . , xn)” then
26 map← mapping between actual and formal parameters
27 start← entry statement of f

28 T ′ ← exit statements of f

29 pred(start)← pred(start) ∪ {pred(s)}
30 Out′ ← map(Out)
31 FactDerivation(Out′, {start}, T ′)
32 Out(s)← ∩s′∈T ′map−1(Out′(s′))
33 Q← Q ∪ succ(s)
34 pred(start)← pred(start)− {pred(s)}
35 end if
36 Out(s)← FactSubstitution(Out(s))
37 end while

Fig. 4. Symbolic execution algorithm

then the overall false positive and false negative rates from Pistachio rarely
changed after 75 iterations in our experiments.

On line 5 we compute the set In of facts from the predecessors of s in the CFG.
If the predecessor was a conditional, then we also add in the appropriate guard
based on whether s is on the true or false branch. Then we apply a transfer
function that depends on statement s. Lines 13–15 handle simple assignments,
which kill and add facts as described earlier, and then add successor statements
to the worklist. Lines 16–24 handle conditionals. Here we use an automatic
theorem prover to prune impossible code paths. If the guard p holds in the
current state, then we only add s1 to the worklist, and if ¬p holds then we
only add s2 to the worklist. If we cannot prove either, i.e., we do not know
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FactSubstitution(F )
Input: F — a set of facts
Output: A superset of F containing any facts obtained from substitution

1 Q← F

2 while Q 6= ∅ do
3 f ← dequeue(Q)
4 for all variables var in f do
5 if ∃ (var = expr) ∈ (F − {f}) then
6 f ′ ← replace var by expr in f

7 F ← F ∪ {f ′}
8 Q← Q ∪ {f ′}
9 end if

10 end for
11 return F

12 end while

Fig. 5. Fact substitution algorithm

which path we will take, then we add both s1 and s2 to the worklist. Lines
25–35 handle function calls. We compute a renaming map between the actual
and formal parameters of f , and then recursively simulate f from its entry
node, whose predecessor is temporarily set to include pred(s), to its exit nodes,
which are return statements plus the last statement in the function body. We
start simulation in state map(Out), which contains the facts in Out renamed
by map. Then the state after the call returns is the intersection of the states at
all possible exits from the function, with the inverse mapping map−1 applied.

Finally, just before FactDerivation continues with the next statement on the
worklist, it performs fact substitution on Out(s) on line 36. Fig. 5 defines
the fact substitution algorithm, which expands equalities. The input to the
algorithm is a set of facts F . The algorithm initializes worklist Q to F on
line 1. Then on lines 4–10, we iteratively remove a single fact f from Q and
replace any variables var that occur in f according to equalities var = expr, if
any, in the remaining facts. (Here expr is a complex expression, and not just
a variable.) Any newly-derived facts are added back to F and Q.

Fact substitution is useful for preserving information across assignment state-
ments. Consider the following C code, where we have listed the facts that hold
without fact substitution after each line:

1 b = c + 1; /∗ {b = c + 1} ∗/
2 a = b + 1; /∗ {b = c + 1, a = b + 1} ∗/
3 b = c + 3; /∗ {b = c + 3} ∗/

Here since statement 3 writes to b, when computing Out(3), we first killed facts
about b from the incoming fact set Out(2), and then added the fact generated
by the assignment.
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If instead we use our fact substitution algorithm, we derive the following facts
after each program point:

1 b = c + 1; /∗ {b = c + 1} ∗/
2 a = b + 1; /∗ {b = c + 1, a = b + 1, a = (c + 1) + 1} ∗/
3 b = c + 3; /∗ {b = c + 3, a = (c + 1) + 1} ∗/

Here at the end of statement 2, we substituted for b in the fact a = b+1, pro-
ducing the new fact a = (c+1)+1. Since this new fact does not contain b, it is
not killed by the assignment in line 3. Thus FactSubstitution helps us preserve
implied equalities even when facts are killed by assignments. Note that Fact-
Substitution is not complete in any sense—because it iterates through F only
once, it may miss transitively applied equalities, and the output of FactSubsti-
tution depends on the order the facts are visited in. Moreover, in pathological
cases the algorithm might not terminate. However, it has proven useful in
practice for improving the precision of Pistachio, and it always terminated for
our experiments.

Handling other features C includes a number of language features not
covered in Fig. 4. Pistachio uses CIL [14] as a front-end, which internally sim-
plifies many C constructs by introducing temporary variables and translating
loops into canonical form. We unroll loops up to max pass times in an effort
to improve precision. However, as discussed in Section 3.2, we attempt to find
a fixpoint during unrolling process and stop if we can do so, i.e., if we can find
a loop invariant.

C also includes pointers and a number of unsafe features, such as type casts
and unions. Pistachio tracks facts about pointers during its simulation, and
all C data is modeled as arrays of bytes with bounds information. When
there is an indirect assignment through a pointer, Pistachio uses the current
set of facts to determine what the pointer points to, and then updates facts
about the pointed-to variable appropriately. There are two potential sources
of unsoundness for such indirect updates: First, if we lose facts about a pointer
when we intersect fact sets at a join point, we will simply ignore writes through
that pointer. Second, if we stop symbolic execution of a loop after max pass
iterations, we may retain facts about pointers that are inaccurate, causing
writes through that pointer to update the wrong variables. Neither of these
issues has been a problem in practice.

Pistachio only derives a fact if the theorem prover can show that the write
is within bounds, and otherwise kills all existing facts about the array. Note
that even though a buffer overflow may modify other memory, we do not kill
other facts, which is unsound but helps reduce false positives. Also, since all
C data is represented as byte arrays, type casts are implicitly handled as well,
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CheckSingleRule(R, Out, S)

Input:
R — The rule to check
Out — The initial facts at each program point
S — The statements at which to start checking R

Output: A tuple (T, status), plus updates the fact set Out
T — The statements where rule verification ended
status — Whether R verified or not

1 Let R be of the form (PH , H)⇒ (PC , C, G)
2 for s ∈ S do
3 Out(s)← Out(s) ∪H ∪ PH(s)
4 end for
5 Let T be the set of statements that are the first matches to PC on all paths from statements in S

6 If there is a path from S on which no statement matches PC , return (T, rule not satisfied)
7 FactDerivation(Out, S, T )
8 if ∀t ∈ T , Theorem-prover((Out(t) ∧ PC(t))⇒ C) = yes then
9 /* R is satisfied */

10 for s′ ∈ T do
11 Remove from Out(s′) facts involving ghost variables modified in G

12 Out(s′)← Out(s′) ∪G

13 end for
14 Remove from Out all the facts involving pattern variables
15 return (T, rule satisfied)
16 else
17 /* R is not satisfied */
18 return (T, rule not satisfied)
19 end if

Fig. 6. Algorithm for checking a single rule

as long we can determine at analysis time the allocation size for each type,
which Pistachio could always do in our experiments. In addition, in order to
reduce false positives Pistachio assumes that variables are initialized with 0’s,
even when locally scoped.

Pistachio assumes that code is single-threaded, and is not generally sound in
the presence of multi-threading, since it does not simulate thread interleavings.
However, it can still be used quite effectively on multi-threaded programs if
we assume that any threads are completely independent and do not share any
communication-related state, as is the case for our SSH benchmarks.

In the next sections, we illustrate the use of FactDerivation during the process
of checking the alternating bit protocol from Fig. 2.

3.1 Checking a Single Rule

Given the FactDerivation algorithm, we can now present our algorithm for
checking that the code obeys a single rule R of the form (PH , H) ⇒ (PC , C,G).
Assume that we are given a set of statements S that match PH . Then to check
R, we need to simulate the program forward from the statements in S using
FactDerivation. We check that we can reach statements matching PC along all
paths and that the conclusion C holds at those statements. Fig. 6 gives our
formal algorithm CheckSingleRule for carrying out this process.
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The input to CheckSingleRule is a rule R, an initial set of facts Out, and a
set of starting statements S. For all statements in S, on line 3 we add to
their facts the assumptions H and any facts derived from pattern matching S

against PH ; we denote this latter set of facts by PH(s). On line 5 we search
forward along all program paths until we first find the conclusion pattern PC .
If there is some path from S along which we cannot find a match to PC , we
exit on line 6, reporting that the rule is not satisfied. Otherwise, on line 7
we perform symbolic execution using FactDerivation to update Out. On line
8, we use the theorem prover to check whether the conclusion C holds at the
statements that match PC . If they do then the rule is satisfied, and lines 11–12
update Out(s′) with facts for ghost variables. We also remove any facts about
pattern variables (in and out in our examples) from Out (line 14), return T ,
and indicate the rule was satisfied. Otherwise on line 18, we return T but
report that the rule was not satisfied.

