Managing Policy Updates in
Security-Typed Languages

Nikhil Swamy, Michael Hicks, Stephen Tse, Steve Zdancewic

Computer Security Foundations Workshop

Venice, Italy

June, 2006

Context

® The security behavior of long running programs
changes frequently.

® Principals can enter and leave the system
® A principal’s privilege level can change

e But, most security-typed languages assume
that these kinds of changes never occur.

Contributions

® RX:a new security-typed language

® Maintains the confidentiality and integrity of data
even in the presence of an evolving security policy.

® Includes a novel treatment of labels as roles derived
from a role-based policy language.

® Models information flows through the state of the
policy by a formal treatment of metapolicy.

® Gives the programmer control over the effect of
policy updates by using a transactional model of
memory.

Outline of the Talk

l. Motivation and challenges
1. A model for policy derived from role-based policy languages
lll. RX: A programming language integrated with policy updates
|. Roles as labels and policy queries
2. Integrating policy updates into a language
3. Avoiding inconsistent policy updates using a transactional semantics
4. Preventing information leaks through the policy with metapolicy
IV. Security Properties for RX
V. Related Work
VI. Future Work

Arbitrary Policy Change is Dangerous

® The timing of an update can cause undesirable
information flows.

® The context in which an update occurs can
can allow an adversary to control which data
she is allowed to observe.

® Policy updates can cause the policy to
become a channel of secret information.

Timing of an Update is Critical

Only members of clinicX
can view patientRec

Updating policy at L2
allows Doc to view
patientRec even when not a
member of clinicX

Update at L4 invalidates the
check in L1, but the flow
has already occurred

Update at L6 might seem to
be ok, but can also be
problematic

L1:if (Doc actsFor clinicX)) {

—> L2:

L3: show(Doc, patientRec)
—> L4:

L5:}
— L 6:

— resign(Doc, clinicX) (policy change)

Transitive Flows

® Ubpdate at L4 deletes an LO: initial T A actsFor B. C
actsFor edge between A and) . ’

B and simultaneously adds

one between C and A. LI:if (A actsFor B) {
L2: Arec := Brec

® | 4 invalidates the check at | 3 }

LI, but it isn’t within the

scope of LI --- should such

an update be ok? L4: change 11 : B, C actsFor A
® The result is that the L5: if (C actsFor A) {

contents of Brec are copied L6: Crec = Arec

to Crec,and C actsFor B is
not stated by T or 7. L7:}

Policy Integrity

® Principals state their
security preferences
through the policy.

e Suppose conditionX is LO: initial T : A actsFor B, C
controlled by the attacker; LI:if (conditionX)
then the update in L2 can L2: change 17" : A, B actsFor C
be triggered by the
attacker.

® Who is affected by the
update in L2? Policy
ownership is important.

Policy as an Information Channel

® Policy updates can depend

on secret data. L1:if (patHasHIV) {
L2: change 17: DrBob actsFor Pat
® |f attacker discovers that L3:}

DrBob is Pat’s doctor, then

he can conclude that Pat
has HIV.

Design Goals

® One size does not fit all with respect to the
timing of policy updates. Must provide some way
of controlling when policy updates take effect.

® Principals state their security requirements
through policy. Changes to policy must be
authorized by the appropriate principals.

® The state of a changing policy can become a
channel of information. Must prevent leaks
through this channel too.

RX: A Secure Language with Policy Updates

® Types contain a security label constructed from RT roles.

® A query construct that examines the runtime policy to establish
relations between roles.

® An update construct that allows the policy to be changed from
within the program itself.

® A transactional semantics that allows the programmer to
control how policy updates take effect.

e A formal treatment of information flows through the state of the
policy.

RX uses a role-based policy language

Why not the DLM!?

Policy in the DLM consists of
|. A lattice specifying the actsFor relation between principals

2. Data tagged by labels specifying how the data is permitted to
be used.

® A label is owned by a principal and is literally a set of
principals.

