QUANTITATIVE SOFTWARE COMPLEXITY MODELS: A PANEL SUMMARY

Victor R. Basili

Department of Computer Science
University of Maryland

Several participants at the conference formed a
panel on software complexity measures. We posed
four questions of ourselves:

1. What is a complexity measure and what
aspects of software development does it cover?

2. How should a metric be developed and
evaluated?

3. What are some of the uses of metrics?

4, 1In the final analysis, where is the area
going and where are we now?

Defining A Software Complexity Measure

The panel accepted as a working definition of
software complexity the following: Complexity is
the measure of the resources expended by another
system in interacting with a piece of software.
Categories of systems that may interact with soft-
ware are machines, other software, people, and even
the external enviromment. If the interacting
system is a machine, the measures deal with execu-
tion time and memory space. If the interacting
system is software, the measures might focus on
the number of interfaces. If the interacting
system is people, the measures are concerned with

human efforts to comprehend, to maintain, to change,

to test, etc., that software. The external en-
vironment acts more like a set of constraints;

that is, if a software development project requires
travel to another site, there are certain physical
limitations and expenditures in travel time that
must be considered.

To calculate a complexity measure, data from the
software product or process are transformed accord-
ing to models into a set of complexity measures.

process dati’ complexity

measures

models
product data

There are several classifications for complexity
measures. We can think of the complexity of the
process or the product. Process metrics would be
based on time to- develop, number of errors, etc.
Product metrics would be based on number of de-
cisions, number of interfaces. A second dichotomy
is to think of measures as either quality metrics
or invariants. A quality metric would be something
that would evaluate the product as good or bad

Reprinted from WORKSHOP ON QUANTITATIVE SOFTWARE
MODELS, October 1979

relative to a specific model. For example, relia-
bility would be a quality metric and allow us to
evaluate the product from a quality point of view.
On the other hand, an invariant is a measure that
is impervious to various environmental changes,
for example, the relationship between effort in
man months and lines of code has been shown to be
invariant across many environments. A third
classification scheme would be a priori vs.

a posteriori metrics. An a priori metric would

be used to estimate and evaluate what the product
will look like eventually. An a posteriori metric
is a measure of the existing product after it is
completed. All metrics should be characterizable
into these three classes of description. For
example, the complexity metric which is defined

as a count of the number of errors incurred in
developing a system would be an a posteriori
process quality metric. Halstead's length metric,
on the other hand, would be a product metric which
may very well be an invariant but again a posteri-
ori. However, if we took Halstead's potential
volume as a metric, that would be a product

metric invariant to various environments and could
be used as an a priori metric to estimate the
actual size of the final product.

Developing A Software Measure

There are two major phases in the development of
any measure. First is the analytical phase and
second is the experimental phase. During the
analytical phase, a model of the product or process
is developed, representing a particular viewpoint.
Based upon this model, a metric or set of metrics
are defined which attempt to operationalize the
model. In some sense, metrics are an encoding

of the model that can be used to quantify software
life cycle phenomena from the viewpoint of the
model.

Some abstract analysis can be performed on the
model and its associated metrics. The metrics
should behave in a consistent way and should have
reasonable boundary conditions. A model is con-
sistent if it behaves in a similar manner, given
intuitively similar data. TFor example, a slight
change in a system's decision structure should not
drastically change the value of a control flow
complexity metric for the system. A model has
reasonable boundary conditions if its limits
correspond to intuitive expectation based on the
model's viewpoint. For example, if based on the
model there is no expenditure of resources in the
system at certain points, then the complexity

THO0067-9/79/0000-0243 $00.75© 1979 IEEE

metric should have a value of zero. In many
cases, the metric would need to be normalized
and the limits made explicit. These constraints
and bounds are based predominantly on analysis.

However, no matter how tractable a model we have
and how nicely the metric behaves analytically, it
is of no value unless we can validate its
relevance via empirical experimentation. It is
critical that we demonstrate that the metrics and
their defining model correspond to reality.

There are several approaches to evaluating a
metric empirically. The most primitive form of
evaluation is called a case study--a single
product being developed. Here data is collected
during some phase of the life cycle of a system
and the metrics are evaluated on that data. This
application can be used to provide some preliminary
evidence that the metrics correspond to the model
of what we are studying and can be used to fine
tune the model and metrics. A second form of
evaluation is called a quasi-experiment. In this
case, several products of a similar nature are
developed and compared based on the data collected.
It is an environment in which causal relationships
can be suggested but not proved, but it gives us
much more insight and empirical confidence than a
single case study would. A third type of data
collection environment would be a controlled
experiment, that is, a.duplication of identical
developments in a controlled environment. Clearly
this is the most ideal data collection and metric
evaluation environment. Unfortunately, it is very
expensive and difficult to achieve. This type of
experiment can be performed when we have gained
confidence from case studies and quasi-experiments.