Note that pattern variables (such as in and out in our examples) that occur
in a rule R have a scope limited to the program paths followed by Pistachio
to verify R. Once the verification is complete (line 14), all facts about pattern
variables are removed. On the other hand, ghost variables (such as n in our
examples) have a global scope. This means that when Pistachio encounters a
ghost variable gvar, facts about it will persist between rule firings and can
only be “killed” by the successful verification of another rule that modifies
gvar. Pistachio also kills facts about C variables when they go out of scope.

We illustrate using CheckSingleRule to check rule (1) from Fig. 2 on the CFG
in Fig. 3(a). The first block in Fig. 3(b) lists the steps taken by the algorithm.
We will discuss the remainder of this figure in Section 3.2.

In rule (1), the hypothesis pattern PH is the start of the program, and the
set of assumptions H is empty. The conclusion C of this rule is out[0..3] = 1,
where out matches the second argument passed to a call to send(). Thus to
satisfy this rule, we need to show that out[0..3] = 1 at statement 2 in Fig. 1.
We begin by adding H and PH(0), which in this case are empty, to Out(0),
the set of facts at the beginning of the program, which is also empty. We
trace the program from this point forward using FactDerivation. In particular,
Out(1) = Out(2) = {val = 1}. At statement 2 we match the call to send()

against PC , and thus we also have fact &val = out. Then we ask the theorem
prover to show Out(2) ∧ {&val = out} ⇒ C. In this case the proof succeeds,
and so the rule is satisfied, and we set ghost variable n to 1.

3.2 Checking a Set of Rules

Finally, we develop our algorithm for checking a set of rules. Consider again
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CheckRuleSet(R)

Input: R — the set of rules to check
1 Let start be the initial statement of the program
2 Out(start) = ∅
3 ∀s 6= start, set Out(s) = ⊤, where ⊤ is the set of all possible facts
4 W ← ∅
5 for R ∈ R do
6 if R has the form (ε, ∅)⇒ (PC , C, G) then
7 W ←W ∪ {(R,Out, {start})}
8 R← R− {R}
9 end if

10 end for
11 while W not empty do
12 (R,Out, S)← dequeue(W )
13 visit(R)← visit(R) + 1
14 if visit(R) > max pass then
15 continue
16 end if
17 Let R be of the form (PH , H)⇒ (PC , C, G)
18 Let T be the set of statements that are the first matches to PH on all paths from statements in S

19 FactDerivation(Out, S, T )
20 for s ∈ T do
21 if Theorem-prover(Out(s) ∧H ⇒ false) = yes then
22 T ← T − {s}
23 end if
24 end for
25 if T 6= ∅ then
26 (U, status)← CheckSingleRule(R,Out, T )
27 if status = rule satisfied then
28 for R ∈ R do
29 W ←W ∪ {(R,Out, U)}
30 end for
31 else
32 Report that R fails to check
33 end if
34 end if
35 end while

Fig. 7. Algorithm for checking a set of rules

the rules in Fig. 2. Notice that rules (2) and (3) both depend on n, which is
set in the conclusion of rules (1) and (2). Thus we need to check whether rules
(2) or (3) are triggered on any program path after we update n, and if they
are, then we need to check whether they are satisfied. Since rule (2) depends
on itself, we in fact need to iterate.

Fig. 7 gives our algorithm for checking a set of rules. The input is a set of
rules R that need to be checked. On lines 2–3, we create an initial Out, which
is empty for the initial statement in the program, and ⊤, the set of all facts,
for every other program point. The main body of the algorithm maintains
a worklist W containing tuples (R,Out, S), where R is a rule to be checked
starting at statements in S with the set of facts Out. Line 4 initializes W to
be empty, and then for each rule R that has (ε, ∅) as the hypothesis (and so
matches the beginning of the program and has no hypotheses), line 7 adds
(R,Out, {start}) to W . Notice that this means a copy of Out is stored in the
worklist for each initial rule. Rules with the empty hypothesis are also removed
from R, since they will not be checked again.
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The main body of the algorithm (lines 11–35) iteratively removes an element
(R,Out, S) from the worklist and checks the rule. Note that because rule
dependencies may be cyclic, we may visit a rule multiple times, and as in
Fig. 6 we terminate iteration once we have visited a rule max pass times (lines
13–16). On line 18 we trace forward from S to find all statements T that
match PH . Then on line 19 we perform fact derivation to update Out. This
updates only the local copy of Out we removed from the worklist, and not any
other fact sets. The set T now contains the statements where we should start
checking the rule R. First, however, lines 20—24 remove any statements from
T for which the rule hypotheses and the current state are provably inconsistent
(i.e., imply false), meaning that the rule cannot fire. Assuming that T is non-
empty after this process, line 26 invokes CheckSingleRule, which updates Out
and returns a new set of statements U and a status. If the rule was satisfied,
then lines 28–30 add (R,Out, U) to the worklist for all rules R, so that future
iterations of the loop will check any new rules that may fire starting from U .
If the rule was not satisfied, then line 32 reports a rule violation.

We illustrate the algorithm by tracing through the remainder of Fig. 3(b),
which describes the execution of CheckRuleSet on our example program. Ob-
serve that rule (1) has no assumptions and matches the beginning of the
program, hence it is initially added to W . The main loop of the algorithm
removes ((1),Out, {start}) from the worklist, and then calls CheckSingleRule.
As described in Section 3.1, we satisfy rule (1) at statement 2, and we set ghost
variable n to 1. Let Out′ be the current fact set. The we add ((2),Out′, {2})
and ((3),Out′, {2}) to the worklist. (We do not add rule (1) to the worklist,
because it matched the start of the program.) Thus either rule (2) or rule (3)
might fire next.

Checking rule (3). Suppose we next remove ((3),Out′, {2}) from the worklist,
meaning we check rule (3) starting at statement 2, in state Out′, which has
the ghost variable n set to 1. We perform symbolic execution forward until
we find a statement that matches the hypothesis pattern of rule (3), which is
statement 4. Now we check that rule (3) should fire, which it does, because
the current state does not contradict the hypothesis in[0..3] 6= n (in fact, it
does not say anything about in). Thus we add the hypothesis to our set of
facts and continue forward. When we reach statement 5, the theorem prover
shows that the false branch will be taken, so we only continue along that one
branch—which is important, because if we followed the other branch we would
not be able to prove the conclusion. Taking the false branch, we fall through
to statement 7, and the theorem prover concludes that rule (3) holds. Since
the rule is satisfied, we add back rules (2) and (3) to the worklist to be checked
starting at the bottom of the loop; we will come back to this below.

Checking rule (2). Next suppose we remove ((2),Out′, {2}) from the worklist,
meaning that we need to now check rule (2) starting where we left off at
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statement 2. Out′ has n = 1 and val = 1 at statement 2. We continue forward,
match the hypothesis of rule (2) at statement 4, and then this time at the
conditional we conclude that the true branch is taken, hence val becomes 3 at
statement 7. Now the conclusion of the rule cannot be proven, so we issue a
warning that the protocol was violated at this statement.

Finding a fixpoint. Suppose for illustration purposes that rule (2) had checked
successfully, i.e., in statement 6, val was only incremented by one. Then
at statement 7 we would have shown the conclusion and set ghost variable
n := out[0..3]. Then we would add ((2),Out′′, {7}) and ((3),Out′′, {7}) to the
worklist, where Out′′ is the state after rule (2) was checked. When we remove
these elements from the worklist, we will recheck those rules for the loop body
with the new value of n, and then continue to repeat this process, leading to
an infinite loop, cut off after max pass times. A similar effect happens after
checking rule (3) on the body of the loop.

However, notice that after one iteration, Out stabilizes. During the first check
of rule (2), we would have that Out(2) = {n = val, val = 1}, which is the input
fact set for statement 4. After rule (2) succeeds at statement 7, we set n to val,
and hence Out(7) = {n = val, val = 2}. Thus when we revisit statement 4, we
intersect Out(2) and Out(7), yielding the set {n = val}. This is, in fact, a loop
invariant, and subsequent checks of rules (2) and (3) will wind up re-checking
the same rules in the same state, producing no new results.

