
THE SOFTWARE ENGINEERING LABORATORY—AN OPERATIONAL SOFIWARE
EXPERIENCE FACTORY

Victor Basili and Giarduigi Caldiera Frank McGarry and Rose Pajeraki Gerald Page and Sharon Waligora

University of Maryland Nationrd Aeronautics and Space Adminishationf Computer Sciences Corporation

Goddard Space Flight Center

ABSTRACT

For 15 years, the Software Engineering Laboratory (SEL) has been
carrying out studies and experiments for the purpose of understand-

ing, assessing, and improving software and softwrne processes
within a production software development environment at the Na-

tional Aeronautics and Space Administration/Goddard Space Flight
Center (NASA/GSFC). The SEL comprises three major organiza-
tions:

● NASA/GSFC, Flight Dynamics Division

● University of Maryland, Department of Computer Sci-

ence

● Computer Sciences Co~oration, Flight Dynamics

Technology Group

These organizations have jointly carried out several hundred
software studies, producing hundreds of reports, papers, and

documents, all of which describe some aspect of the software en-
gineering technology that has been analyzed in the flight dy-
namics environment at NASA. The studies range from small,
controlled experiments (such as analyzing the effectiveness of
code reading versus that of functional testing) to large, multiple-
project studies (such as assessing the impacts of Ada on a pro-

duction environment). The organization’s driving goal is toim-
prove the software process continurdly, so that sustained

improvement may be observed in the resulting products. This
paper discusses the SEL as a functioning example of an opera-

tional software experience factory and summarizes the charac-
teristics of and major lessons learned from 15 years of SEL
operations.

1. THE EXPERIENCE FACTORY CONCEPT

Software engineetig has produced a fair amount of research and
technology tmnsfer in the first 24 years of its existence. People
have built technologies, methods, and tools that are used by many
organizations in development and maintenance of software
systems.

Unlike other disciplines, however, very little research has been

done in the &velopment of models for the various components of
the discipline. Models have been developed primarity for the
software product, providing mathematical mo&ls of its function
and structure (e.g., finite state machines in object-oriented design),
or, in some advanced instances, of its observable quality (e.g., reli-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission,

@1992 ACM 0-89791-504-61 92/ 0500- 0370 1.50

ability models). However, there has been very little modeling of

several other important components of the softwvne engineaing
discipline, such as processes, resources, and defects. Nor has much

been done toward understanding the logical and physical in-

tegration of softwrue engineefig models, analyzing and evaluating
them via experimentation and simulation, and refining and tailoring

them to the characteristics and the needs of a specific application
environment.

Currently, ~seamh and technology transfer in software engineering
are donemostlybottom-up andinisolation. Toprovide softwmeengi-
neering with angorous, scientilc foundation andapragmatic frame-
work, the following me needed [1]:

● A top-do- experimen~ evolutionary framework in
which research can be focused and logically integmted to

produce models of the discipline, which can then be
evaluated and tailored to the application environment

● An experimented laboratory associated with the software
artifact that is being produced and studied to develop and
refine comprehensive models based upon measurement
and evaluation

The three major concepts supporting this vision are

● A concept of evolution: the Quality hnpmvement Para-

digm [2]

● A concept of measmement and control: the Goal/
Question/Metric Approach [3]

● A concept of the organization the Experience Factory

[4]

The Quality Improvement Paradigm is a two-feedback loop
process (project and organization loops) that is a variation of the
scientific method. It consists of the following steps:

●

●

●

●

Charactetiation: Un&rstand the environment based
upon available mo&ls, data, intuition, etc., so that simi-

larities to other projects can be recognized

Planning: Based on this characterization

Set quantifiable goals for successful project and or-
ganization performance and improvement

Choose the appropriate processes for improvement,
and suppoxtingmethods and tools toachievethe gords
in the given environment

Execution Perform the processes while constructing the
products andprovi& nxd-time project feedback based on
the goal achievement data

