
Inferring Aliasing and Encapsulation Properties for Java

Kin-Keung Ma
University of Maryland, College Park

kkma@cs.umd.edu

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

Abstract
There are many proposals for language techniques to con-
trol aliasing and encapsulation in object oriented programs,
typically based on notions of object ownership and pointer
uniqueness. Most of these systems require extensive manual
annotations, and thus there is little experience with these
properties in large, existing Java code bases. To remedy
this situation, we present Uno, a novel static analysis for
automatically inferring ownership, uniqueness, and other
aliasing and encapsulation properties in Java. Our analysis
requires no annotations, and combines an intraprocedural
points-to analysis with an interprocedural, demand-driven
predicate resolution algorithm. We have applied Uno to a va-
riety of Java applications and found that some aliasing prop-
erties, such as temporarily lending a reference to a method,
are common, while others, in particular field and argument
ownership, are relatively uncommon. As a result, we believe
that Uno can be a valuable tool for discovering and under-
standing aliasing and encapsulation in Java programs.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.2.11 [Soft-
ware Engineering]: Software Architectures—Information
hiding; D.3.2 [Programming Languages]: Language Class-
ifications—Object-oriented languages; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lang-
uages—Program analysis

General Terms Languages, Measurement

Keywords Uno, Java, ownership, uniqueness, lending, en-
capsulation, aliasing, ownership inference, uniqueness infer-
ence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00.

1. Introduction
Understanding and controlling aliasing is a fundamental part
of building robust software systems. In recent years, re-
searchers have proposed many systems that reason about
various aliasing properties in programs, including unique-
ness [1, 2, 7, 8, 15, 28, 31] and ownership [2, 3, 6, 11, 12, 16,
18, 24, 30]. Unique objects are those referred to by only one
pointer, and thus are guaranteed unaliased with any other ob-
jects in the system. Owned objects are encapsulated inside of
their owner, and hence cannot be directly accessed by other
components.

Many of these systems include static checking of these
properties in Java-like source code, but usually require that
the programmer manually add extensive annotations. More-
over, while the properties modeled seem quite useful, it is
unclear how often they occur in existing programs. To date,
experience with using such systems on large software appli-
cations has either been with coarse analysis [16, 30] or via
case studies [2].

In this paper, we present a novel tool called Uno1 that
fills this gap. Uno takes as input unannotated Java source
code and infers uniqueness of method arguments and results;
lending (temporary aliasing) of method arguments and re-
ceiver objects; and ownership and non-escaping of param-
eters and fields. These properties capture key aliasing and
encapsulation behavior, and can give important insight into
Java code. For example, a programmer might use Uno to
check that a factory method always returns a unique object
as expected, or that a proxied object is owned by its proxy,
which therefore controls all access to it.

Uno performs inference using a novel two-phase algo-
rithm. The first phase is an intraprocedural (within one func-
tion) may-alias analysis that computes local points-to in-
formation. Our alias analysis is mostly standard, but uses
an interesting mix of flow-sensitive and flow-insensitive in-
formation. The second phase is a demand-driven interpro-
cedural analysis that computes a set of mutually-recursive
predicates. For example, for each method m, Uno deter-
mines whether the predicate UNIQRET(m) holds, meaning
that m always returns a unique object when it is called. If
m returns its ith argument, then UNIQRET(m) holds only

1 Uniqueness aNd Ownership, http://www.cs.umd.edu/projects/PL/uno

if UNIQPAR(m, i) holds, meaning m is always called with
a unique ith argument. Uno incorporates several other inter-
dependent predicates that capture the aspects of aliasing and
encapsulation mentioned above.

We have applied Uno to more than one million lines of
Java code, including SPEC benchmarks, the DaCapo bench-
marks [5], and larger programs found on SourceForge. Our
goal was to demonstrate the utility of Uno, and to discover
how often the ownership and encapsulation properties it in-
fers actually occur in Java programs. We found that, on av-
erage across our benchmarks, the monomorphic ownership
inferred by Uno holds for 16% of the private fields and only
2.7% of the arguments of called constructors. Somewhat sur-
prisingly, Uno infers that more than 30% of all methods
(constructors not included) that do not return a primitive
return a unique value, and approximately 50% of all non-
primitive method parameters are lent (i.e., only temporarily
aliased by the method and not captured). Our results show
that programmers do control aliasing and encapsulation in
some ways suggested in the literature but less so in oth-
ers, modulo the precision of Uno’s sound but conservative
analysis. To our knowledge, Uno is the first ownership and
uniqueness inference tool that has been demonstrated on a
wide variety of Java applications.

In summary, the contributions of this paper are:

• We describe a flow-sensitive, intraprocedural points-to
analysis algorithm tuned to compute the information
needed for evaluating Uno’s predicates. (Section 3)

• We present a novel interprocedural algorithm that infers a
range of aliasing and encapsulation properties. Our anal-
ysis is structured as a set of mutually-recursive predi-
cates. The algorithm is demand-driven, so that only the
predicates and points-to information necessary to answer
a query are actually computed. (Section 4)

• We describe our implementation, Uno, and apply it to a
number of benchmarks. Uno finds that some aliasing and
encapsulation properties such as lending of arguments
occur often, and other properties, such as monomorphic
ownership, occur rarely. As a result, we believe that Uno
is a valuable tool for discovering and understanding alias-
ing and encapsulation in Java. (Section 5)

2. Overview
We begin our presentation by illustrating Uno’s core notions
of uniqueness and ownership for methods and constructors,
and by describing the key predicates Uno computes to per-
form inference.

Uniqueness We say that a pointer is unique if it is the
only reference to the object it points to. Uniqueness is a
very useful pointer property because its strong notion of non-
aliasing permits modular reasoning [1, 2, 7, 8, 15, 28, 31].

Figure 1(a) illustrates one kind of uniqueness Uno infers.
In this example, instances of ConcreteSubject (lines 4–7)

1 interface Subject {
2 void setData(int d);
3 }
4 class ConcreteSubject implements Subject {
5 private int data;
6 void setData(int d) { data = d; }
7 }
8 class Factory {
9 public Subject getSubject() { // returns unique

10 Subject r = new ConcreteSubject();
11 Subject s = r ;
12 return r ;
13 }
14 }

(a) Uniqueness of method return

15 class Proxy implements Subject {
16 private Subject s; // owned by this
17 public Proxy(Subject s) {
18 this .s = s;
19 }
20 public void setData(int d) {
21 s.setData(d∗d);
22 }
23 }
24 class Main {
25 public void main(Factory f) {
26 Subject t = f .getSubject();
27 t .setData(1); // uses t directly
28 Proxy proxy = new Proxy(t); // proxy owns t
29 proxy.setData(2); // t now used through proxy
30 }
31 }

(b) Ownership of method argument

Figure 1. Source code example

are created by getSubject (lines 9–12). Notice that when
getSubject returns, the only other pointers to its result are r
and s, both of which are dead at the method exit. Thus, Uno
concludes the return value of getSubject is always unique.

Knowing a return value is unique can be useful because
uniqueness typically implies the returned value is “fresh.”
This is particularly helpful in this example, when we are
calling a factory method rather than a constructor, which is
at least guaranteed to allocate a new object. Uno also checks
uniqueness of constructor return values—a pathological con-
structor that stores this in a field of another object would vi-
olate uniqueness—and we found that all constructors in our
experiments return a unique value.

In Section 4, we formally define a predicate UNIQRET(m)
that describes the necessary conditions for method m to re-
turn a value that is unique when the method exits. Uno’s
inference algorithm is specified in terms of this and other
predicates, and for a given input program and selection of
predicates, Uno reports whether those predicates hold for
the methods and constructors of interest.

Ownership Uno’s notion of ownership is based on the flex-
ible alias protection framework of Noble, Potter, Vitek, and
Clarke [12, 24]. Their system uses a notion called represen-
tation containment, in which if object o contains or owns
object p, then only o may access p. This system is de-
signed to be more flexible than previous proposals [3, 18]
in two important ways: First, an object need not own ev-
ery object it refers to. For example, a container object might
own the backbone of the container but not the elements
themselves. Second, ownership is polymorphic or context-
sensitive, which allows an owner to grant some objects it
owns access to other objects it owns [12].

Uno uses a slight variation of this notion of representa-
tion containment for ownership, but in a monomorphic or
context-insensitive form. We say that object o owns object p
if o has the only pointer to p, and if only o may access p. In
particular, the only reads and writes to p must either occur
inside of o’s methods, or inside of other methods that o calls,
where those other methods have only transient pointers to p.
Moreover, none of o’s methods may leak p by returning it or
storing it in a field of another object.

Ownership is a useful property because it enforces en-
capsulation. Owned objects are not accessible outside the
owner, and thus the owner can safely assume that no other
objects can manipulate them. For example, we might use a
security proxy to perform access control before delegating
to a proxied object. We can help ensure complete mediation
by checking that the proxy owns the proxied object.

Figure 1(b) gives an example. This code extends Fig-
ure 1(a) with two new classes. Proxy (lines 15–23) has a
private field s that stores instances of Subject, and Proxy’s
setData method delegates to s. Then the class Main has a
main method that creates a new ConcreteSubject (line 26),
uses it (line 27), creates a Proxy for it (line 28), and then
uses it through the Proxy (line 29).

When Uno analyzes this code, it infers several things. By
the uniqueness of getSubject’s return value, we see that t
is unique on line 26. Then on line 27, we invoke a method
of t, but that method (line 6) does not change the uniqueness
of t. When a unique object o is passed to a method that
does not change its uniqueness—meaning the method has
only transient pointers to o—we say that o is lent to the
method. We define the predicate LENTTHIS(m) to mean
that calling method m lends the receiver object to m, and
LENTTHIS holds for our example method. We also define a
corresponding predicate LENTPAR(m, i) to mean parameter
number i is lent to method m.

Next, on line 28, we pass the unique pointer t to the
Proxy constructor, and t is never used again in the caller.
Thus we say that Proxy’s first parameter is unique, and we
define predicate UNIQPAR(m, i) to mean that method or
constructor m is always called with a unique ith argument
that is not used after the call. In essence, if UNIQPAR(m, i)

holds, then the ith argument may become owned by the
receiver object after the call.

Examining the Proxy class further, Uno observes that
on line 18, s is stored in a private field. Furthermore, that
field value never escapes—in particular, the only instance
method, setData, does not leak s. For example, although
s is passed on line 21 as the receiver object of Concrete-
Subject.setData, that method does not capture the value of
this. Thus predicate NESCFIELD(s) holds for Proxy, mean-
ing that none of Proxy’s methods leak private field s.