Pistachio includes two features relating to fixpoints that are not shown in our
formal algorithms, because they would obscure their structure. First, Pistachio
stops iteration when it detects a fixpoint, i.e., when we either have already
simulated forward from some point with the same set of facts, or when we
have already checked a rule at the same statement starting with the same set
of facts. Second, in the cases where Pistachio does not find a fixpoint, rather
than intersecting fact sets on back edges, Pistachio performs loop unrolling.
Loops are unrolled until we either reach a fixpoint, unroll a total of max pass
iterations, or provably exit the loop before max pass iterations are reached. We
found that Pistachio was very often able to find a fixpoint and stop iterating
well before reaching max pass in our experiments (Section 4.5).

4 Implementation and Experiments

Pistachio is implemented in approximately 6,000 lines of OCaml. We use CIL
[14] to parse C programs and the Darwin [15] automated theorem prover (for
a discussion on the choice of theorem prover, see Appendix B). Darwin is a
sound, fully-automated theorem prover for first-order clausal logic. Darwin
can return either “yes,” “no,” or “maybe” for each theorem. Pistachio con-
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out = calloc(nelems, elsize)

nelems > 0

elsize > 0

⇒

out 6= NULL

out[0..(nelems ∗ elsize − 1)] = 0

Fig. 8. Example rule for library function calloc

servatively reports a rule failure if the theorem prover cannot prove that the
facts derived starting from the hypothesis imply the conclusion.

To analyze realistic programs, Pistachio needs to model system libraries. Rather
than analyze library source code directly, which is not always available, Pista-
chio allows the user to provide a rule-based specification for library functions.
For example, Fig. 8 gives a library rule that models calls to calloc. The
pattern in the hypothesis of the rule works just like a regular rule, matching
a function call, here with nelems and elsize bound to the parameters and
out bound to its return value. Library rules only fire if the predicates in the
hypothesis are implied by the current set of facts, and if they are, the conclu-
sion facts are added directly after the call. (Note the difference with a regular
rule, where the hypothesis facts cannot be contradictory but are otherwise
assumed, the conclusion contains a pattern, and the conclusion facts must be
proven when the pattern matches.) For example, if Pistachio sees a call block
= calloc(n, sz) at statement s, Pistachio asks the theorem prover to show

In(s) ∧ (nelems = n) ∧ (elsize = sz) ∧ (out = block) ⇒ (nelems > 0) ∧ (elsize > 0)

If the answer is yes, then Pistachio adds the facts {block 6= NULL, block[0..(n∗
sz− 1)] = 0} to Out(s). Otherwise the library rule is ignored. Notice that our
rule for calloc assumes that infinite memory is available.

For our experiments we wrote a total of 117 library rule specifications for 35
I/O and memory allocation routines. Library specifications can also be used for
user-defined functions, in which case they override the function definition. In
our SSH2 experiments, we used 18 specifications for cryptographic functions,
rather than analyze their code. (Our specifications treat cryptographic func-
tions as if they perform no encryption, since that is not our concern in these
experiments.) There are some library functions we cannot fully model in our
framework, e.g., geterrno(), which potentially depends on any other library
call. Pistachio assumes there are no side-effects from calls to library functions
without specifications, and Pistachio assumes nothing about the return value
of the call. For example, Pistachio assumes that conditionals based on the
result of geterrno() may take either branch, which can reduce precision.
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Category Example rule(s) Description

Message structure
and
data transfer
(SSH2: 35, RCP: 19)

recv(in sock, in, )

in.msgid = SSH MSG USERAUTH REQUEST

in.authtype = “keyboard-interactive”

⇒

send(out sock, out, )

in sock = out sock

out.msgid =

SSH MSG USERAUTH INFO REQUEST

len(out.prompt) > 0

In keyboard interactive
authentication mode,
the prompt field(s)
[the server sends to the
interactive client]
MUST NOT be empty.

Compatibility
(SSH2: 11, RCP: 7)

recv(sock, in, )

in[len(in)− 2] = CR

in[len(in)− 1] = LF

connected[sock] = 0

⇒

send(sock, out, )

out[len(out)− 2] = CR

out[len(out)− 1] = LF

connected[sock] := 1

In compatibility mode,
after receiving the
client identification
string, the server
MUST NOT send any
additional messages
before its identification
string. [Note: The
message with the
identity string is
distinguished by
ending in a CR/LF
combination]

Functionality
(SSH2: 24, RCP: 17)

recv( , in, )

in[0] = SSH MSG USERAUTH REQUEST

isOpen[in[1..4]] = 1

in[21..25] = “none”

⇒

send( , out, )

out[0] = SSH MSG USERAUTH FAILURE

It is STRONGLY
RECOMMENDED
that the “none”
authentication method
not be supported.

Protocol logic
(SSH2: 26, RCP: 15)

recv(in sock, in, )

in[0] = SSH MSG GLOBAL REQUEST

in[1..14] = “tcpip-forward”

in[15] = 1

in[(len(in)− 4)..(len(in)− 1)] = 0

⇒

send(out sock, out, )

in sock = out sock

out[0] = SSH MSG REQUEST SUCCESS

The server MUST
respond to a TCP/IP
forwarding request in
which the wantreply
flag [byte 15] is set to 1
and the port [last 4
bytes] is set to 0 with a
SSH MSG -
REQUEST SUCCESS
containing the
forwarding port.

recv(in sock, in, )

in[0] = SSH MSG GLOBAL REQUEST

in[15] = 1

⇒

send(out sock, out, )

in sock = out sock

The server MUST
respond to all global
requests with the
wantreply flag [byte
15] set to 1.

Fig. 9. Rule categorization and counts, and example rules for SSH2

4.1 Core Rule Sets

We evaluated Pistachio by analyzing the LSH [16] and OpenSSH [17] imple-
mentations of SSH2 and the RCP implementation from Cygwin’s inetutils
package. We chose these systems because of their extensive bug databases and
the number of different versions available.

We created rule-based specifications by following the process described in Sec-
tion 2.2. Our (partial) specification for SSH2 totaled 96 rules, and the one for
RCP totaled 58 rules. The rules for SSH2 covered the authentication, connec-
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tion and transport parts of the protocol, but none of its extensions (such as
key exchange protocols). Because the rules describe particular protocol details
and are interdependent, it is difficult to correlate individual rules with gen-
eral correctness or security properties. In Fig. 9, we give a rough classification
of the rules in our specifications, list how many rules in each specification
fall into each category, and show example rules from SSH2. These example
rules are taken directly from our experiments—the only changes are that we
have reformatted them in more readable notation, rather than in the concrete
grammar used in our implementation, and we have used send and recv rather
than the actual function names.

There are four rule categories, based on functional behavior:

• Message structure and data transfer includes rules that relate to the
format, structure, and restrictions on messages in the protocols. The ex-
ample rule requires that any prompt sent to keyboard interactive clients in
SSH2 not be the empty string. RCP rules in this category specify properties
such as payload length or structure of messages about negotiated transmis-
sion parameters.

• Compatibility includes rules about backwards compatibility with earlier
protocol versions. The example rule places a requirement on sending an
identification string when SSH2 is in compatibility mode with SSH1.

• Functionality includes rules about what abilities should or should not be
supported. The example rule requires that an SSH2 implementation not
allow the “none” authentication method. RCP rules in this category check
that the required authentication and encryption methods are available.

• Protocol logic contains the most complex rules, and rules in this cate-
gory were the most time-consuming to develop. These rules require that the
proper response is sent for each received message. The first example SSH2
rule requires that the server provide an adequate response to TCP/IP for-
warding requests with a value of 0 for port. The second SSH2 rule requires
that the server replies to all global requests that have the wantreply flag
set. RCP rules in this category specify how the implementation should re-
spond to expected and out-of-phase data and control messages, or the way
transmission parameters such as payload size and frequency are negotiated.

Based on our experience developing rules for SSH and RCP, we believe that the
process does not require any specialized knowledge other than familiarity with
the rule-based language grammar and the specification document. It took the
authors less than 7 hours to develop each of our SSH2 and RCP specifications.