Unclear ownership of the actsFor lattice makes it difficult to
constrain who can change the lattice

Labels as literal sets means that policy change requires a
relabeling of data

The actsFor hierarchy is too coarse-grained. A principal
delegates all his privileges to another or none.

RTo: A Role-based Policy Language

Roles are interpreted as
sets of principals

[p] 11 includes all principals X

where p — X € 11

as well as [[p|

where p «— p' € 1l

principal P
principal sets X = {Pi,...,P,}
role P P.r
policy stmt S p— X | p1— p2
policy I1 = {s1,...,5n}

A sample policy
Pat.doctors — {DrSue}
Pat.doctors — Clinic.staff
Clinic.staff — {DrAlice,DrBob}

Benefits of a Role-based Policy

® Owned Roles:The role A.r is owned by principal A

® Only A can add or remove statements defining A.r
® Membership is distinct from delegation

® A.r €« B states that A considers B to be in the A.r role

® A.r €« B.r states that A considers all members of B.r to also be
in A.r. B can introduce new members into A.r by altering B.r

® Ownership and Delegation together define who can change which
parts of a policy

Roles as Labels

atomic labels L = p

compound labels /¢ = (Lo, L1)|fud
types t = bool

security types T = iy

® Atomic labels are roles; roles are interpreted as sets

® Adds a level of indirection: by changing the definition of a role the
security level of a type can change, but the label does not.

® Labels contain a confidentiality and an integrity
component --- compound labels are interpreted as a pair

of sets

® Labels are arranged on a lattice according their
interpretation

A Program Updates lts Own Security Policy

® Can add or delete RTg statements from the
policy

® 0, ::= add Pat.docs <« Clinic.staff

® 0, ::= del Clinic.staff « DrBob

® Individual J’s are grouped together to take effect
atomically.

Timing of Updates

S1: if (Pat.healthRecords L C(Clinic.staff)
clinicRec := patSymptoms;

S2: if(leaveClinic)
update(del (Pat.doctors « Clinic.staff));

e Assume clinicRec is confidential to members of Clinic.staff and
patSymptoms to Pat.healthRecords.

e Assignment in S| is justified by the policy query
® The policy update in S2 may alter the result of the query in S|
e Should such an update be allowed?

® What if S2 was nested within S1?

Transactions Control Update Timing

statements S == ...| transg S

® RX provides a declarative construct for specifying
a scope within which policy updates must respect
past and future flows.

® All memory effects that occur within S are logged
as in a transaction.

® Q represents a set of policy assumptions which if
violated by an update in S cause the transaction
to be rolled back.

® Potential leaks that can occur due to rollback are
eliminated by the type system.

Policy as an Information Channel

® Runtime configuration of a
program includes a
memory and a policy

® The attacker has a view

of ?Oth memory and L1:if (patHasHIV) {
policy L2: update(Pat.docs «<—DrBob)
® As policy evolves, the L3:}

attacker can gain
information by observing
the policy too.

® |f attacker discovers that
DrBob is Pat’s doctor, then

he can conclude that Pat
has HIV.

Metapolicy : Policy is data too

® For each role p, C(p) is the set of principals
that can interpret p as a set.

® C(p) is the confidentiality metapolicy.

® Similarly, I(p) is the set of principals that trust
the definition of p.

® |(p) is the integrity metapolicy.

Preventing Leaks through Policy

® Typechecker accepts this
only if it can show (similar to
memory updates)

e Confidentiality of

patHasHIV is not greater .
than C(Pat.docs) L1:if (patHasHIV) {

L2: update(Pat.docs «—=DrBob)

® |Integrity of patHashHIV is L3:}
not less than |(Pat.docs)

® Prevents the attacker from
learning patHasHIV, and from
effecting an unauthorized
change to Pat’s policy.