Finally, putting this all together, we see that the Proxy
constructor has a unique argument that is stored in a pri-
vate field and does not escape the method. We define two
ownership predicates. First, OWNPAR(m, i) means that
after calling the method or constructor m, the receiver
object owns the ith argument that was passed in. Here
OWNPAR(Proxy(Subject), 1) holds. Second, OWNFIELD(f)
means that field f is encapsulated inside its containing ob-
ject and has a unique reference to its contents, and in our
example, OWNFIELD(s) holds.

Notice that ownership critically depends on uniqueness,
since without it, we cannot reason about whether we have
the sole pointer to an object. Of our two ownership predi-
cates, OWNFIELD(f) is more standard, modeling ownership
of a field f no matter where the contents of that field came
from, including objects locally constructed within a class.
The predicate OWNPAR(m, i), on the other hand, models an-
other important kind of ownership, where we are concerned
with which objects coming from outside of a method or con-
structor become owned. Previous ownership systems sup-
port this pattern [12, 24], though they do not call attention
to it specifically. Another important aspect of Uno is that it
supports flow-sensitivity, to allow unique objects to become
owned later on in a method. In our example, line 27 in main
uses t directly. Only after t is captured by the Proxy object
on line 28 does it becomes owned by proxy. We believe this
flexibility is important to allow objects to be initialized be-
fore they become owned.

Predicate Violations Next consider Figure 2, a slight mod-
ification of Figure 1 that shows several of the ways in which
Uno’s predicates may fail to hold.

In this code, getSubject (lines 10–14) no longer returns a
unique value because on line 12, r is stored in a public field,
and hence there are multiple pointers to the return value of
getSubject after it returns.

Furthermore, the bad method on lines 21–25 falsifies both
NESCFIELD(s) and OWNFIELD(s), in several ways. On
line 22, s is stored in some class Other (not shown), and
thus s leaks from Proxy. Line 23 accesses the s field of a
different Proxy object, causing s to leak again. On line 24,
the value of s is returned by the method, and since the
method is public, that means s might leak yet again. The
middle case illustrates a key difference between ownership
and Java’s private keyword. In Java, a private field can still

1 interface Subject {
2 void setData(int d);
3 }
4 class ConcreteSubject implements Subject {
5 private int data;
6 void setData(int d) { data = d; }
7 }
8 class Factory {
9 public Subject cur;

10 public Subject getSubject() { // should return unique
11 Subject r = new ConcreteSubject();
12 cur = r ; // violates UniqRet
13 return r ;
14 }
15 }
16 class Proxy implements Subject {
17 private Subject s; // not owned by this
18 public Proxy(Subject s) {
19 this .s = s;
20 }
21 public Subject bad(Proxy p) {
22 Other.f = s; // violates NEscField
23 p.s.setData(1); // violates NEscField
24 return s; // violates NEscField
25 }
26 public void setData(int d) {
27 s.setData(d∗d);
28 }
29 }
30 class Main {
31 public void main(Factory f) {
32 Subject t = f .getSubject();
33 t .setData(1); // valid
34 Proxy proxy = new Proxy(t); // proxy should own t
35 proxy.setData(2); // valid
36 t .setData(2); // violates UniqPar
37 }
38 }

Figure 2. Violations of predicates

be accessed by a different instance of the same class. In our
experiments, we found that approximately 40% of private
fields may leak in this way, using the fairly coarse analysis
discussed in Section 3.

Lastly, on line 36, t is used directly after being passed to
the Proxy constructor on line 34, and thus that constructor
is no longer always called with a unique argument. Since
at least one (in fact several) conditions for ownership are
violated, Uno concludes that the Proxy constructor no longer
owns its argument.

This example demonstrates that aliasing and encapsula-
tion properties can be subtle to check and are interdependent.
In Section 5.3, we present measurements on which predi-
cates most often cause ownership to fail to hold.

Ownership and Uniqueness in Practice Finally, for a
more complex example, consider the code in Figure 3,
which is extracted and simplified from Soot [29], one of
our benchmarks. In this example, Uno infers that the Shim-
pleOptions constructor (lines 3–5) owns its argument, as

1 public class ShimpleOptions {
2 private Map options;
3 public ShimpleOptions(Map options) { // owns options
4 this .options = options;
5 }
6 }
7 public class ShimpleBody extends StmtBody {
8 protected ShimpleOptions options;
9 ShimpleBody(Body body, Map options) {

10 this .options = new ShimpleOptions(options);
11 }
12 }
13 public class Shimple {
14 public static final String PHASE = ”shimple”;
15 public ShimpleBody newBody(Body b) { // unique
16 Map options = PhaseOptions.v().getPhaseOptions(PHASE);
17 return new ShimpleBody(b, options);
18 }
19 }
20 public class PhaseOptions {
21 public Map getPhaseOptions(String phaseName) { // unique
22 return getPhaseOptions(getPM().getPhase(phaseName));
23 }
24 public Map getPhaseOptions(HasPhaseOptions phase) {
25 return Collections.unmodifiableMap(ret); // unique
26 }
27 }
28 public class Collections {
29 public static Map unmodifiableMap(Map m) { // unique
30 return new UnmodifiableMap(m);
31 }
32 }

Figure 3. Example from Soot

follows. First, Uno determines on lines 29–31 that unmodifi-
ableMap returns a unique object. Thus so does getPhaseOp-
tions(HasPhaseOptions) (lines 24–26), and therefore so does
getPhaseOptions(String) (lines 21–23). Thus on line 16, Uno
infers that options points to a unique object. This unique ob-
ject is passed to the ShimpleBody constructor declared on
line 9, which in turn passes it to the ShimpleOptions con-
structor declared on line 3, which stores it into a private field
on line 4. The remaining code (not shown) does not cause the
field to leak. Putting this all together, ShimpleOptions owns
its field options, and the ShimpleOptions(Map) constructor
owns its argument.

As this example shows, we often need to follow se-
quences of calls to infer uniqueness and ownership. Sec-
tion 5 includes sample output from Uno showing this chain
of reasoning on the Soot code corresponding to Figure 3.

3. Points-to Analysis
The first step of Uno’s inference algorithm is an intraproce-
dural points-to analysis that determines aliasing information
within each method. We use a may points-to analysis, so that
the points-to sets determined by our algorithm describe a su-
perset of all possible run-time objects that may be pointed

RET Objects returned by this method
PAR(`, i) Objects passed to ith parameter of `
THIS(`) Receiver objects of `
LIVE(`) Objects live after `
SUPTHIS(i) ith parameters of super(. . .) or this(. . .)

FLD(f) Objects pointed to by field f of this
BAD Objects pointed to externally
BADFLD Private fields accessed by other instances

of the same class, and all non-private fields

Statement Transfer Function Points-to Set Constraints

Method entry Out(x) =

8<: {`pi} x is ith param
{`this} x is this
∅ otherwise

FLD(f) ⊇ {`f} ∀f in class
BAD ⊇ {`bad}
BADFLD ⊇ {non-private fields}

x1 = x2 Out(x1) = In(x2) —

x = new` C(x1, . . . , xn) Out(x) = {`} PAR(`, i) ⊇ In(xi) i ∈ 1..n
LIVE(`) ⊇ Out(x) ∀live x

x1.f = x2 —

if x1 = this then
FLD(f) ⊇ In(x2)

else
BAD ⊇ In(x2)
if class(x1) = class(this) then

BADFLD ⊇ {f}

x1 = x2.f Out(x1) =

FLD(f) if x2 = this
BAD otherwise

if x2 6= this ∧ class(x2) = class(this) then
BADFLD ⊇ {f}

C.f = x — BAD ⊇ In(x)
x = C.f Out(x) = BAD —

xr = x0.m`(x1, . . . , xn) Out(xr) = {`}
PAR(`, i) ⊇ In(xi) i ∈ 1..n
THIS(`) ⊇ In(x0)
LIVE(`) ⊇ Out(x) ∀live x

super(x1, . . . , xn) — SUPTHIS(i) ⊇ In(xi) i ∈ 1..n

this(x1, . . . , xn) — SUPTHIS(i) ⊇ In(xi) i ∈ 1..n

return x — RET ⊇ In(x)

Figure 4. Intraprocedural points-to analysis

to by variables and fields. Our analysis includes both flow-
sensitive and flow-insensitive components, discussed below.

We formalize our points-to analysis by associating each
syntactic allocation site in the program with a fresh label `
that represents objects constructed at that site. Thus points-to
sets are sets of labels. For example, if we see an assignment
x = new` C(x1, . . . , xn) in the program, we add ` to the
points-to set for x.

In an interprocedural points-to analysis, we would only
need to label occurrences of new, and then propagate those
labels throughout the whole program. However, since our
points-to analysis is intraprocedural and thus only operates
on one method at a time, we also need labels for objects
that come from “outside” the method we are analyzing. For
each method parameter xi, we create a label `pi to represent
the object initially pointed to by xi. Similarly, we use label
`f for the initial contents of this.f , label `bad for the initial
contents of any other field, and label `this for the object
stored in this. Lastly, we also label method invocations as
x.m`(. . .), and use ` to represent objects returned by the call.

To infer aliasing and encapsulation properties, we need
to determine how objects in the program flow through each
method. For example, to decide whether a method returns
a unique object, we need to compute the set of objects that
may be returned by the method and ensure there are no other
pointers to them when the method exits—e.g., the returned
object was not stored in a field.

To support this process, our points-to analysis computes
a series of flow-insensitive sets, summarized at the top of
Figure 4. By flow-insensitive, we mean that there is only
one copy of the set for the entire method body. This is in
contrast to our modeling of local variables, which is flow-
sensitive, allowing variables’ points-to sets to change from
one program point to the next (see below).

The flow-insensitive set RET tracks the objects returned
by the current method. For each method invocation labeled `
in the current method, PAR(`, i) tracks the objects passed
in as the ith argument, THIS(`) tracks the possible receiver
objects, and LIVE(`) tracks the objects pointed to by local
variables that are live after the call. We do not treat calls to
super or this constructors as method invocations, in order
to handle certain special cases for constructors. Thus if we
see a super or this constructor call, we store the points-to
set of the ith parameter in SUPTHIS(i) (rather than as a PAR
set). Note that a constructor includes exactly one (possibly
implicit) super or this constructor call, and the call must be
the first action of the constructor [4].