Of course, we did not get the rules entirely right the first time we wrote
them down. We debugged our set of rules for SSH by identifying a set of
20 bugs they should catch and then running Pistachio on the corresponding
implementations. We selected our set of bugs from four LSH versions (0.1.9,
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0.5, 0.7.3, and 1.2.5) that were not used in our evaluation, and we chose bugs
that were local to those versions—i.e., they did not appear in or persist to the
next version of the protocol. As a result of this process, we made modifications
to 9 of the 87 initial SSH2 rules. The process took approximately 1.5 hours
out of the total 7 hours to develop and debug the specification. We repeated
the same process for RCP using 14 bugs from versions 0.7.1 and 0.9 (which
were also not used in our evaluation). As a result, we modified 6 of the 51
RCP rules, and the debugging process took roughly 45 minutes. The value of
75 for max pass was determined on the same set of versions used to debug the
rules.

We debugged Pistachio itself on simplified versions of the sliding window pro-
tocol. Since sliding window is the basis of many modern protocols (including
TCP/IP), variations of it (often simplified to one-bit message payloads) have
been thoroughly studied in the literature [18], both from the point of view of
correctness and that of the implementation. We debugged Pistachio on the
Stop-And-Wait, Go-Back-n, and Selective-Repeat variations of the protocol
from five implementations freely available on the web. When we performed
our experiments on LSH and RCP, we also found an fixed a few other bugs in
our implementation.

Generally the rules are slightly more complex than is shown in Fig. 9. On
average, rules in the SSH2 specification include 11 hypothesis and 5 conclusion
facts, and rules in the RCP specification include 9 hypothesis and 4 conclusion
facts. Originally, we started with a rule set derived directly from specification
documents, which was able to catch many but not all bugs, and then we added
some additional rules (a little over 10% more per specification) to look for
some specific known bugs. These additional rules produced about 20% of the
warnings from Pistachio (Section 4.5). Generally, the rules written from the
specification document tend to catch missing functionality and message format
related problems, but are less likely to catch errors relating to compatibility
problems or unsafe use of library functions. The process of extending the initial
set of rules proved fairly easy, since specific information about the targeted
bugs was available from the respective bug databases.

After developing our SSH2 rules, including the extra 10% mentioned above,
we conducted an initial experiment in which we applied them to LSH [10].
Subsequently, we have ported the rules to also work on OpenSSH, and in this
paper we are using the new set of rules for both LSH and OpenSSH. Since the
rules were based on the specification document and did not depend on specific
programming constructs, 94 of our original 96 SSH2 rules could be applied
to OpenSSH with no changes. The remaining two rules needed to change
because of differences in how the LSH and OpenSSH authors interpreted the
protocol description. In particular, the SSH2 connection protocol specification
[6] states:
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LSH
Version 0.1.3 0.2.1 0.2.9 0.9.1 1.0.1 1.1.1 1.2.1 1.3.1 1.4.1 1.5.1 1.5.5 2.0.1

LoC 8,745 8,954 9,145 9,267 9,221 10,431 10,493 10,221 12,585 12,599 12,754 13,689

Time (s) 24 26 25 27 27 28 29 30 31 33 38 40

Warnings 118 123 110 97 91 93 91 79 78 70 33 25

Bugs 86 79 66 61 77 77 80 80 50 39 31 12

Bugs in db 91 83 69 65 81 80 82 82 51 40 31 13

False pos 40 54 42 43 22 26 24 14 33 35 9 12

False neg 5 4 3 4 4 3 2 2 1 1 0 1

OpenSSH
Version 1.0 1.0 1.2 1.2 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.2 1.2.3 2.0.1

p1 p2 p5 p7 p18 p20 p23 p24 p27

LoC 10,546 12,467 13,612 15,432 19,834 20,312 21,400 21,514 21,543 24,315 24,532 24,761

Time (s) 37 40 39 42 43 44 44 48 48 49 50 55

Warnings 51 48 42 38 36 39 31 30 31 21 11 9

Bugs 39 37 26 24 23 24 23 19 18 10 5 1

Bugs in db 43 39 29 27 26 28 25 22 20 11 5 1

False pos 11 15 13 10 8 11 18 14 11 6 4 5

False neg 4 2 3 3 3 4 2 3 2 1 0 1

RCP
Version 0.5.4 0.6.4 0.8.4 1.1.4 1.2.3 1.3.2

LoC 4,501 4,723 4,813 4,865 4,891 5,026

Time (s) 17 19 20 19 23 26

Warnings 72 78 58 70 48 39

Bugs 48 44 46 49 28 22

Bugs in db 51 46 47 51 28 23

False pos 30 30 17 25 27 19

False neg 3 2 1 2 0 1

Fig. 10. Pistachio results with core rule sets

X11 connection forwarding should stop when the session channel is closed.
However, already opened forwardings should not be automatically closed
when the session channel is closed.

Our set of rules targeting LSH assumed that existing forwardings are not in
fact closed, which holds in that implementation. OpenSSH, however, does close
existing forwardings when the session channel is closed, if they have been idle
for a predefined period of time. Adjusting for this difference accounts for the
two rule changes. The experimental results in the following sections used the
revised SSH2 rules for both LSH and OpenSSH.

4.2 Results for Core Rule Sets

We started with initial specifications for the SSH2 protocols (87 rules) and
the RCP protocol (51 rules), with “core rules” based only on specification
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documents. In Section 4.5 we discuss extending these rules to target particular
bugs. Using these specifications, we ran our tool against selected versions of
LSH, OpenSSH, and RCP. We used the same specification for all versions of
the code, and we ran Pistachio with max pass set to 75.

Fig. 10 presents our analysis results. For each program version, we list the
lines of code, omitting comments and blank lines, and the running time of
Pistachio. We only include code analyzed by Pistachio and involved in the
rules. We also list Pistachio’s running time, in seconds. The running times
were measured on a Pentium IV 3Ghz machine with 1GB of RAM running
SuSE Linux 9.3. The times were measured as an average of five runs, and
include the time for checking the core rules plus the additional rules discussed
in Section 4.5. In all cases the running times were under one minute.

The remaining rows measure Pistachio’s effectiveness. We list the number of
warnings generated by Pistachio, the number of actual bugs those warnings
correspond to, the number of bugs in the project’s bug database for that
version, and the number of false positives—warnings that do not correspond
to bugs in the code—and false negatives—bugs in the database we did not
find. Note that there is not always a one-to-one correspondence between bugs
and Pistachio warnings. When counting bugs in the database, we count only
reports for components covered by our specifications. For instance, we only in-
clude bugs in SSH2’s authentication, transport and connection protocol code,
but not any code that is part of the key exchange protocol. We also did not
include reports that appeared to be feature requests or other issues.

We found that most of the warnings reported by Pistachio correspond to bugs
that were in the database. For the core rule sets, the average false negative
rates were quite low (4% for LSH, 9% for OpenSSH, and 3% for RCP), and the
average false positive rates were fairly low (35% for LSH, 38% for OpenSSH,
and 42% for RCP). We were pleasantly surprised by the very low false negative
rate, especially since Pistachio is neither sound nor complete. We also noted
that Pistachio is able to handle pointer arithmetic and aliasing very well, as a
significant percentage of warnings and corresponding bugs are related to data
access. These results suggest that Pistachio can be an effective tool for finding
bugs in network protocol implementations.

Section 4.4 discusses some of the bugs we found in detail. Pistachio discovered
two apparently new bugs in LSH version 2.0.1. The first is a buffer overflow in
buffers reserved for passing environment variables in the SSH Transport proto-
col. The second involves an incorrectly formed authentication failure message
when using PKI. We have not confirmed these bugs; we sent an email to the
LSH mailing list with a report, but it appears that the project has not been
maintained recently, and we did not receive a response.
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Fig. 11. Warnings by Pistachio and bugs detected for LSH, OpenSSH and RCP

4.3 Breakdown of warnings and bugs

Next, we wanted to get a finer view of how Pistachio behaves, to understand
two things: First, are there particular categories of rules that tend to result
in more warnings than other categories? And second, does Pistachio tend to
find certain kinds of bugs more than other kinds?

To answer the first question, we broke down the warning counts by the rule
categorization in Fig. 9. The results are shown in the left half of Fig. 11. For
each version, listed along the bottom, we show the number of warnings due to
violations of protocol logic, functionality, compatibility, and message structure
and transfer rules. From these graphs, we can see that the category with the
fewest warnings overall is compatibility, but there are no clear standouts among
the other rule categories. There is one interesting difference between RCP
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and the SSH2: For the simpler RCP protocol, the number of protocol logic
warnings tends to be lower than the number of warnings related to message
structure and transfer, while this situation is often reversed for the SSH2
protocol implementations. Overall, our results show that each of the different
kinds of rules have a good chance of catching programmer mistakes; or, put
another way, that programmers make mistakes that span all rule categories.
These graphs also show quite clearly that the total number of warnings goes
down over time, which makes sense, since we hope that software improves as
it matures.