One possible solution to the problem of validating
software metrics outside of a controlled environ-
ment is to conduct many case studies and quasi-
experiments. In this way, a wealth of independ-
ent experiences can be assembled to generate
confidence in the value of the metric. In order
to do this, however, results must be published
using agreed-upon, or at least well-defined, terms
and explicitly-stated envirommental constraints so
that the next experimenter can be sure he is
testing the same thing.

It is clear that measures must be evaluated across
the entire 1life cycle. That is, although most
experiments have been done during the coding phase
only, we are interested in collecting data and
developing metrics that encompass the system from
early inception and planning all the way through
the maintenance phase. A measure may then be
evaluated by first isolating its direct effect on
the data and then correlating that effect with
experience. These properties and results are then
evaluated with respect to the original model that
was developed during the analysis phase.

Using A Software Measure

There are several uses for metrics and the panel
suggested three possibilities: (1) they can be
used to evaluate the software process and product,
(2) they can be used as a tool for software

244

development, and (3) they can be used to monitor
the stability and quality of an existing product.
Better understanding of the software development
process and the software development product is

a critical need. Metrics can help in that under-
standing by allowing us to compare different
products and different development environments
and providing us with insights regarding their
characteristics. Too often we think of all soft-
ware as the same. Metrics can be used to delineate
the various software products and environments.

Many metrics have as a major goal the evaluation
of the quality of the process or product in a
quality assurance enviromment. Thus a low score,
on a metric like the number of errors, indicates
something desirable about the quality of the
process while a high score on the same metric
indicates something quite undesirable about the
product.

A second use of metrics would be as a tool for
development. In this case, the metric can act

as feedback to the developer, letting him know how
the development is progressing. It can be used

to predict where the project is going by esti-
mating future size or cost, or it may tell him his
current design is too complicated and unstructured.
Metrics should certainly be used across the

entire life cycle and as early as possible to
facilitate estimation as well as evaluation.

A third use of metrics is to monitor the stability
and quality of the product through maintenance and
enhancement; that is, we can periodically recalcu-
late a set of metrics to see if the product has
changed character in some way. It can provide a
much needed feedback during the maintenance
period. If we find over a period of time that
more and more control decisions have entered the
system, then something may have to be done to
counteract this change in character. This last
use of metrics is relativistic, requiring only a
simple partial ordering to give us an indication
of what is changed. A relative measure is clearly
easier to validate than an absolute measure. The
first two uses of metrics--the evaluation of the
process and product and the tool of development—-
are predominantly absolute metrics; that is, there
is nothing to compare them to within the same
project. You may only compare their values with
the values of the metrics on other projects. The
drawback to an absolute metric is that we need
some normalization and calibration factor to tell
us what is good and what is bad.

The Effect of Software Metrics

Metrics should affect software methodology.
Assuming we learn from their use more about what
a good product is and what a good process is, we
will gain valuable insights into changing, re-
fining, and developing new methodology. On the
other hand, surely this changing methodology and
technology will affect what we model and measure.
For example, in an environment where all code is
written in a structured programming language, a
metric that evaluates control flow structure is
useless, although measures of modular structure

would still be useful.

One important issue is the current effect metrics
are having in contracts. A combination of models
and associated metrics would be of great value
for independent validation and verification and
quality assurance. In fact, metrics are already
being used in contract-related issues, such as
award, acceptance, and budget incentives. Un-
fortunately, it is not clear that they are
minimally sufficient for the purpose yet. They
may often be misleading. For example, one t
specific contract that was written required a
47-year mean time to failure. This is clearly
beyond the current state of technology. Most
metrics have not been tested enough in different
enviromments to assure the kind of rigor that is
required in satisfying contract requirements.
They should be used cautiously until a stronger
basis has been established for their validity.
What we need is a set of metrics that are well
understood, have been validated through empirical
study, and that help in developing and monitoring
contracts.

The final evaluation of whether complexity
measures are worthwhile, however, will lie in
their cost effectiveness; that is, metrics will
survive only if they prove to be beneficial from
a cost point of view. If a metric measures only
a microscopic aspect of the software development
process or product, then clearly it will not be
cost beneficial. But if it gives us some
panoramic insight into the process, if it has
some effect on the really important issues of
cost estimation and quality control, then the
work on metrics will have been worthwhile.

245