The flow-insensitive set FLD(f) tracks the objects stored
in this.f . Any object written to a field not of this (i.e., the
write is not of the form this.f = . . .), or to a static field,
is added to the set BAD, rather than trying to track other
objects’ fields precisely. This greatly simplifies our points-
to analysis, since it means that anything stored outside of the
current object in the heap is aliased to everything in BAD. In

Section 4, we assume that any object in BAD is not unique
and escapes.

The last set, BADFLD, is a set of field names rather than
a points-to set. This set contains fields that may be accessed
by other instances. It contains all non-private fields, along
with private fields that the current method accesses from
other instances of the same class as this. Recalling line 24 of
Figure 2, we use this set to find fields that are private but are
accessed from outside the object containing them. Note that
BADFLD is a global set, shared across all points-to analyses.

The bottom of Figure 4 summarizes the dataflow anal-
ysis we use to compute points-to information. The various
kinds of statement are listed in the left column, and are de-
rived from the Jimple [29] representation of Java bytecode,
which we use in our implementation. We omit some lan-
guage features such as arrays, which are discussed in Sec-
tion 5. Our analysis tracks information for local variables
flow-sensitively, maintaining a mapping Out that gives the
points-to set for local variables just after each statement ex-
ecutes. We use In to stand for the union of the Out maps of
all preceding statements. For brevity, Out(x) = In(x) for all
x unless stated otherwise.

For each statement, we list the corresponding transfer
function and constraints on the flow-insensitive points-to
sets. At the method entry, we set Out so that each formal
parameter xi points to `pi, this points to `this, and other
variables’ points-to sets are empty. We add `f to FLD(f)
for each f , we set BAD to contain `bad, and we add any non-
private fields to BADFLD.

At an assignment statement, we copy the right-hand side
points-to set to the left-hand side, with no effect on the flow-
insensitive sets. For a constructor call, we set the left-hand
side to point to the label of the call, and we include the
points-to set of each argument in PAR, and add to LIVE the
set of objects pointed to by live local variables after the call.
We omit the live variable computation, since it is standard.

When writing to a field of this, we add the points-to set of
the right-hand side to FLD(f). When writing to a field of any
other object, we instead add to the set BAD. Additionally,
if the object whose field is written has the same class as
this, then we add f to the set BADFLD. When reading from
an instance field, we set the points-to set of the left-hand
side either to FLD(f) or BAD, as appropriate, and add f to
BADFLD if needed. Static fields are shared by all instances
of the class, and so any objects pointed to by them are added
to BAD. To keep notation simpler, we assume that fields are
not inherited. In our implementation, inherited fields are in
BAD, so they always escape and are not unique.

For method and super or this constructor calls, we add
the points-to sets of the arguments to PAR or SUPTHIS, as
appropriate. For method calls, the points-to set of the left-
hand side contains the returned label, and we constrain LIVE
and THIS appropriately. Lastly, for method return we add the
points-to set of the returned variable to RET.

Resolution Algorithm The points-to analysis described in
Figure 4 could be implemented using an iterative fixpoint
algorithm. However, we found that the fixpoint algorithm
was too slow for large benchmarks, because it computed
information that was not necessary to infer Uno’s predicates.

Thus our implementation instead uses a lazy, constraint-
based solving algorithm. We represent each points-to set A
as a lazy set {`1, . . . , A1, . . .}, consisting of labels `i and
other points-to sets Ai. For a transfer function of the form
A = B, we set A to {B}. For a constraint A ⊇ B, we add
B to the lazy set for A (i.e., A is now of the form {. . . , B}).
For an In set, which is a union of the form

⋃
Outi (recall this

is not shown in Figure 4), we set In = {Out1, . . .}.
Later on, when we need the contents of a set, we flatten it

on demand, where flatten({`1, . . . , A1, . . .}) = {`1, . . .} ∪⋃
j flatten(Aj). Flattening a lazy set can be time consuming,

and if we needed to flatten all sets this approach would be too
slow. However, we discovered that most sets computed in the
points-to analysis are not needed by the predicate resolution
algorithm. In particular, any flow sensitive information (e.g.,
Out(x)) is not used directly in predicate resolution. Thus
we have found that laziness in the points-to analysis greatly
improves the running time of our algorithm.

4. Predicate Inference
The second step of our inference algorithm is an interpro-
cedural analysis that determines aliasing and encapsulation
properties of methods and constructors. As discussed in Sec-
tion 2, we specify our analysis as a set of mutually-recursive
predicates. For presentation purposes, we split the predicates
into two groups, but in practice, Uno computes all predicates
simultaneously.

Our definitions of the predicates depend on the various
flow-insensitive points-to sets computed by the algorithm in
Section 3. Thus, we believe that any other points-to analysis
(e.g., a more precise one [20, 26, 27, 32]) that could be
modified to produce the same summary information could
be integrated into Uno without difficulty.

4.1 Uniqueness Predicates
Figure 5 defines the predicates related to uniqueness, most
of which we saw earlier in Section 2. There are five main
predicates, described in the left column. UNIQRET(m) is the
basic uniqueness predicate, which holds if method m always
returns a unique object. To cut down on verbiage, throughout
the rest of this section we use the word method and the sym-
bol m to mean either a method or a constructor. If m is a con-
structor, UNIQRET(m) holds if the newly constructed object
is unique after the constructor call. LENTPAR(m, i, no-fld)
holds if calling method m does not affect the uniqueness of
its ith argument, i.e., if the ith argument is lent to m. Here
the flag no-fld (omitted earlier for simplicity) is true when
checking ordinary method calls, and is false in certain cases
of checking calls to super or this constructors, as discussed

subs(m) methods that override m
sups(m) methods m overrides

callee(m) methods called by m

supthis(m) super or this constructor called by m
mth(`) method invoked by call `

before(`) labels of calls that happen before `

a ./ b ≡ (a ∩ b = ∅), a 6./ b ≡ (a ∩ b 6= ∅)
Predicate Local Constraints Non-local Constraints

UNIQRET(m)

Method m returns a unique object

(L1) RET ./ BAD
(L2) RET ./ {`this}
(L3) RET ./ FLD(f)

(1) UNIQRET(subs(m))
(2) UNIQPAR(m, i, true) if RET 6./ {`pi}
(3) UNIQRET(mth(`)) if RET 6./ {`}
(4) LENTPAR(mth(`), j, true) if RET 6./ PAR(`, j)
(5) LENTTHIS(mth(`)) if RET 6./ THIS(`)
(6) LENTTHIS(m) if m is constructor

LENTPAR(m, i, no-fld)

Calling method m does not
change the uniqueness of its ith
argument

(L1) {`pi} ./ BAD
(L2) {`pi} ./ RET
(L3) If no-fld then

{`pi} ./ FLD(f)

(1) LENTPAR(subs(m), i, no-fld)
(2) LENTPAR(mth(`), j, true) if {`pi} 6./ PAR(`, j)
(3) LENTTHIS(mth(`)) if {`pi} 6./ THIS(`)
(4) LENTPAR(supthis(m), j, no-fld) if {`pi} 6./ SUPTHIS(j)

LENTTHIS(m)

Calling method m does not
change the uniqueness of the re-
ceiver object

(L1) {`this} ./ BAD
(L2) {`this} ./ RET
(L3) {`this} ./ FLD(f)

(1) LENTTHIS(subs(m))
(2) LENTPAR(mth(`), j, true) if {`this} 6./ PAR(`, j)
(3) LENTTHIS(mth(`)) if {`this} 6./ THIS(`)
(4) LENTPAR(supthis(m), j, true) if {`this} 6./ SUPTHIS(j)
(5) LENTTHIS(supthis(m))

UNIQPAR(tgt , i, no-fld)

Method tgt’s ith parameter is al-
ways unique

—
(1) UNIQPAR(sups(tgt), i, no-fld)
(2) UNIQPAR-IN(m, i, tgt , true) if tgt ∈ callee(m)
(3) UNIQPAR-IN(m, i, tgt , no-fld) if tgt ∈ supthis(m)

UNIQPAR-IN(m, i, tgt , no-fld)

Method m always passes a unique
object as the ith parameter when it
calls tgt

∀` s.t. mth(`) = tgt
(L1) PAR(`, i) ./ BAD
(L2) PAR(`, i) ./ {`this}

If no-fld then
(L3) PAR(`, i) ./ LIVE(`)
(L4) PAR(`, i) ./ FLD(f)
(L5) PAR(`, i) ./ PAR(`, j), j 6= i
(L6) PAR(`, i) ./ THIS(`)

∀` s.t. mth(`) = tgt
(1) UNIQPAR(m, j, true) if PAR(`, i) 6./ {`pj}
(2) UNIQRET(mth(`2)) if PAR(`, i) 6./ {`2}
∀`2 ∈ before(`) .

(3) LENTPAR(mth(`2), j, true) if PAR(`, i) 6./ PAR(`2, j)
(4) LENTTHIS(mth(`2)) if PAR(`, i) 6./ THIS(`2)
(5) LENTPAR(supthis(m), j, no-fld) if PAR(`, i) 6./ SUPTHIS(j)

Figure 5. Predicates related to uniqueness

below. LENTTHIS(m) holds if calling m does not change the
uniqueness of the receiver object. (We could combine LENT-
THIS and LENTPAR into one predicate, but keep them dis-
tinct for expository purposes, and because our experimental
results show that this is often treated differently than param-
eters.) Lastly, UNIQPAR(tgt , i, no-fld) holds if method tgt
is always called with a unique ith argument. This predicate
is defined in terms of UNIQPAR-IN(m, i, tgt , no-fld), which
checks the same property but for the calls to tgt inside of m.
In both cases, no-fld is used the same as in LENTPAR.

The middle and right columns of Figure 5 give a set of
conditions that must hold for the predicate to be true. We
use several conventions in the figure to simplify notation.
Almost all of the conditions involve checking whether vari-
ous points-to sets are disjoint, and we write a ./ b to mean
a∩b = ∅, and a 6./ b to mean a∩b 6= ∅. In general, we use m
and tgt to range over methods and constructors, i and j for
parameter numbers, and f for fields. Many of the predicates
are parameterized by an argument m, and any points-to set
mentioned in a predicate comes from the analysis of m.

We also use a number of sets when defining the predi-
cates, as summarized at the top of Figure 5. We use subs(m)
and sups(m) for the set of methods that override m and that

m overrides, respectively. We write callee(m) for the set
of methods that m may call according to the compile-time
types, and we write supthis(m) for the super or this construc-
tor called in m; this is only defined if m is a constructor, and
otherwise predicates depending on supthis(m) are ignored.
For a label ` corresponding to a method call, we use mth(`)
to denote the method invoked by the call `, according to the
compile-time types. Lastly, we use before(`) for the set of
labels `′ such that there is a path from `′ to ` in the control-
flow graph, i.e., `′ may happen before `.