Requirements of a Metapolicy

® Delegation introduces dependences between roles

® A.r «— B.r in the policy means that information
flows from B.r to A.r

® Any change to B.r is reflected in the interpretation of A.r

® Metapolicy for B.r cannot be stricter (more
confidential, less trustworthy) than A.r

® Also require I(A.r) to include at least A

® The definition of a role is trusted by the owner

Noninterference

® Configurations of a program include policy and
memory

® Observability of policy is determined by metapolicy C(-)

® Memory observability is standard

® RX programs preserve the low-equivalence of a
pair of configurations until a policy change
declassifies policy or data to the attacker

® Obtain an end-to-end guarantee by piecing
together non-declassifying subtraces

® Timing and termination insensitive

Related Work

o FCS 2005, Hicks et al
® Broberg & Sands, Flow Locks

® Almeida-Matos & Boudol, CSFVWV 2005
(Nondisclosure)

® .. (todo)

Future Directions

® Multi-threaded and distributed setting
® Expect transactions to be useful here

® A hierarchy of policies and metapolicies to
provide better control over policy evolution

® Policies communicated between processes
® Applied to
® Medical information systems

® Cross-domain security in a mostly trusted
environment --- e.g. military intelligence

Summary

RX supports inlined policy updates, both
additions and revocations

Provides the programmer with control to
maintain a consistent policy

A framework for metapolicy to control
information leaks through policy

Uses a role-based language to provide a
natural administrative model for policy

http://www.cs.umd.edu/projects/PL/RX

EXTRA SLIDES

A Sample Policy in RTo

Pat.doctors
Pat.doctors
Pat.insurers
Pat.healthRecords
Clinic.staff

Clinic.ansuranceCos
DrPhil.self

I A I A I

{DrSue}
Clinac.staff
{BCBS'}
Pat.doctors
{DrAlice,DrBob}
{BCBS, Aetna}

{ DrPhil}

All of Pat’s doctors can view her health records
All staff at Clinic can considered Pat’s doctors

RX Term Syntax (Partial)

queries q = L1 C Ly
expressions E == true|false|x| Ei ® F>
statements S == skip|xz:=FE|S51;5:

| while (E) S | if (E) S1 S
| if (q) S1 S

® Queries q examine the runtime policy to establish the
lattice ordering relation between atomic labels

® |n the statement | if (¢) S1 Sz the static semantics
permits S| to assume the label ordering g

A Program Updates Its Own Policy

policy stmt s u= p— X |p1— p2
update o = adds|dels
updates A = §]9,A
statements S = .| update A

® Can add or delete statements from the policy

® Individual J’s are grouped together into a A to take
effect atomically

® Paper treats policy statements s as expressions
allowing updates A to be constructed at runtime

® More restrictive syntax presented here assumes that
all updates are known statically

Some Typing Judgments

policy context Q == {{q,....qn}
typing context Q == (I',pc, Q)
QQ=0QU{g}|FS QFS, QT(z)=t: QFE:t, Q.QF QpcC¢
QF if (q) S1 52 QFxz:=F

QF E:bool, Qpc=Q.pcUlFS; i€{l,2}
QFif (E) S1 59

e () consists of an environment, a pc label, and a policy
context Q

® Top-left rule: Q accumulates the the results of policy
queries

® Standard rules for assighments and if-stmt:

® (is used to establish label ordering

The who, what, when and how of
policy change

Which principals are allowed to change the policy?
What parts of the policy are they allowed to change?
When during execution can the change take place?

How is a change reflected in the program's behavior?

Choosing a Security Property

How much attention to Program P
pay to “Past Flows™? .
<policy = 11>
e Suppose A:=B is consistent with
[T, but not consistent with IT
A = B;

e Should we rule out Program P as
insecure?

e What if the assighment A:=B was <update policy to 1r'>
not already executed?

e Similar issue with “Future Flows” C=D

The least we require is for all flows exhibited by a
program to be consistent with the current policy

Static Reasoning about Dynamic Policy

® Static enforcement permits a strong security
guarantee

® But, we still want the actual runtime policy to be
indeterminate

Need to combine a static and a dynamic approach

® The program must interact with the state of the

policy before causing a flow to occur. (Similar to
access control)