While measuring how often rule categories are violated gives us some sense
of how the warnings are distributed by rule, it does not always tell us about
the underlying defects in the program. For example, a rule failure could be
caused by missing parentheses in the code, by a mis-constructed if-then-else,
or by a multitude of other mistakes. Thus, to answer our second question,
which defects cause rule violations, we classified bugs found by Pistachio into
a subset of Beizer’s bug taxonomy [9], one popular classification system.

Beizer’s taxonomy is large and complex, containing eight main categories,
three of which, Structural, Data, and Implementation, contain elements related
to code (as opposed to specifications, requirements, etc.). Within these top-
level categories, we selected second-level categories that related to the kinds of
problems Pistachio found. We divided defects into the following five categories:

• Control flow and sequencing contains bugs related to branch and loop
conditions and statements. Examples include missing or misplaced break
statements, wrong initial values of terminal conditions for loops, and incor-
rect conditions for exceptionally exiting loops.

• Processing refers to errors in expressions and computation in general. Ex-
amples include misplaced parentheses in an arithmetic expression, insuf-
ficient or excessive precision, incorrect bitwise masks, and cutting off the
beginning or end or a string.

• Data definition and declaration refers to bugs related to data declara-
tion and initialization. Examples include forgetting to initialize a variable,
incorrect data types (e.g., short instead of long), global/local inconsistencies
or conflicts, and incorrect allocation type (e.g., static when it should have
been dynamic).

• Data access and handling refers primarily to indirect memory accesses.
Examples include writing through an invalid pointer, incorrect type casts,
and object boundary errors.

• Interface refers to errors in the passing of parameters to user-defined or
library methods. Examples include passing fewer variables to sprintf than
type specifiers, duplicate or spurious method calls, and accessing the wrong
return parameter.
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Deciding which category a bug falls into is an inexact process. For example,
suppose in a loop we have moved a pointer past the end of an array and
we attempt to write through that pointer. This is clearly a buffer overflow,
but in the taxonomy, it could be categorized as a control flow and sequencing
bug, since the termination condition on the loop was incorrect; or as a data
definition and declaration bug, if the problem was that the array was declared
with too small a size; or as a data access and handling bug, since we attempted
to write through an invalid pointer. When categorizing bugs, we always tried
to place the bug in the last category in which it fits, in the order the categories
are listed above. Thus in our example situation, the bug would fall under data
access and handling.

The right side of Fig. 11 shows the results of this classification; we also in-
clude false negatives for comparison. These graphs show that no one kind of
defect dominates overall, though there are relatively few interface bugs. For
LSH and OpenSSH, processing bugs are often the most numerous, where RCP
tends to have the most bugs in data access and handling and control flow and
sequencing, though these trends are subtle and may not be significant. Beizer
reports [9] that the five defect categories we chose account for roughly 61%
of total bugs in software, according to data collected between 1982 and 1988
from US defense, aerospace, and telecommunication companies. Interestingly,
in Beizer’s data, all five categories are roughly equivalent in their contribu-
tion, whereas as we just observed, we found relatively few interface bugs. We
suspect that this is related to the scale of the code in our experiments. The pro-
tocol implementations are comprised of only a few modules, which were likely
written by only one or a few people, minimizing the chance of a miscommuni-
cation about an interface. Excepting interface bugs, our results suggest that
problems in network protocol implementations are due to the usual range of
programming mistakes.

4.4 Discussion

Our results show that Pistachio can find a wide variety of bugs in network
protocol implementations. In this section, we discuss the process a user needs
to following in order to understand the output of Pistachio, i.e., to determine
whether a warning corresponds to a potential bug. We also describe several
sample bugs we found in LSH, discuss Pistachio’s false positives and negatives,
and examine the security implications of the bugs we found.

Understanding Pistachio Warnings We found that the best way to de-
termine whether a rule violation corresponds to a bug is to trace the fact
derivation process in reverse, using logs produced by Pistachio that give Out
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for each analyzed statement. We start from a rule failure at a conclusion, and
then examine the preceding statements to see whether they directly contradict
those facts. If so, then we have found what we think is a bug, and we look
in the bug database to determine whether we are correct. If the preceding
statements do not directly contradict the facts, we continue tracing backward,
using Out to help understand the results, until we either find a contradiction
or reach the hypothesis, in which case we have found a false positive. If the
conclusion pattern is not found on all program paths, we use the same process
to determine why those paths were not pruned during fact derivation.

As a concrete example of this process, consider the second rule in Fig. 9. This
rule is derived from section 5 of the SSH2 Transport Protocol specification [6],
and Pistachio reported that this rule was violated for LSH implementation
0.2.9. In particular, Pistachio could not prove that out[len(out)−2] = CR and
out[len(out)−1] = LF at the rule conclusion. Fig. 12(a) shows the code (slightly
simplified for readability) where the bug was reported. Statement 24 matches
the conclusion pattern (here fmsgsend is a wrapper around send), and so
that is where we begin. Statement 24 has two predecessors in the control-flow
graph, one for each branch of the conditional statement 8. Looking through
the log, we determined that the required facts to show the conclusion were in
Out(19) but not in Out(13). We examined statement 13, and observed that
if it is executed (i.e., if the conditional statement 8 takes the true branch),
then line 24 will send a disconnect message, which is incorrect. Thus we back-
tracked to statement 8 and determined that protomsg.proto ver<1 could not
be proved either true or false based on In(8), which was correctly derived from
the hypothesis (asserted in Out(3)). Thus we determined that we found a bug,
in which the implementation could send an SSH DISCONNECT message for
clients with versions below 1.0, although the protocol specifies that the server
must send the identification first, independently of the other party’s version.
We then confirmed this bug against the LSH bug database. This bug falls
under control flow and sequencing, since the if branch in the code should be
removed.

While it is non-trivial to determine whether the reports issued by Pistachio
correspond to bugs, we found it was generally straightforward to follow the
process described above. Usually the number of facts we were trying to trace
was small (at most 2-3), and the number of preceding statements was also
small (rarely larger than 2). In the vast majority of the cases, it took on the
order of minutes to trace through a Pistachio warning, though in some cases it
took up to an hour, often due to insufficiently specified library functions that
produced many paths. In general, the effort required to understand a Pistachio
warning is directly proportional to the complexity of the code making up a
communication round.
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1 // Code extracted from a function
2 // handling connection initialization
3 fmsgrecv(clisock, inmsg, SSH2 MSG SIZE);
4 if (!parse message(MSGTYPE PROTOVER,
5 inmsg, len(inmsg), &protomsg))
6 return;
7 ...
8 if (protomsg.proto ver < 1) {
9 payload.msgid = SSH DISCONNECT;

10 payload.reason =
11 SSH DISCONNECT PROTOCOL ERROR;
12 ...
13 sz = pack message(MSGTYPE DISCONNECT,
14 payload, outmsg,
15 SSH2 MSG SIZE);
16 } else {
17 sprintf(outstr, ”\%.1f\%c\%s\%c\%c”,
18 2, SP, SRV COMMENTS, CR, LF);
19 sz = pack message(MSGTYPE PROTOVER,
20 outstr, outmsg,
21 SSH2 MSG SIZE);
22 ...
23 }
24 fmsgsend(clisock, outmsg, sz);

1 fmsgrecv(clisock, inmsg, SSH2 MSG SIZE);
2 if (!parse message(MSGTYPE USERAUTHREQ,
3 inmsg, len(inmsg), &authreq))
4 return;
5 ...
6 if (authreq.method==USERAUTH PKI) {
7 ...
8 } else if (authreq.method==USERAUTH PASSWD) {
9 ...