We divide the conditions into two parts. Local conditions
are those that can be decided just from the intraprocedural
alias analysis results for the method in question, and thus do
not depend on other methods. For example, UNIQRET(m)
requires that any return value of m not be in BAD, since a
BAD value might have come from a field of another object.
Thus we require RET ./ BAD.

Non-local conditions are those that require recursively
checking predicates for other methods. For example, if
method m1 returns the result of method m2, then to decide
whether m1’s result is unique, we need to check unique-
ness of m2’s result. Each recursively-checked predicate may
have side-conditions that describe exactly what must be

checked. For example, UNIQRET(m) recursively checks (3)
UNIQRET(mth(`)) where side-condition RET 6./ {`} holds,
i.e., UNIQRET is recursively checked for all ` that are in-
cluded in RET. Note the implicit universal quantification
here—to keep the conditions readable, we assume that any
free variables not defined by the predicate range over all
reasonable values (e.g., j ranges over parameter numbers, `
ranges over invocations, f ranges over fields, etc.)

For convenience in discussing the predicates and in evalu-
ating Uno, we number all of the conditions. We next discuss
the predicates in more depth.

UNIQRET(m) For this predicate to hold, the returned ob-
ject must not be reachable in any way except via the return
value of the call. Thus nothing in BAD (L1) or {`this} (L2)
may be in RET, since objects in BAD may be pointed to by
other objects, and we assume this is not unique. The returned
object must also not be pointed to by a field (L3). Note the
implicit quantification in (L3)—we require this condition
holds for all fields f of method m.

We also need to account for objects that come from out-
side method m. Any parameter `pi in RET must be unique
(2), meaning that the caller does not keep a pointer to that
object, and similarly any method label ` in RET must come
from a method that returns a unique object (3). Further-
more, any object in RET that is passed in to a call, either
as a method argument (in some PAR(`, j), (4)), or as a re-
ceiver object (in THIS(`), (5)) must not have its uniqueness
changed by the call, meaning it must have been lent to the
callee. If m is a constructor, it must not change the unique-
ness of this (6), which is not included in RET. Finally, a call
to m at compile time might at run time invoke a method that
overrides m. Hence m can have a unique return value only
if all methods that override it do also (1).

LENTPAR(m, i, no-fld) For method m not to change the
uniqueness of its ith argument, represented by `pi in the
alias analysis, it must be that `pi not appear in BAD (L1),
be returned by m (L2), or be stored in a field (L3). If no-fld
is false, we omit the last check. We use this feature when
testing LENTPAR for a call to a super or this constructor. In
these cases, the calls by definition are received by the same
object as the caller, and so if such a call stores a parameter
in a local field, we still treat the argument as if it were lent
(since it is stored in the same object).

For the non-local predicates, LENTPAR requires that if `pi

is passed to a method (2) or super or this constructor (4), or
has one of its methods invoked (3), then those calls must not
change its uniqueness. Finally, any methods that override m
must also not change parameter i’s uniqueness (1).

LENTTHIS(m) This predicate is analogous to LENTPAR,
except it checks properties of `this instead of `pi. There is no
no-fld flag, since storing `this in a field always makes it non-
unique, and there is an extra check (5) for a call to a super or
this constructor, since such calls are invoked on `this as well.

UNIQPAR(tgt , i, no-fld) This predicate and UNIQPAR-IN
are the most complex of the uniqueness predicates. The
base predicate, UNIQPAR, must check that all callers to
tgt pass a unique object as tgt’s ith argument. Similarly
to the other predicates, we first must ensure the same prop-
erty holds for methods that tgt overrides (1), since tgt may
be called in place of methods it overrides. Then we check
UNIQPAR-IN(m, i, tgt , no-fld) for all m that are methods
(2) or constructors (3) that may call tgt . For the former, we
set no-fld to true, since we assume the call may be received
by another object, and for the latter no-fld remains the same.

In turn, UNIQPAR-IN examines all calls ` inside of m that
invoke tgt . We want to ensure that each call always passes
a unique argument to position i. Thus PAR(`, i) must not
intersect BAD (L1) or this (L2), and nothing in PAR(`, i) can
be live after the call (L3) or be stored in a field (L4). We
relax the last two checks if no-fld is false, to allow calls to
super or this constructors to retain pointers across a call or
store parameters in the current object. We also require that
the points-to set PAR(`, i) for parameter i not overlap any
other parameter’s points-to set (L5) or the receiver object of
the call (L6), since then that parameter may be aliased, and
therefore not unique, inside of the callee.

UNIQPAR-IN also requires that any parameters `pj or
method return values `2 in PAR(`, i) must themselves have
been unique (1–2). We also ensure that for any calls `2
that happen before the call `, if any labels in PAR(`, i) are
passed to those calls—either as a parameter PAR(`2, j) or
as a receiver object THIS(`2)—then their uniqueness must
not have been changed by the call `2 (3–4). This ensures
that only one call in a method can transfer uniqueness of
an object to another method. We also check this condition
for parameters passed to super or this constructor calls (5),
which, if they exist, occur at the beginning of the constructor.

4.2 Ownership Predicates
Figure 6 defines the remaining predicates, which focus
on ownership and encapsulation. OWNPAR(m, i) holds if
method m owns its ith argument. NESCPAR(m, i) holds if
the ith parameter of method m does not leak from the object
via a call to m. NESCFIELD(f) holds if field f does not
leak from the object, and NESCFIELD-IN(f, m) holds if f
does not leak via method m. A refinement of NESCFIELD,
OWNFIELD(f) holds if f is owned by the object, mean-
ing it does not escape and contains a unique pointer, and
OWNFIELD-IN(f, m) holds if field f is owned locally
within method m. Lastly, STORE(m, i) holds if method m
stores parameter i in some field. In more detail, the predi-
cates are:

OWNPAR(m, i) As discussed in Section 2, an argument to
a method or constructor is owned if it becomes fully encap-
sulated inside its owner after the call. Thus for ownership
of the ith argument to hold, it must be unique (2), so that
this method or constructor can acquire ownership. We call

Predicate Local Constraints Non-local Constraints

OWNPAR(m, i)

Method m owns its ith argument
—

(1) OWNPAR(subs(m), i)
(2) UNIQPAR(m, i, false)
(3) NESCPAR(m, i)
If supthis(m) = ∅ or 6 ∃j s.t. SUPTHIS(j) 6./ {`pi}
(4) then STORE(m, i)
(5) else OWNPAR(supthis(m), j) if SUPTHIS(j) 6./ {`pi}

NESCPAR(m, i)

The ith parameter of method m
does not escape

(L1) {`pi} ./ BAD
(L2) {`pi} ./ RET

(1) NESCPAR(subs(m), i)
(2) LENTPAR(mth(`), j, true) if {`pi} 6./ PAR(`, j)
(3) LENTTHIS(mth(`)) if {`pi} 6./ THIS(`)
(4) LENTPAR(supthis(m), j, false) if {`pi} 6./ PAR(`, j)
(5) NESCFIELD(f) if {`pi} 6./ FLD(f)

NESCFIELD(f)

Field f does not escape
(L1) f is private (1) NESCFIELD-IN(f, m) if method m uses f

NESCFIELD-IN(f, m)

Field f does not escape in
method m

(L1) FLD(f) ./ BAD
(L2) FLD(f) ./ RET
(L3) f 6∈ BADFLD

(1) LENTPAR(mth(`), j, true) if FLD(f) 6./ PAR(`, j)
(2) LENTTHIS(mth(`)) if FLD(f) 6./ THIS(`)
(3) LENTPAR(supthis(m), j, true) if FLD(f) 6./ SUPTHIS(j)

OWNFIELD(f)

Field f is owned by this object
— (1) NESCFIELD(f)

(2) OWNFIELD-IN(f, m) if method m uses f

OWNFIELD-IN(f, m)

Field f is owned by this object
within method m

(L1) FLD(f) ./ {`this}
(1) UNIQPAR(m, j, false) if FLD(f) 6./ {`pj}
(2) OWNFIELD(g) if FLD(f) 6./ FLD(g)
(3) UNIQRET(mth(`)) if FLD(f) 6./ {`}

STORE(m, i)

Method m stores its ith parameter
in a field

(L1) (∃f s.t. FLD(f) 6./ {`pi}) ∨
(∃j s.t. SUPTHIS(j) 6./ {`pi})

(1) STORE(subs(m), i)

Figure 6. Predicates related to ownership

UNIQPAR with no-fld set to false to allow m to own its argu-
ment even if a super or this caller retains a reference to the
argument, since both calls are received by the same object.
The ith argument also must not escape (3), so that the owned
object is contained inside of the owner.

To suppress some vacuous cases of argument ownership,
we also require that the ith parameter is either stored in some
field (4) or passed to a super or this constructor that owns
it (5), although our check for this is heuristic, as discussed
below. Finally, any method that overrides m must have the
same ownership behavior (1).

NESCPAR(m, i) This predicate requires that the ith pa-
rameter, represented by `pi, not appear in BAD (L1) and not
be returned by the method (L2), since either would cause `pi

to escape. As usual, this predicate must hold for all meth-
ods that override m (1), since they may be called in place
of m. If `pi is used in a call, either as an argument (2) or as a
receiver (3), then that call must not change its uniqueness—
except that a call to a super or this constructor may cap-
ture `pi, hence for that case we call LENTPAR with no-fld
as false (4). Finally, if `pi is stored in a field, then that field
cannot escape this object (5).

NESCFIELD(f) This predicate checks that f is private
(L1) and checks NESCFIELD-IN(f, m) for all methods m

that use f (1). This predicate in turn ensures that nothing
in FLD(f) may be in BAD or RET (L1–L2), and that f is
not in BADFLD (L3), so that it cannot leak via a different
instance of the same class. Furthermore, anything in FLD(f)
from a method invocation or constructor call must have been
unique (1), and anything in FLD(f) that is passed to a call
must not have its uniqueness changed by the call (2–3).

OWNFIELD(f) This predicate requires that field f not
escape (1), and also requires that f is locally owned within
each method m that refers to f . The latter is checked by
predicate OWNFIELD-IN(f, m), which requires that this not
be stored in f (L1), and that only unique or otherwise owned
objects (1–3) are stored in f .

STORE(m, i) This predicate checks whether `pi, which
represents the ith parameter, may be pointed to by some field
or was passed to a call to a super or this constructor. (Note
that OWNPAR(m, i), which uses this predicate, ensures that
the called constructor owns the argument.) Since we use a
may-alias analysis, STORE(m, i) is a heuristic—we might
think m stores its ith argument when it actually does not at
run time. Nevertheless, we have found this predicate useful
in practice for eliminating uninteresting cases of ownership.

Init: ∀p. visited(p) = false, Val(p) = true

RESOLVE(p) =
if visited(p)

return
end if
visited(p) = true
if p can be determined false locally

Val(p) = false
else

for each s ∈ {predicates p depends on} do
RESOLVE(s)
if Val(s) = false

break
end if

end for
end if
if Val(p) = false

FALSIFY(p)
end if

FALSIFY(p) =
Val(p) = false
for each q that directly depends on p such that Val(q) = true do

FALSIFY(q)
end for

Figure 7. Predicate resolution algorithm.

4.3 Predicate Resolution
To compute whether the predicates hold, we can think of
each predicate p as a node in a graph, with an edge from p
to q if p depends on q, meaning that p uses q in one of its
non-local conditions. Then we can check whether p is false
by performing a forward search from p, looking for a node
whose local conditions are false. If such a node exists then p
is false, and otherwise it is true.

Figure 7 gives a depth-first search variant RESOLVE(p) to
check whether p holds. The algorithm uses a map Val from
predicates to truth values, and initially Val(p) is set to true for
all p. The algorithm also keeps a flag visited(p) that indicates
whether we have already tried to resolve predicate p, to
stop the search from revisiting predicates. During resolution,
visited nodes have had their local conditions checked, and
non-visited nodes have not.

To check whether p holds, the algorithm traverses the
predicate dependency graph. If p has been visited before,
we exit. Otherwise we mark p as visited and check p’s
local conditions. If they show that p is false, we update Val
accordingly. Otherwise we resolve each predicate p depends
on. We stop iteration at the first predicate that is false—
by the last step of the algorithm (below), that predicate
being false has already caused Val(p) to be set false. After
computing the value of predicate p, if we determine it was
false, we invoke FALSIFY(p) to find all other predicates
that p depends on and mark them false as well, pruning the
graph traversal if we encounter a false predicate. If after this
algorithm p is not set to false, it remains true.

The key feature of this algorithm is short-circuiting recur-
sively computing predicates. As soon as one predicate p de-
pends on is discovered to be false, there is no need to check
the other predicates p depends on. We found that when Uno
is used to compute a partial set of predicates, this feature
can improve the running time of predicate resolution. When
we attempted to turn off lazy sets in our experiments, we
found that the larger experiments no longer completed, even
if given several days to run.

5. Implementation and Experiments
Uno is implemented using the Soot Java analysis frame-
work [29]. Soot operates on Java class files, translating them
into Jimple, a typed 3-address intermediate representation
that uses instructions similar to those in Figure 4.

To analyze the full Java language, Uno needs to handle
some language features we have not discussed. We treat
arrays and their contents as BAD, which is conservative but
sound, because it causes those objects to be treated as non-
unique and escaping. We do the same for native method
arguments and results, though we cannot be fully sound for
native methods since they may carry out arbitrary operations.
Java type casts are ignored by our points-to analysis, since
they do not change the object stored in a reference. We
also make two unsound assumptions in our analysis. First,
we analyze code in exception handlers, but do not track
aliasing through exceptions, or the uniqueness or ownership
of objects that are thrown. We also do not model reflection
API calls specially. We leave soundly handling these features
to future work; for example, the work of Livshits et al [23]
can be used to remove reflection from programs.

Uno begins by performing the points-to analysis from
Section 3. Since our points-to analysis is demand-driven, the
contents of the points-to sets are not computed until they are
demanded by the second step the algorithm, which resolves
the predicates from Section 4. Recall that the predicates
involve some additional sets. The sets subs(m), sups(m),
supthis(m), and callee(m) can be determined trivially from
the call graph and class hierarchy, and the set before(`) can
be easily computed from the control-flow graph.

Once we compute these sets, we use the predicate resolu-
tion algorithm from Section 4 to infer ownership and unique-
ness. As mentioned earlier, that algorithm is demand-driven,
so that it does not compute any more points-to sets or pred-
icates than it must. In our experiments, we ran Uno exhaus-
tively, to compute all predicates for all methods and con-
structors, but Uno can also be used selectively. For example,
we could use Uno to find all methods that return unique ob-
jects, or to find all constructors that own their arguments.

Since Uno’s predicates are somewhat complex and have
many interdependencies, understanding why a predicate
holds or does not hold is sometimes difficult. Figure 8 gives
an example of Uno’s output, which is designed to address
this problem. This particular output is from the analysis of

1 UniqPar of <Shimple: ShimpleBody newBody(SootMethod,Map)> parameter 1 : True
2 UniqPar of <ShimpleBody: ShimpleBody(SootMethod,Map)> parameter 1 in <Shimple: ShimpleBody newBody(SootMethod,Map)> : True
3 UniqRet of <NullPointerException: NullPointerException()> : True
4 UniqRet of <Collections$UnmodifiableMap: UnmodifiableMap(Map)> : True
5 UniqRet of <Collections: Map unmodifiableMap(Map)> : True
6 UniqRet of <PhaseOptions: Map getPhaseOptions(HasPhaseOptions)> : True
7 UniqRet of <PhaseOptions: Map getPhaseOptions(String)> : True
8 UniqPar of <ShimpleBody: ShimpleBody(SootMethod,Map)> parameter 1 in <Shimple: ShimpleBody newBody(SootMethod)> : True
9 UniqPar of <ShimpleBody: ShimpleBody(SootMethod,Map)> parameter 1 : True

10 UniqPar of <ShimpleOptions: ShimpleOptions(Map)> parameter 0 in <ShimpleBody: ShimpleBody(SootMethod,Map)> : True
11 UniqRet of <PhaseOptions: Map getPhaseOptions(String)> : True
12 UniqPar of <ShimpleBody: ShimpleBody(Body,Map)> parameter 1 in <Shimple: ShimpleBody newBody(Body)> : True
13 UniqPar of <Shimple: ShimpleBody newBody(Body,Map)> parameter 1 : True
14 UniqPar of <ShimpleBody: ShimpleBody(Body,Map)> parameter 1 in <Shimple: ShimpleBody newBody(Body,Map)> : True
15 UniqPar of <ShimpleBody: ShimpleBody(Body,Map)> parameter 1 : True
16 UniqPar of <ShimpleOptions: ShimpleOptions(Map)> parameter 0 in <ShimpleBody: ShimpleBody(Body,Map)> : True
17 UniqPar of <ShimpleOptions: ShimpleOptions(Map)> parameter 0 : True
18 NEscField−In of <ShimpleOptions: Map options> in <ShimpleOptions: ShimpleOptions(Map)> : True
19 NEscField−In of <ShimpleOptions: Map options> in <ShimpleOptions: boolean enabled()> : True
20 NEscField−In of <ShimpleOptions: Map options> in <ShimpleOptions: boolean node elim opt()> : True
21 NEscField−In of <ShimpleOptions: Map options> in <ShimpleOptions: boolean standard local names()> : True
22 NEscField−In of <ShimpleOptions: Map options> in <ShimpleOptions: boolean extended()> : True
23 NEscField−In of <ShimpleOptions: Map options> in <ShimpleOptions: boolean debug()> : True
24 NEscField of <ShimpleOptions: Map options> : True
25 NEscPar of <ShimpleOptions: ShimpleOptions(Map)> parameter 0 : True
26 Store of <ShimpleOptions: ShimpleOptions(Map)> parameter 0 : True
27 OwnPar of <ShimpleOptions: ShimpleOptions(Map)> parameter 0 : True

Figure 8. Example output of Uno running on Soot, from Figure 3

Name Byte LoC Cls + Methods Constrs Fields Time (s)
code Intfs Soot Uno

spec201-compress 48k 451 12 44 12 53 816 173
spec209-db 16k 512 3 34 3 10 814 174
spec200-check 92k 1,235 17 107 14 42 823 172
spec205-raytrace 120k 1,429 25 176 37 93 817 171
spec202-jess 688k 4,736 151 690 164 265 861 172
spec222-mpegaudio 272k – 55 322 55 270 857 184
spec228-jack 300k – 56 315 57 255 851 181
spec213-javac 964k – 176 1,190 189 851 861 214
DaCapo-antlr 1,004k – 294 3,170 363 1,279 912 214
DaCapo-luindex 1,005k – 411 3,218 502 1,564 476 109
DaCapo-lusearch 1,010k – 413 3,219 504 1,575 488 112
DaCapo-bloat 1,505k – 426 4,584 451 1,815 499 140
DaCapo-eclipse 1,557k – 475 4,242 448 2,431 472 128
DaCapo-hsqldb 1,828k – 556 6,427 649 4,161 1,137 300
DaCapo-jython 2,113k – 969 9,130 1,140 3,139 1,146 502
DaCapo-xalan 2,170k – 700 7,089 854 3,339 1,017 312
DaCapo-chart 3,156k – 795 9,933 1,186 6,534 1,213 502
DaCapo-pmd 3,549k – 1,392 11,805 1,609 5,894 1,293 518
DaCapo-fop 5,561k – 2,389 15,073 2,262 8,342 1,484 497
middleware 2.3.1 1,084k 15,360 218 1,070 208 793 661 128
xui 2.0 1,060k 23,542 187 1,946 178 681 876 195
hsqldb 1.8.0 2,176k 51,362 362 4,973 434 3,343 1,061 310
findbugs 1.2.0 12,564k 60,744 2,297 18,034 2,639 7,125 1,395 759
pooka 1.1 13,248k 108,204 2,603 16,358 3,218 7,507 1,683 602
azureus 2.4.0.2 19,240k 126,398 3,763 22,809 3,574 10,665 1,891 1,032
soot 2.2.3 15,856k 196,858 2,958 23,704 3,205 6,525 2,782 2,091
visad 2.0 18,176k 435,227 2,652 29,082 4,152 19,004 3,886 2,117

Figure 9. Benchmark characteristics

the original version of the code in Figure 3, and the predicate
in question is whether ShimpleOptions(Map) owns its first
argument. For each predicate, Uno displays the non-local
conditions that it depends on and their truth values. We use
indentation to match up conditions for the same predicate.
For example, the conditions on lines 17, 25, and 26 show that
OWNPAR holds on line 27. In this case all the predicates that
ownership transitively depends on hold, and so line 27 in-
dicates that OWNPAR is true. Our experience suggests this

kind of output is critical in understanding Uno’s results. For
our experiments we disabled this output, because we found
printing all this information noticeably slowed the analysis.