10 } else {
11 ...
12 }
13 sz = pack message(MSGTYPE REQSUCCESS,
14 payload, outmsg,
15 SSH2 MSG SIZE);
16 fmsgsend(clisock, outmsg, sz);

(a) Compatibility Rule Violation (b) Functionality Rule Violation

1 char laddr[17]; int lport;
2 ...
3 fmsgrecv(clisock, inmsg, SSH2 MSG SIZE);
4 if (!parse message(MSGTYPE GLOBALREQ,
5 inmsg, len(inmsg), &globreq))
6 return;
7 ...
8 if (globreq.msgtype==
9 MSGSUBTYPE TCPIPFORWARD) {

10 strcpy(laddr, getstrfield(globreq.payload, 0));
11 lport = getuint32field(globreq.payload, 1);
12 ...
13 if (!create forwarding(clisock, laddr, lport))
14 return debug error();
15 if ((globreq.wantreply==1) &&
16 (lport == 0)) {
17 payload.msgid =
18 SSH REQUEST SUCCESS;
19 payload.reason = lport;
20 sz =
21 pack message(MSGTYPE REQSUCCESS,
22 payload, outmsg,
23 SSH2 MSG SIZE);
24 fmsgsend(clisock, outmsg,sz);
25 }
26 }

1 fmsgrecv(clisock, inmsg,
2 SSH2 MSG CHANNEL REQUEST);
3 if (!parse message(MSGTYPE CHREQ,
4 inmsg, len(inmsg),&chreq))
5 return;
6 ...
7 if (chreq.msgtype==MSGSUBTYPE SHELL) {
8 ...
9 /∗ fmod was previously set to ‘‘rw’’ ∗/

10 if (!(clish = popen(make clishell(clisock), fmod)))
11 return debug error()};

(c) Buffer Overflow (d) Library Call Error

Fig. 12. Sample bugs in LSH

More Sample Bugs Found by Pistachio Fig. 12(b) shows a violation of
the example functionality rule in Fig. 9. This code is from LSH version 0.1.3.
In this case, a message is received at statement 1, and Pistachio assumes
the rule hypotheses, which indicate that the message is a user authorization
request. Then a success message is always sent in statement 16. However,
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the rule specifies that the “none” authentication method must result in a
failure response. Tracing back through the code, we discovered that the else
statement on line 10 allows the “none” method to succeed. This statement
should have checked for the “hostbased” authentication method, and indeed
this corresponds to a bug in the LSH bug database. This is also a control
flow and sequencing bug, as there is a missing branch case for “hostbased”
authentication.

Fig. 12(c) shows a buffer overflow detected by Pistachio in LSH version 0.9.1.
Buffer overflows are detected indirectly during rule checking. Recall that when
Pistachio sees a write to an array that it cannot prove is in-bounds, it kills facts
about the array. Thus sometimes when we investigated why a conclusion was
not provable, we discovered it was due to an out-of-bounds write corresponding
to a buffer overflow. When we ran Pistachio on the code in Fig. 12(c), we found
a violation of the first protocol logic rule in Fig. 9, as follows. At statement 3,
Pistachio assumes the hypothesis of this rule, including that the wantreply flag
(corresponding to in[15]) is set, and that the message is for TCP forwarding.
Under these assumptions, Pistachio reasons that the true branch of statement
8 is taken. But then line 10 performs a strcpy into laddr, which is a fixed-sized
locally-allocated array. The function getstrfield() (not shown) extracts a string
out of the received message, but that string may be more than 17 bytes. Thus
at the call to strcpy, there may be a write outside the bounds of laddr, and so
we kill facts about laddr. Then at statement 13, we call create forwarding(),
which expects laddr to be null-terminated—and since we do not know whether
there is a null byte within laddr, Pistachio determines that create forwarding()
might return false, causing us to return from this code without executing the
call to fmsgsend in statement 24. This bug falls under the data declaration
and definition category, since the statically allocated laddr should in this case
be dynamic based on the length of the message payload (or alternatively, the
payload should be truncated).

In this case, if Pistachio had been able to reason at statement 10 that laddr
was null-terminated, then it would not have issued a warning. Although the
return statement 14 might seem to be reachable in that case, looking inside
of create forwarding(), we find that can only occur if LSH runs out of ports,
and our model for library functions assumes that this never happens. (Even
if an ill-formed address is passed to create forwarding(), it still creates the
forwarding for 0.0.0.0.) On the other hand, if create forwarding() had relied
on the length of laddr, rather than it being null-terminated, then Pistachio
would not have reported a warning here—even though there still would be
a buffer overflow in that case. Thus the ability to detect buffer overflows in
Pistachio is somewhat fragile, and it is a side effect of the analysis that they
can be detected at all. Buffer overflows that do not result in rule violations,
or that occur in code we do not analyze, will go unnoticed.
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Fig. 13. Causes for false positives

Finally, Fig. 12(d) shows a bug in LSH 0.9.1 found as a violation of the last
rule in Fig. 9. The problem in this code had to do with a library function, and
this error, like a buffer overflow, was found as a side effect of rule checking.
In this code, we matched the hypothesis of the rule at statement 1, and then
determined that the branch on statement 7 may be taken. Thus one possible
path leads to the call to popen in statement 10. In this case, our model of
popen requires that the second argument must be either “r” or “w,” or the
call to popen yields an undefined result. Since before statement 10 fmod was
set to “rw,” Pistachio assumes that popen may return any value, including
null, and thus statement 11 may be executed and return without sending a
reply message, thus violating the rule conclusion. Note that our model of popen
always succeeds if valid arguments are passed, and thus if fmod were “r” or
“w” a rule violation would not have been reported. This bug falls under the
interface category, since it involves incorrect function arguments.

False Positives and Negatives Fig. 13 breaks down the causes of false
positives found in LSH, OpenSSH, and RCP, averaged over all versions. The
main cause of false positives is insufficient specification of library calls. This is
primarily due to the fact that library functions sometimes rely on external fac-
tors such as system state (e.g., whether getenv() returns NULL or not depends
on which environment variables are defined) that cannot be fully modeled us-
ing our rule-based semantics. For such functions, only partial specifications
can be devised. The remaining false positives are due to limitations of the
theorem prover and to loop breaking, where we halt iteration of our algorithm
after max pass times.
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Besides false positives, Pistachio also has false negatives, as measured against
the LSH, OpenSSH, and RCP bug databases. From our experience, these are
generally caused by either assumptions made when modeling library calls, or
by the fact that the rule sets are not complete. As an example of the first case,
we generally make the simplifying assumption that on open() calls, there are
sufficient file handles available. This caused a false negative for LSH version
0.1.3, where a misplaced open() call within a loop lead to the exhaustion of
available handles for certain SSH global requests.

Security Implications As can be seen from the previous discussion, many
of the bugs found by Pistachio have obvious security implications. In general,
categorizing a bug as security-relevant is difficult, because bugs that initially
appear benign may introduce security vulnerabilities, and the definition of
what is and is not a vulnerability depends on particular circumstances. We
looked through the bug databases to determine which bugs found by Pista-
chio are either clearly security-related by their nature or were documented
as security-related. On average, we classified 30% of the true positive warn-
ings (warnings that correspond to bugs) as security-related for LSH, 28% for
OpenSSH, and 23% for RCP.

Of the security-related bugs, 52% are buffer overflows (all of which we assume
are security-related), 21% have to do with access control (ensuring the user has
sufficient privileges before performing operations), and 18% are compatibility
problems. The last category does not directly violate security, but does impede
the use of a secure protocol. The remaining security-related bugs did not fall
into any broader categories.

Our classification of bugs as security-related has some uncertainty, because the
bug databases might incorrectly categorize some non-exploitable bugs as secu-
rity holes. Conversely, some bugs that are not documented as being security-
related might be exploitable by a sufficiently clever attacker. In general, any
bug in a network protocol implementation is undesirable.

4.5 Results for Extended Rule Sets

When bugs are found in code, it is good software engineering practice to write
regression tests to catch the bug if it reappears. We hypothesized that in a
similar way, Pistachio could be integrated into the development lifecycle by
writing “regression rules” that target known bugs.

We conducted a second set of exploratory experiments in which we extended
our core rule-based specifications to target bugs that they missed according
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LSH
Version 0.1.3 0.2.1 0.2.9 0.9.1 1.0.1 1.1.1 1.2.1 1.3.1 1.4.1 1.5.1 1.5.5 2.0.1

Additional warnings 12 20 13 14 15 16 16 21 17 8 8 3

Msg str & xfer 3 6 5 3 4 3 4 5 4 2 2 1

Compatibility 1 2 2 1 1 1 1 2 2 1 . .