5.1 Experiments
We applied Uno to a number of SPEC JVM98 benchmarks,
version 1.03 05, to the DaCapo benchmark suite 2006-10-
MR2 [5], and to a selection of programs downloaded from
SourceForge. Our goal was to determine how often Uno’s

UNIQ LENT LENT UNIQ OWNPAR NESC NESC OWN STORE
RET PAR THIS PAR All Call Cons PAR FIELD FIELD All Call

spec201-compress – 35 100 20 0.0 0.0 0.0 80 77 38 69 73
spec209-db 100 92 100 11 0.0 0.0 – 92 0 0 0 0
spec200-check 0 67 99 40 0.0 0.0 – 92 – – 0 0
spec205-raytrace 0 65 90 11 0.8 0.8 2.6 73 6 6 27 28
spec202-jess 35 71 99 7 0.0 0.0 0.0 78 50 46 12 12
spec222-mpegaudio 0 79 100 0 0.4 0.0 0.0 86 27 24 13 12
spec228-jack 60 69 100 10 5.4 4.3 30.0 79 43 29 15 14
spec213-javac 27 42 81 2 0.0 0.0 0.0 53 15 0 18 18
Average 32 65 96 13 0.8 0.6 5.4 79 31 20 19 20
DaCapo-antlr 22 46 86 11 0.4 0.4 1.4 55 48 22 21 21
DaCapo-luindex 44 34 93 20 2.2 2.0 4.9 49 40 16 34 33
DaCapo-lusearch 44 34 93 20 2.2 2.0 4.8 49 40 16 35 34
DaCapo-bloat 24 44 76 4 0.6 0.6 3.0 53 52 9 18 18
DaCapo-eclipse 29 42 90 13 0.6 0.7 1.8 49 31 15 23 25
DaCapo-hsqldb 34 53 94 12 0.4 0.4 1.6 61 40 12 19 20
DaCapo-jython 33 32 81 7 0.1 0.1 0.5 43 13 5 23 22
DaCapo-xalan 33 43 91 13 0.6 0.3 1.3 51 38 18 24 25
DaCapo-chart 33 50 87 14 0.2 0.2 0.6 55 10 5 21 17
DaCapo-pmd 27 41 87 11 0.3 0.2 1.2 51 35 16 19 18
DaCapo-fop 37 37 90 12 0.6 0.4 1.1 45 33 10 27 27
Average 33 41 88 12 0.7 0.7 2.0 51 35 13 24 24
middleware 2.3.1 27 73 92 27 0.2 0.3 1.2 81 70 28 19 18
xui 2.0 22 39 92 14 0.6 0.4 2.8 46 41 17 17 16
hsqldb 1.8.0 36 54 95 12 0.1 0.1 0.6 61 33 12 18 18
findbugs 1.2.0 29 46 90 7 1.3 0.4 1.9 55 32 15 20 18
pooka 1.1 31 43 91 14 1.1 0.6 1.6 55 40 13 31 30
azureus 2.4.0.2 23 40 88 14 1.1 1.1 2.8 56 50 9 34 35
soot 2.2.3 31 46 89 6 0.3 0.2 0.9 53 33 11 15 15
visad 2.0 24 59 82 8 0.3 0.2 0.8 66 35 18 19 18
Average 28 50 90 13 0.6 0.4 1.6 59 42 15 22 21
Average of all 31 51 91 13 0.7 0.6 2.7 62 36 16 22 22

Figure 10. Predicate inference results (all numbers are percentages)

aliasing and encapsulating predicates held across a wide va-
riety of Java programs. Currently Uno requires a significant
amount of memory, both because it is an early prototype and
because it uses Soot, which is memory and time intensive.
Accordingly, we ran Uno on a multiprocessor (but Uno is
only single-threaded) UltraSparc III 750Mhz machine with
72GB of memory. The maximum Java heap size was set to
15GB, although all except the largest benchmarks required
less memory. We believe that by switching front-ends and
with more engineering effort, Uno could run comfortably on
commodity hardware.

Figure 9 summarizes the characteristics of our benchmark
suite and gives the running times for Uno. For each bench-
mark, we list the size of the bytecode in kilobytes, the num-
ber of non-comment, non-blank lines of code, and the num-
ber of classes and interfaces. In these and all other counts, we
include only code from the benchmarks, although Uno also
analyses portions of the Java library. The DaCapo suite and
three of the SPEC benchmarks, mpegaudio, jack and javac,
include only bytecode but no source. Additionally, the Da-
Capo benchmarks come in a single large jar file; we iden-
tified the class files belonging to each benchmark by name,
and also included any other classes in the jar file that are
reachable from them based on the compile-time types. This
resulted in a different number of classes and a different byte-
code size for the version (1.8.0.4) of hsqldb in the DaCapo
suite versus the version we downloaded from SourceForge.

Figure 9 also lists the number of methods, constructors,
and fields for each benchmark. The right two columns of the
figure give the running time for Uno, as the average of five
runs. We divide the running time into two parts. The Soot
time includes class file loading and conversion into Jimple.
The Uno time includes everything else, including computing
the class hierarchy (we did not use Soot’s hierarchy), per-
forming the points-to analysis, and resolving the predicates.
As these results show, Soot consumes a large fraction of the
running time.

Figure 10 gives the results of running Uno on the bench-
marks. For each predicate, we report the percentage of po-
sitions for which it holds. The exact metric depends on the
predicate, as we discuss below. Blank entries indicate there
are no positions on which to check the predicate. We omit
the -IN versions of the predicates, since those are included in
their non-IN counterparts. For LENTPAR and UNIQPAR, we
evaluated the predicates with no-fld set to true. We also com-
pute the average percentage for each predicate, over each
group of benchmarks and across the entire benchmark suite.
Next we discuss each of the predicates in turn.

UNIQRET – We report what percentage of methods (not
constructors) return unique objects. We do not include meth-
ods that return primitives, void, or String in our count, ei-
ther in the numerator or the denominator. (Strings are im-
mutable, so their uniqueness is most likely uninteresting.)
These results show that on average, Uno finds uniqueness of
a return value for 31% of the methods, which suggests this

property is fairly common. We examined a selection of the
results manually, and found that many of these cases were
effectively factories—i.e., methods that, at the end, created
a new object, initialized it, and returned it. We found that all
constructors in our benchmarks returned unique results, al-
though Uno reported that a small number (0.03% of called
constructors) did not due to conservatism in its analysis.

LENTPAR – We measured the number of non-primitive
parameters that Uno determines are lent, for both methods
and constructors. We found that 51% of all parameters are
lent on average across all of our benchmarks. This result
suggests that lending parameters is common, which makes
sense—if methods typically retained pointers to their argu-
ments, it would complicate local reasoning. In this case, we
suspect that LENTPAR is even more common, and that con-
servatism in our analysis may be causing us to underestimate
parameter lending.

LENTTHIS – We counted the number of non-static meth-
ods (not constructors) whose receiver object is lent. Uno in-
fers that this holds on average 91% of the time, and 96%
of the time for the SPEC benchmarks. This result is to be
expected, since it is uncommon for Java methods to capture
this, although it does happen in some cases. Examples are
code with callbacks, e.g., x.addActionListener(this), or when
(non-static) inner class instances are created, since they may
refer to the outer class object.

UNIQPAR – For this predicate, we report the number of
non-primitive, unique parameters of methods and construc-
tors. We only include methods and constructors that are po-
tentially called in the program, according to the compile-
time types, since otherwise UNIQPAR is trivially true. We
found that only 13% of parameters are unique. Thus Uno
discovers relatively few possible handoffs of an object from
one method to another (one reason UNIQPAR may hold).

OWNPAR – We counted the number of non-primitive
parameters of non-static methods and constructors that are
owned. The first column lists the fraction for all methods
and constructors; the second column lists the fraction for
only those that are called; and the last column lists the frac-
tion for only constructors that are called. Our results show
that argument ownership—in the strict, monomorphic sense
defined in Uno—is a fairly rare property, holding for only
2.7% of the constructors called in a program, on average. In
Section 5.2, we show some examples of argument ownership
that we found, and we examine the causes of why ownership
does not hold.

NESCPAR – We found that 62% of method and construc-
tor parameters do not escape the callee, on average across all
benchmarks. NESCPAR is very similar to LENTPAR, except
it is slightly less restrictive—in NESCPAR, a parameter may
be written to a field as long as that field does not escape.
Thus the difference between the two, roughly 11% on aver-
age for all benchmarks, shows how often an argument that is
passed to a method may be captured in a non-escaping field.

1 public class EventWidget extends ... {
2 private AmandaFile fileData;
3 public EventWidget(AmandaFile fileData, ...) {
4 this . fileData = fileData ;
5 slider = buildSlider (fileData .getNumberOfEvents());
6 }
7 }
8 public class NuView extends ... {
9 private static final

10 JPanel buildMainDisplay (..., AmandaFile file ,...) {
11 setRange(xMap,file.getXMin(),file .getXMax(),halfRange);
12 EventWidget eventWidget = new EventWidget(file,...);
13 return panel;
14 }
15 public NuView(String[] args) {
16 AmandaFile file = openFile(fileName);
17 JPanel widgetPanel = buildMainDisplay(..., file ,...);
18 }
19 private static final AmandaFile openFile(String fileName) {
20 AmandaFile file;
21 if (fileName.startsWith(”http :// ”)) {
22 file = new AmandaFile(new URL(fileName));
23 } else {
24 file = new AmandaFile(fileName);
25 }
26 return file ;
27 }
28 }

Figure 11. Argument and field ownership in visad

NESCFIELD – For this predicate, we restricted our mea-
surement to private fields, since the predicate trivially does
not hold for non-private fields. We found that about 36% of
private fields do not escape. This is another reason argument
ownership is rare—many objects stored in private fields are
considered shared by Uno, rather than encapsulated.

OWNFIELD – We found that 16% of private fields across
our benchmark suite are considered owned by Uno, with
a slightly higher percentage in the SPEC benchmarks. Re-
call that OWNFIELD is a more restrictive version of NESC-
FIELD, since it further requires that objects stored in fields
be unique or only aliased to other owned fields. Our results
show that field ownership, while not that common, occurs
significantly more often than argument ownership. We dis-
cuss some examples of field ownership below in Section 5.2.

STORE – Finally, we measured the number of non-static
methods and constructors that store their non-primitive, non-
String arguments. We count both all such methods and con-
structors and only those that are called. Only around a fifth
of called methods store their arguments.

5.2 Examples of Ownership
We examined a selection of the ownership results manually
to confirm them and to understand the ownership patterns
that Uno discovers.

Figure 11 shows a typical example of argument owner-
ship and field ownership, in which an object is generated at
a single unique return and then reaches a constructor in a few

1 class SynchronizedList extends SynchronizedCollection ... {
2 List list ;
3 SynchronizedList(List list) {
4 super(list);
5 this . list = list ;
6 }
7 }
8 class SynchronizedCollection implements ... {
9 Collection c;

10 SynchronizedCollection(Collection c) {
11 this .c = c;
12 }
13 }

Figure 12. Potential ownership in java.util.Collections

1 public class PEMReader extends ...{
2 private PasswordFinder pFinder;
3
4 public PEMReader(..., PasswordFinder pFinder) {
5 this (..., pFinder ,...);
6 }
7 public PEMReader(..., PasswordFinder pFinder, ...) {
8 this .pFinder = pFinder;
9 }

10 }
11 public class ReaderTest extends ...{
12 public void performTest() throws Exception{
13 PasswordFinder pGet =
14 new Password(”secret”.toCharArray());
15 PEMReader pemRd = new PEMReader(..., pGet);
16 }
17 }

Figure 13. Argument and field ownership in pooka

steps. More precisely, in this code (simplified and with some
fields and methods not shown), Uno reports that openFile on
lines 19–27 returns a unique object. This method is called on
line 16, and the result is passed as argument file on line 17 to
buildMainDisplay. This method in turn invokes some meth-
ods of file that do not capture it (line 11, callee not shown).
Then file is passed to the EventWidget constructor, defined
on lines 3–5, which stores it in a private field fileData. Since
that field is not leaked by the call on line 5 (code not shown),
Uno reports that the EventWidget constructor owns its argu-
ment, and that fileData is an owned field.

In Section 2, we saw a similar example from Soot, in
which the path from unique return to owning constructor
was slightly more convoluted but had the same basic pattern.
Most of the other cases of ownership that we looked at also
fell into this pattern.

Another ownership pattern that Uno sometimes finds in-
volves super or this constructors. Recall from Section 4 that
certain predicates use the no-fld flag to treat super and this
constructor calls specially. We added this flag after running
Uno on some sample classes from the Java standard library.
We had expected Uno to infer that the SynchronizedList con-
structor, sketched in Figure 12, owns the list it synchronizes

1 public class ASTSynchronizedBlockNode ... {
2 private ValueBox localBox;
3 public void setLocal(Local local){
4 this . localBox = Jimple.v (). newLocalBox(local);
5 }
6 public Local getLocal() {
7 return (Local) localBox.getValue();
8 }
9 }

Figure 14. Field ownership in Soot

1 public final class IPAddressGatekeeper ... {
2 private File m databaseFile;
3 private IPAddressGatekeeper (String filename) {
4 m databaseFile = new File(filename);
5 }
6 private void loadDatabase () {
7 long modificationTime = m databaseFile.lastModified();
8 BufferedReader reader;
9 try {

10 reader = new BufferedReader(
11 new FileReader(m databaseFile));
12 } catch (IOException e) { ... }
13 }
14 }

Figure 15. Field ownership in Middleware

access to. However, without the no-fld flag, this turned out to
be false, because both the class SynchronizedList and its su-
perclass, SynchronizedCollection, keep a pointer to the list.
Adding the no-fld flag fixed this problem, allowing both to
point to the list and maintain ownership. Ultimately, how-
ever, Uno still does not infer ownership for this example, be-
cause both classes store the Collection in a non-private field,
causing it to leak.

Figure 13 shows a example of argument ownership that
Uno does find that involves a call to a this constructor. In
this code, class PEMReader has two constructors, both with
a common PasswordFinder argument. One of them simply
calls the other one through a this() call (line 5). The other
constructor (lines 7–9) stores the PasswordFinder argument
into a field. Uno infers that both constructors own their
PasswordFinder argument if that argument is unique, which
holds because fresh objects are passed in on lines 13 and 15.
Uno also infers that pFinder is an owned field.

In general, we found this argument ownership pattern was
uncommon in the cases we examined, which mostly matched
the example in Figure 11.

We also examined some cases where field ownership but
not argument ownership held. Figure 14 shows an exam-
ple from Soot. On line 4, the field localBox is set to the re-
sult of calling newLocalBox, which returns a unique result.
Moreover, the call to getValue on line 7 does not change the
uniqueness of localBox, and thus that field is owned.

Figure 15 shows a slightly more complex example from
Middleware. Here on line 4, the field m databaseFile is
initialized to a fresh object. That field has one of its methods
invoked on line 7, and is passed to a constructor on line 11,
but neither of those calls affects its uniqueness, and thus
m databaseFile is owned.

Many of the field ownership examples we found in our
benchmark suite were similar to these examples, where a
field is initialized to a fresh object locally within a class,
and then does not escape via method calls of returns. Re-
call that argument ownership requires that arguments are
unique, which is relatively uncommon. We believe this is
why field ownership is significantly more common than ar-
gument ownership in our benchmarks—local uniqueness of
fresh objects is much more likely than a unique argument.

5.3 When Ownership Does Not Hold
Finally, we also investigated the reasons that ownership does
not hold in our benchmarks, to try to understand why that
property is fairly rare. For each predicate, we computed
how often its local and non-local conditions were false,
thereby causing the predicate to be false. Figure 16 gives
the average percentages for several predicates across our
benchmarks. For example, condition 2 of OWNPAR, which
is UNIQPAR(m, i, false), did not hold 79% of the time, as
shown in the upper-left corner of the figure. Note that to
avoid biasing our results by the order of the conditions, we
computed the truth value of all conditions of a predicate,
rather than stopping at the first one that was false. Thus the
columns in Figure 16 can add up to more than 100%, since
several conditions may be false simultaneously.

Looking at the results, we see that OWNPAR is most of-
ten false because of conditions 2 and 4—the method or con-
structor does not receive a unique argument, or the method
does not store the argument in one of its fields. Clearly not
storing an argument is a valid reason for not owning it. Note
that our STORE predicate is heuristic, because it only checks
storing directly via a field or via a super or this call, and it
could miss writes to fields via other means, e.g., calling a
setter method.

The other condition, uniqueness of the argument, is more
complex. UNIQPAR(m, i, false) only depends on itself (con-
dition 1) and UNIQPAR-IN for regular (condition 2, called
with no-fld set to true) and super or this calls (condition 3,
called with no-fld set to false). Following condition (2) fur-
ther, we see that calls to UNIQPAR-IN(. . . , true) fail for a
variety of reasons. Most often they fail because of local con-
dition L3, i.e., the argument in question is live after the call.
Local conditions L1 and L4 (the value is BAD or stored in a
field) also contribute somewhat to non-uniqueness of argu-
ments. The last major reason UNIQPAR-IN fails to hold is
because the argument is either a non-unique parameter from
the caller (condition 1) or a non-unique return value from
another call inside this method (condition 2).

5
4
3
2
1

0% 25% 50% 75% 100%

11%

79%

40%

78%

7%

OwnPar

3
2
1

0% 25% 50% 75% 100%

28%
51%

3%

UniqPar (f)

5
4
3
2
1
L6
L5
L4
L3
L2
L1

0% 4% 8% 12% 16%

6%

2%

13%

4%

2%

2%

6%

4%

1%

0%

2%

UniqPar-In (t)

2
1

0% 25% 50% 75% 100%

64%

47%

OwnField

3
2
1
L1

0% 1% 2% 3%

0.0%

2.5%

0.3%

0.7%

OwnField-In

3
2
1
L3
L2
L1

0% 1% 2% 3%

1.3%
1.5%

0.5%
1.6%
1.7%

0.1%

NEscField-In

1

0% 25% 50% 75% 100%

64%

NEscField

Figure 16. Causes of false predicates

Looking at our other ownership predicate, OWNFIELD,
we see that it fails most often because NESCFIELD (condi-
tion 1) is false, and almost as often because of OWNFIELD-
IN (condition 2). For the latter, we can see that condi-
tion 1, having a non-unique parameter stored in a field, is the
most common cause the predicate fails to hold. Thus again,
uniqueness is a key culprit in lack of ownership. Note that in
computing the percentages for OWNFIELD-IN, we measure
over all fields and all methods, including methods that do
not use a particular field. This lowers the percentages by a
constant factor compared to the other predicates, but does
not change the relative magnitudes within the histogram.

Lastly, examining NESCFIELD, we ignore condition L1,
that the field is private, in our measurements. Thus we con-
centrate on condition 1, NESCFIELD-IN. We can see that the
latter predicate fails for a wide variety of reasons, all roughly
equally common. Indeed, the only uncommon conditions to
fail are condition L3, a field potentially being accessed from
another instance of the same class, and condition 3, param-
eter capture by a this or super call. Note we have the same
measurement issue with NESCFIELD-IN as OWNFIELD-IN,
making the percentages low but not changing the relative
magnitudes in the histogram.

It is important to recognize that these results only approx-
imate the reasons ownership fails—for example, we mea-
sure when UNIQPAR-IN is false over all combinations of

the predicate, not just the ones that cause OWNPAR to be
false. However, they do provide some insight. Almost 80%
of non-primitive method and constructor arguments are not
stored according to Uno, and so clearly they are not owned.
One future direction would be implementing a more com-
plete must-store analysis, to find out how many methods
truly store their arguments. However, it makes sense that
storing arguments is not a property that holds for most pa-
rameters, since that would complicate local reasoning. Stor-
ing an argument should happen most often for constructors
and methods that create fresh objects.

Uniqueness is the other major culprit in preventing own-
ership, and one way to increase the opportunities for owner-
ship may be to improve the precision of the uniqueness anal-
ysis. Another approach may be to relax the uniqueness re-
quirement, e.g., by allowing polymorphic ownership so that
an owned object can be pointed to by a field of more than
one object. We ran an additional experiment in which we re-
moved the UNIQPAR requirement (condition 2) from OWN-
PAR, and we found this resulted in nearly 20% of the param-
eters of called constructors being “owned,” as opposed to the
2.7% result with uniqueness. This is a coarse upper bound on
how improved uniqueness analysis might improve inference
of owned arguments, and we leave pursuing this further as
an interesting direction for future work.

5.4 Threats to Validity
There are a number of potential threats to the validity of our
evaluation. First, our selection of benchmarks could be un-
representative, and might be missing certain coding styles
that would cause Uno to behave differently. We have tried to
address this by applying Uno to a wide variety of applica-
tions, include several that are large enough that they should
contain many interesting coding patterns.