Functionality 4 7 3 4 4 5 5 7 5 3 4 1

Protocol logic 4 5 3 6 6 7 6 7 6 2 2 1

Additional bugs 2 2 2 4 1 3 1 2 1 . . .

Cntrl flow & seq 1 1 . . . 1 . 1 . . . .

Processing . . 1 1 1 . . . 1 . . .

Data dfn & dcl 1 1 . 1 . 2 1 . . . . .

Data acc & hndl . . . 2 . . . . . . . .

Interface . . 1 . . . . 1 . . . .

Bugs in database 91 83 69 65 81 80 82 82 51 40 31 13

Additional false pos 7 8 6 8 7 5 6 5 7 . 3 .

Remaining false neg 3 2 1 . 3 . 1 . . 1 . 1

OpenSSH
Version 1.0 1.0 1.2 1.2 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.2 1.2.3 2.0.1

p1 p2 p5 p7 p18 p20 p23 p24 p27

Additional warnings 9 13 10 3 3 5 5 3 3 4 5 2

Msg str & xfer 2 3 2 1 1 1 1 1 1 1 1 .

Compatibility 1 1 2 . . . 1 . . . 1 .

Functionality 3 4 4 1 2 2 1 1 . 2 2 1

Protocol logic 3 5 2 1 . 2 2 1 2 1 1 1

Additional bugs 2 1 1 3 1 4 1 2 1 1 . .

Cntrl flow & seq 1 1 . . . 1 . 1 . . . .

Processing . . . 1 . 1 . . 1 . . .

Data dfn & dcl . . . . 1 . . . . 1 . .

Data acc & hndl 1 . 1 2 . 1 1 1 . . . .

Interface . . . . . 1 . . . . . .

Bugs in database 43 39 29 27 26 28 25 22 20 11 5 1

Additional false pos 6 8 6 3 4 1 3 6 3 2 2 2

Remaining false neg 2 1 2 . 2 . 1 1 1 . . .

RCP
Version 0.5.4 0.6.4 0.8.4 1.1.4 1.2.3 1.3.2

Additional warnings 12 11 9 7 8 6

Msg str & xfer 3 2 2 2 2 1

Compatibility 1 . 1 1 . .

Functionality 4 4 2 2 2 2

Protocol logic 4 5 4 2 4 3

Additional bugs 3 1 . 2 . 1

Cntrl flow & seq 1 . . 1 . .

Processing 1 . . . . .

Data dfn & dcl . . . . . .

Data acc and hndl 1 1 . 1 . 1

Interface . . . . . .

Bugs in database 51 46 47 51 28 23

Additional false pos 6 5 5 3 2 4

Remaining false neg . 1 1 . . .

Fig. 14. Pistachio results with extended rule sets
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to the bug databases. Our goal was to determine whether new rules could
catch these bugs. We added 9 new rules to our SSH2 specification, and 7 new
rules to our RCP specification, or roughly 10% more rules overall. The rules
we needed to add were typically for features that were strongly recommended
but not required by the specification, because it turned out that violations
of these recommendations were considered errors. One example is the recom-
mendation that a proper disconnect message be sent by the SSH server when
authentication fails.

Fig. 14 shows the number of additional warnings, bugs, and false positives
found by Pistachio with the extra rules. We also break down the warnings and
bugs as in Section 4.3; we do not graph the data since the numbers are small.
In this figure, zero values are entered as a dot.

The warnings and bugs span the gamut of our categorization, though there are
almost no interface bugs. Interestingly, the new SSH2 rules were determined by
only looking at the LSH bug database, and yet they also found additional bugs
in OpenSSH. Overall, the additional rules account for under 20% of the total
number of warnings generated by Pistachio. Of the new warnings reported
by Pistachio, approximately 17% had security implications according to our
classification from Section 4.4, mostly related to access control issues and
buffer overflows. Fig. 14 also lists the number of false negatives that remain
even after enriching the specifications. Roughly half of the remaining false
negatives are due to terminating iteration after max pass times, and the other
half are due to aspects of the protocol our new rules still did not cover.

For the extended rules, we also measured how often we are able to compute a
symbolic fixpoint for loops during our analysis. Recall that if we stop iteration
of our algorithm after max pass times then we could introduce unsoundness,
which accounts for approximately 28% of the false positives, as shown in Fig.
13. We found that when max pass is set to 75, we find a fixpoint before reaching
max pass in 250 out of 271 cases for LSH, in 204 out of 252 for OpenSSH,
and in 153 out of 164 cases for RCP. This suggests that our symbolic fixpoint
computation is effective in practice.

5 Related Work

Understanding the safety and robustness of network protocols is recognized as
an important research area, and the last decade has witnessed an emergence
of many techniques for verifying protocols.

We are aware of only a few systems that, like Pistachio, directly check source
code rather than abstract models of protocols. CMC [1] and VeriSoft [19] both
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model check C source code by running the code dynamically on hardware, and
both have been used to check communication protocols. These systems execute
the code in a simulated environment in which the model checker controls the
execution and interleaving of processes, each of which represents a communi-
cation node. As the code runs, the model checker looks for invalid states that
violate user-specified assertions, which are similar to the rules in Pistachio.
CMC has been successfully used to check an implementation of the AODV
routing protocol [1] and the Linux TCP/IP protocol [20].

There are two main drawbacks to these approaches. First, they potentially
suffer from the standard state space explosion problem of model checking, be-
cause the number of program executions and interleavings is extremely large.
This is typical when model checking is used for data dependent properties,
and both CMC and VeriSoft use various techniques to limit their search. Sec-
ond, these tools find errors only if they actually occur during execution, which
depends on the number of simulated processes and on what search algorithm
is used. Pistachio makes different tradeoffs. Because we start from a set of
rules describing the protocol, we need only perform symbolic execution on a
single instance of the protocol rather than simulating multiple communication
nodes, which improves performance. The set of rules can be refined over time
to find known bugs and make sure that they do not appear again. We search
for errors by program source path rather than directly in the dynamic exe-
cution space, which means that in the best case we are able to use symbolic
information in the dataflow facts to compute fixpoints for loops, though in the
worst case we unsafely cut off our search after max pass iterations. Pistachio
is also very fast, making it easy to use during the development process. On
the other hand, Pistachio’s rules cannot enforce the general kinds of temporal
properties that model checking can. We believe that ultimately the CMC and
VeriSoft approach and the Pistachio approach are complementary, and both
provide increased assurance of the safety of a protocol implementation.

Other researchers have proposed static analysis systems that have been applied
to protocol source code. MAGIC [21] extracts a finite model from a C program
using various abstraction techniques and then verifies the model against the
specification of the program. MAGIC has been successfully used to check an
implementation of the SSL protocol. The SPIN [2] model checker has been used
to trace errors in data communication protocols, concurrent algorithms, and
operating systems. It uses a high level language to specify system descriptions
but also provides direct support for the use of embedded C code as part
of model specifications. However, due to the state space explosion problem,
neither SPIN nor MAGIC perform well when verifying data-driven properties
of protocols, whereas Pistachio’s rules are designed to include data modeling.
Feamster and Balakrishnan [4] define a high-level model of the BGP routing
protocol by abstracting its configuration. They use this model to build rcc, a
static analysis tool that detects faults in the router configuration. Naumovich

34



et al. [5] propose the FLAVERS tools, which uses dataflow analysis techniques
to verify Ada pseudocode for communication protocols. Alur and Wang [22]
formulate the problem of verifying a protocol implementation with respect
to its standardized documentation as refinement checking. Implementation
and specification models are manually extracted from the code and the RFC
document and are compared against each other using reachability analysis.
The method has been successfully applied to two popular network protocols,
PPP and DHCP. In the context of cryptographic protocols, Bhargavan et
al.[23] propose fs2pv, a prototype tool to extract a verifiable formal model
from implementation code of protocols written in F#. The formal model is
then verified against realistic threat models using the ProVerif [24] automatic
verification tool, which we describe in the next paragraph. It is unclear whether
fs2pv can verify non-cryptographic properties of protocols, or can be adapted
to C, which many protocols are implemented in.