Second, our algorithm for inferring uniqueness and own-
ership may not be sound. We have high confidence that
the points-to analysis is correct, because that problem has
been well-studied, and our analysis is similar to proven ap-
proaches. It is harder to be certain that the specification of
our uniqueness and ownership predicates is correct and that
there are zero implementation bugs. We have tried to address
this both by testing Uno on our own small examples and by
verifying a selection of Uno’s ownership and uniqueness re-
sults on our benchmark suite manually. We leave a formal
proof of correctness as future work.

Lastly, and perhaps most importantly, our definitions of
uniqueness and ownership might not match a programmer’s.
Hence we might either report ownership and uniqueness
that is not interesting, or we might fail to find useful in-
stances of ownership and uniqueness. Indeed, our experi-
ments show that OWNFIELD sometimes holds, and OWN-
PAR rarely holds. We believe that using a more sophisticated
uniqueness analysis may increase the amount of ownership
we discover in programs, and we leave that challenge to fu-
ture work.

6. Related Work
Many researchers have studied encapsulation in object-
oriented languages. Islands [18] and Balloons [3] allow ob-
jects to be fully encapsulated. Clarke et al [11, 12] and Boy-
apati et al [6] propose ownership type systems that statically
enforce encapsulation. These systems allow rich ownership
patterns, including owner parameterization and weakening
ownership for inner classes, neither of which is supported
by Uno. The key difference between these systems and Uno
is that Uno performs inference and can therefore be applied
to existing Java programs, whereas the other systems require
often extensive user annotations.

AliasJava [2] is a dialect of Java that includes annota-
tions for uniqueness, ownership, and allows classes to be
parameterized by owners. AliasJava’s annotations are stat-
ically checked, and Aldrich et al report on case studies in
which annotations were successfully added by hand to Java
programs [2]. AliasJava also includes polymorphic annota-
tion inference, but the only reported results are for toy pro-
grams and for the Java standard library; and the library re-
sults are not reported very precisely. We show that Uno can
infer uniqueness and ownership on a wide variety of Java
programs, and we report summary statistics of uniqueness
and ownership properties, which complements case studies.

Liu and Milanova [22] present static analyses for in-
ferring ownership and immutability in Java. Their owner-
ship inference algorithm constructs a may points-to graph
and then uses that to approximate the run-time domina-
tor relationship among objects. Liu and Milanova find that
28% of the reference-valued instance fields are owned across
their benchmark suite. As discussed earlier, Uno finds that
roughly 16% of private, reference-valued fields are owned.
The cause of the difference between the two results is un-
clear. It may be due to variations in the definition of owner-
ship or due to measurement techniques. One key difference
between the Liu and Milanova approach and Uno is that they
infer only field ownership, whereas Uno infers many other
related properties, including argument ownership, unique-
ness, and lending, which their system cannot reason about.

Cherem and Rugina [9] present a lightweight escape and
effects analysis for Java. Among other things, their analy-
sis computes which parameters are lent to methods (69%
on average), similar to LENTPAR, and what methods return
fresh objects (43% on average), similar to UNIQRET. Both
percentages were measured on the GNU Classpath library.
These numbers are not that close to Uno’s averages of 51%
and 31%, respectively, but it is unclear whether this is a sig-
nificant difference, since the GNU library’s aliasing behavior
might be different than aliasing in other programs.

In follow-up work, Cherem and Rugina develop a field
uniqueness analysis for object reclamation in Java. They find
that approximately 22% of fields in the SPEC benchmark
suite are unique [10]. This corresponds closely to our result
that 20% of fields in the SPEC benchmark suite are owned.

These two properties seem to be closely related, suggesting
that notions of ownership may be useful in a wide variety of
applications in addition to program understanding.

Confined types [30] operate at a coarser granularity than
the systems discussed so far. In this approach, static check-
ing ensures that confined types are not exposed outside of
their packages. Grothoff et al [16] present an inference algo-
rithm for confined types, and show that over a wide range of
benchmarks, many classes can be marked as confined. This
system is significantly more scalable than Uno, but also pro-
vides much coarser information about encapsulation.

Heine and Lam [17] present Clouseau, a static analy-
sis for finding memory that leaks in C and C++ programs.
Clouseau reports a leak when the “owning” pointer of an ob-
ject is discarded before the object is freed. In this system, an
owner has the responsibility to free an object, but does not
necessarily have the only pointer to it. In contrast, in Uno,
owned objects must be encapsulated inside of their owner.

Uniqueness also has a long research history. Uniqueness
is closely related to linear types, which can be used to rea-
son precisely about aliasing in programs [28, 31]. Several re-
searchers have studied making uniqueness and linear types
easier to use at the language level [1, 7, 8, 15]. These systems
allow a more flexible interpretation of uniqueness than Uno,
but mostly focus on checking annotations, and inference is
not available for object-oriented languages.

Finally, alias analysis has been extensively studied in the
research literature [13, 14, 19, 20, 21, 25, 26, 27, 32] (to
name only a few). Our alias analysis is similar to existing
systems, but is tuned for inferring Uno’s predicates.

7. Conclusion
We have presented a new technique for automatically in-
ferring aliasing and encapsulation in Java programs. Our
analysis begins with an intraprocedural points-to analysis
that tracks local variables flow-sensitively, and summarizes
fields, external data, and method calls flow-insensitively. We
then perform a demand-driven, interprocedural algorithm to
resolve predicates that describe aliasing and encapsulation
of method and constructor arguments and return values, and
fields. To test our ideas, we developed a tool called Uno that
implements our analysis and applied it to a number of Java
applications. Uno discovered many lent method arguments,
a moderate number of unique arguments and results, some
field ownership, and occasional argument ownership. We be-
lieve that Uno is the first ownership and uniqueness infer-
ence tool that has been demonstrated on a wide variety of
Java applications.

Acknowledgments
We would like to thank Nicholas Chen, Bin Zhao, and Taiga
Nakamura for working on predecessors to Uno. We would
also like to thank Mike Hicks and the anonymous reviewers
for helpful comments on an earlier version of this paper. This

research was supported in part by NSF CCF-0346982 and
CCF-0430118.

References
[1] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking

and Inferring Local Non-Aliasing. In PLDI’03, pages 129–
140, 2003.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Anno-
tations for Program Understanding. In OOPSLA’02, pages
311–330, 2002.

[3] P. S. Almeida. Balloon Types: Controlling Sharing of State
in Data Types. In ECOOP’97, pages 32–59, 1997.

[4] K. Arnold, J. Gosling, and D. Holmes. The Java Program-
ming Language. Addison-Wesley, 3rd edition, 2000.

[5] S. M. Blackburn, R. Garner, C. Hoffman, et al. The DaCapo
benchmarks: Java benchmarking development and analysis.
In OOPSLA’06, pages 169–190, 2006.

[6] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for
Object Encapsulation. In POPL’03, pages 213–223, 2003.

[7] J. Boyland. Alias burying: Unique variables without
destructive reads. Software—Practice and Experience,
31(6):533–553, May 2001.

[8] J. T. Boyland and W. Retert. Connecting effects and
uniqueness with adoption. In POPL’05, pages 283–295,
2005.

[9] S. Cherem and R. Rugina. A Practical Escape and Effect
Analysis for Building Lightweight Method Summaries. In
CC’07, 2007.

[10] S. Cherem and R. Rugina. Uniqueness inference for compile-
time object deallocation. In ISMM’07, 2007. To appear.

[11] D. G. Clarke and S. Drossopoulou. Ownership, Encapsulation
and the Disjointness of Type and Effect. In OOPSLA’02,
pages 292–310, 2002.

[12] D. G. Clarke, J. M. Potter, and J. Noble. Onwership Types
for Flexible Alias Protection. In OOPSLA’98, pages 48–64,
1998.

[13] M. Das. Unification-based Pointer Analysis with Directional
Assignments. In PLDI’00, pages 35–46, 2000.

[14] M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive
Interprocedural Points-to Analysis in the Presence of Func-
tion Pointers. In PLDI’94, pages 242–256, 1994.

[15] M. Fähndrich and R. DeLine. Adoption and Focus: Practical
Linear Types for Imperative Programming. In PLDI’02,
pages 13–24, 2002.

[16] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating Objects
with Confined Types. In OOPSLA’01, pages 241–253, 2001.

[17] D. L. Heine and M. S. Lam. Static Detection of Leaks in
Polymorphic Containers. In ICSE’06, pages 252–261, 2006.

[18] J. Hogg. Islands: Aliasing Protection In Object-Oriented
Languages. In OOPSLA’91, pages 271–285, 1991.

[19] W. Landi and B. G. Ryder. A Safe Approximate Algorithm
for Interprocedural Pointer Aliasing. In PLDI’92, pages
235–248, 1992.

[20] O. Lhoták and L. J. Hendren. Jedd: A BDD-based relational
extension of Java. In PLDI’04, pages 158–169, 2004.

[21] D. Liang and M. J. Harrold. Efficient Computation of
Parametrized Pointer Information for Interprocedural Analy-
ses. In SAS’01, pages 279–298, 2001.

[22] Y. Liu and A. Milanova. Ownership and Immutability
Inference for UML-based Object Access Control. In
ICSE’07, pages 323–332, 2007.

[23] V. B. Livshits, J. Whaley, and M. S. Lam. Reflection Analysis
for Java. In APLAS’05, pages 139–160, 2005.

[24] J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection. In
ECOOP’98, pages 158–185, 1998.

[25] A. Rountev and B. G. Ryder. Points-to and Side-Effect
Analyses for Programs Built with Precompiled Libraries. In
CC’01, pages 20–36, 2001.

[26] A. Salcianu and M. C. Rinard. Pointer and escape analysis
for multithreaded programs. In PPOPP’01, pages 12–23,
2001.

[27] M. Sridharan and R. Bodik. Refinement-Based Context-
Sensitive Points-To Analysis for Java. In PLDI’06, pages
387–400, 2006.

[28] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type.
In FPCA’95, pages 1–11, La Jolla, California, 1995.

[29] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java bytecode optimization
framework. In CASCON’99, 1999.

[30] J. Vitek and B. Bokowski. Confined types in java. Software—
Practice and Experience, 31(6):507–532, 2000.

[31] D. Walker and G. Morrisett. Alias Types for Recursive Data
Structures. In TIC’00, 2000.

[32] J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive
Pointer Alias Analysis Using Binary Decision Diagrams. In
PLDI’04, pages 131–144, 2004.