Many systems have been developed for verifying properties of abstract proto-
col specifications. In these systems the specification is written in a specialized
language that usually hides some implementation details. These methods can
perform powerful reasoning about protocols, and indeed one of the assump-
tions behind Pistachio is that the protocols we are checking code against are
already well-understood, perhaps using such techniques. The main difficulty
of checking abstract protocols is translating RFCs and other standards docu-
ments into the formalisms and in picking the right level of abstraction. Murϕ

is a system for checking protocols in which abstract rules can be extracted
from actual C code [25]. Similarly to Pistachio, the user has to specify a list
of variables and functions relevant to the properties to be checked as well as
define the correctness properties of the protocol model. The main differences
between our approach and the Murϕ system lie in how the rules are inter-
preted: in Murϕ the rules are an abstraction of the system and are derived
automatically, whereas in Pistachio rules specify the actual properties to be
checked in the code. Uppaal [3] models systems (including network protocols)
as timed automata, in which transitions between states are guarded by tem-
poral conditions. This type of automata is very useful in checking security
protocols that use time challenges and has been used extensively in the liter-
ature to that extent [26,27]. In [27], Uppaal is used to model check the TLS
handshake protocol. CTL model checking can also be used to check network
protocols. In [28], an extension of CTL is used to model AODV. Butler et al.
[29,30] rely on the MSR formalization language [31,32] to provide precise spec-
ifications for the Kerberos authentication protocol. The specifications are in
the form of a finite set of transitions that define all possible executions from
a fixed initial state. The properties of the protocol are expressed as formal
theorems and verified using theorem proving techniques. The NRL Protocol
Analyzer [33] models cryptographic protocols [34] as a set of communicating
state machines, each of which with multiple local state variables. To determine
if a state is insecure, the analyzer works backwards from the state until all
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the possible transitions have been either explored or discarded. In ProVerif
[24], cryptographic protocols are abstracted by a set of Prolog clauses that
correspond to the execution of the protocol itself and to the computational
abilities and knowledge of an attacker. A novel resolution-based algorithm
similar to the Prolog solving algorithm is then used to prove secrecy proper-
ties. Similarly to Pistachio, the correct behavior of the protocol is represented
through a set of rules. However, in ProVerif, the rules fully model the protocol
and are sufficient to determine whether the protocol is faulty. On the other
hand, Pistachio works directly with the implementation, and its rules specify
only partial correctness properties to be checked using symbolic execution and
theorem proving.

Recently there has been significant research effort on developing static analysis
tools for finding bugs in software. We list a few examples: SLAM [35] and
BLAST [36] are model checking systems that have been used to find errors in
device drivers. MOPS [37] uses model checking to check for security property
violations, such as TOCTTOU bugs and improper usage of setuid. Metal [38]
uses data flow analysis and has been used to find many errors in operating
system code. ESP [39] uses data flow analysis and symbolic execution, and
has been used to check sequences of I/O operations in gcc. CQual [40–42]
uses type qualifier inference to find a variety of bugs in C programs, including
security vulnerabilities in the Linux kernel.

All of these tools have been effective in practice, and allow the user to specify
the property to be checked. However, they are restricted to checking finite
state properties, i.e., safety properties that can be modeled by associating
finite automata with program locations (local variables and the heap); the
automaton takes transitions when certain actions happen in the program,
and the tool issues a warning if an automaton enters an error state. Some
examples of finite state properties are: forbidding double acquires and releases
of the same lock (a bug if locks are non-reentrant) [41,35]; forbidding double
frees of the same memory location [38]; and making sure files are open in the
right mode before being read or written [39]. It is unclear whether these tools
can effectively check the kinds of rich, data-dependent rules used by Pistachio.

Dynamic analysis can also be used to trace program executions, although we
have not seen this technique used to check correctness of implementations.
Gopalakrishna et al. [43] define an Inlined Automaton Model (IAM) that is
flow- and context-sensitive and can be derived from source code using static
analysis. The model is then used for online monitoring for intrusion detection.

Another approach to finding bugs in network protocols is online testing. Pro-
tocol fuzzers [44] are popular tools that look for vulnerabilities by feeding
unexpected and possibly invalid data to a protocol stack. Because fuzzers can
find hard-to-anticipate bugs, they can detect vulnerabilities that a Pistachio
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user might not think to write a rule for. On the other hand, the inherent ran-
domness of fuzzers makes them hard to predict, and sometimes finding even
a single bug with fuzzing may take a long time. Pistachio quickly checks for
many different bugs based on a specification, and its determinism makes it
easier to integrate in the software development process.

Our specification rules are similar to precondition/postcondition semantics
usually found in software specification systems or design-by-contract systems
like JML [45]. Similar constructs in other verification systems also include
BLAST’s event specifications [36].

6 Conclusion

We have defined a rule-based method for the specification of network protocols
which closely mimics protocol descriptions in RFC or similar documents. We
have then shown how static analysis techniques can be employed in checking
protocol implementations against the rule-based specification and provided
details about our experimental prototype, Pistachio. Our experimental results
show that Pistachio is very fast and is able to detect a number of security-
related errors in implementations of the SSH2 and RCP protocols, while main-
taining low rates of false positives and negatives.
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R ::= (RULE id Hyp => Con)

Hyp ::= ε | Pat Fact∗

Con ::= Pat Fact∗ Ghost∗

Pat ::= (RET Base) | (CALL id(Base∗))

Base ::= id |

Fact ::= (Comp Expr Expr)

Ghost ::= (SET Var Expr)

Var ::= id | Var[Idx] | Var.id

Idx ::= Expr | Expr..Expr

Expr ::= Var | 〈integer〉 | 〈double〉 | 〈string〉

| (Op Expr Expr) | (UOp Expr)

Op ::= Comp | + | - | / | *

UOp ::= len

Comp ::= = | != | < | > | <= | >=

Fig. A.1. Pistachio rule-based specification grammar

A Rule Grammar

Fig. A.1 gives the grammar for rules R in Pistachio. This grammar is slightly
generalized from the actual implementation for clarity. Rules are written in
S-expression notation to make them easier for Pistachio to parse. Each rule
R is named with an identifier id and contains a hypothesis and conclusion.
Each hypothesis or conclusion contains exactly one pattern, which may either
be the empty pattern, match a return statement, or match a function call.
The expressions used within a pattern, described by non-terminal Base, are
restricted to identifiers or the wildcard pattern . Hypotheses and conclusions
also contain a set of facts, which are assertions about simple expressions with
no side effects. Expressions can refer to identifiers, and may access array el-
ements of fields. Within expressions Expr we allow basic operations such as
addition and subtraction. We also allow len, which returns the length of an
array (or produces an error if Pistachio does not know the length of the array).
Conclusions may also set ghost variables, which we write with an S-expression
beginning with SET rather than the infix := notation used in the main text of
the paper.

B Choosing a theorem prover

While we chose Darwin as Pistachio’s automatic theorem prover, we also ex-
perimented with using Vampyre [46] and HOL [47]. Vampyre is a sound theo-
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Fig. B.1. Theorems proved by Darwin, Vampyre and HOL

rem prover based on the Nelson-Oppen architecture. Although it was written
to produce explicit proofs of verification conditions for proof carrying code
applications, it can also be used as a general purpose theorem prover. As the
name indicates, HOL is a higher order logic 1 theorem prover. Since Darwin
and Vampyre are written in OCaml, as is Pistachio, it is easy to call them
directly to represent theorems and obtain proofs. And since HOL uses ML
(of which OCaml is a variant) to represent its theorems, proofs, and even
proof strategies, and we were easily able to transform the theorems needed by
Pistachio into the format required by HOL.

We compared all three theorem provers by running Pistachio on the bench-
marks described in Section 4. Across all runs, we counted the total number of
theorems Pistachio asked that were true, and the number of those true the-
orems each prover was able to prove. (Counting these was a non-trivial task,
but was not as hard as it seems—we assumed that any theorem provable by
one of the theorem provers was true, and thus only had to manually check the
remaining theorems, which were plentiful but tended to be small.)

Figure B.1 gives a Venn diagram of the results. Overall, the three provers
had very similar accuracy, and there were some true theorems that none of
the provers were able to show. We can see that the large majority of theorems
succeeded for all three provers (52,475 out of a total of 66,343 theorems). Note
that this is only a rough indication of utility, since we did not evaluate how the
differences affected false positive and negative rates. Despite the very similar
accuracy, Darwin had the best running time—an average of 0.0024 seconds
per theorem, compared to 0.113 seconds for Vampyre and 0.679 seconds for
HOL. This, along with the ease of use of its OCaml interface compared to
Vampyre and HOL, are the reasons we chose Darwin as the theorem prover
for Pistachio.

1 A version of predicate calculus with types and variables ranging over functions
and predicates.
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