Packaging: At the end of each specific projech

Analyze the data and the information gathe~d to

evaluate the current practices, determine problems,

370

record fiidings, and make n=ommendations for
future project improvements

Package the experience gained in the form of updated

and refined models and other forms of structmed

knowledge gained km this and prior projects

Store the packages in an experience base so they me

available for future projects

The Goal/Question/Metric Approach is used to define measure-
ment on the softwme project, process, and product in such away that

● Resulting metrics am tailored to the orgartixation and its
goals

● Resulting measurement data play a constructive and

instructive role in the organization

● Metrics and their interpretation reflect the quality values
and the different viewpoints (developers, users, opera-
tors, etc.)

Although originally used to define and evaluate a particular project
in a patticukar environment, the Goal/Questiowetric Approach
can be used for control and improvement of a softv-ae project in
the context of several projects within the organization [5,6].

The Goal/Questio@fetric Approach defines a measurement model
on thee levels:

● Conceptual level (goal): A goal is defiiedfor an object,

for a variety of reasons, with respect to various models of

quality, from various points of view, andrelativeto a par-
ticular environment

. Operational level (question): A set of questions is used
to defiie models of the object of study and the focuses
on that object to characterize the assessment or achieve-

ment of a specific goal

● Quantitativelevel(metric): Asetofmetrics,basedonthe

models, is associated with every question in order to an-

swer it in a quantitative way

The concept of the Experience Factory was introduced to institu-
tionalize the collective learning of the organization that is at the
root of continual improvement and competitive advantage.

Reuse of experience and collective learning cannot be left to the
imagination of individual, very talented, managers: they become a

corporate concern, like the portfolio of a business or company
assets. The experience factory is the organization that supports

reuse of experience and collective learning by developing, updat-

ing! and delivering> uPon ~quest to the project orsan~ationss clus-
ters of competencies that the SEL refers to as experience packages.

The project o~anizations offer to the experience factory their
products, the plans used in their development, and the data gath-
ered during development and operation (Figure 1). The experience
factory transforms these objects into reusable units and supplies
them to the project organizations, together with specific suppoxt
that includes monitoring and consulting (Figure 2).

The experience facto~ canbc a logical and/orphysical organization,

but it is important that its activities are separated and made inde-
pendent from those of the project organization. The packaging of

EXPERIENCE
PROJECT ORGANIZATION FACTORY

PROJECT/EWIRONMENT CHARACTERISTICS
-

EXECUTION PL4NS

PRwECT ANALYSIS, PRCCES3
WJD!FICATION, ETC

EXECUTE
PROCESS

CCiLECT DATA

DATA, LESSONS LEARNED, ~C.
-

1 I I

Figure 1. Project Organization Functions

PROJECT

C$IGANIZATION EXPERIENCE FACTORY

I

PRODUCfS, MODELS,

LESSONS LEARNED,

DATA ~C.

I I I

PRODiJCTS, LESSONS

LEARNED, DATA, ETC.

I

MODEL& SASEUNES,

R

l—

t-

FORMALIZE

EXPERIENCE

SASE

t-

TAILOR

l’+==

Figure 2. Experience Factory Functions

emerience isbaaedontenets andtechniquesthat arediffetenttlom the
pr;blem solving activity used in proj=t development [’7].

On the one hand, from the perspective of an organization producing

software, the diffe~nce is outlined in the following charh

PRoJECT ORGANIZATION EXPERIENCE FACTORY
(Problem Setvii@ (Experience Packsging)

Decomposition of a problem into Unification of different solutions
simpler ones and redefinition of the problem

Instantiation Generaliiatioq formalization

Designhmplemerrtation process Analysis/synthesis process

Validation and veritlcation Experimentation

371

On the other hand, fmm the perspective of software engineering
research, the~ are the following goals:

PROJECT ORGANIZATION EXPERIENCE FACTORY
(Problem Sotvii (,Experience Packaging)

Develop qxcsmtative language-s for Develop tectmiques for
products abstraction

processes generalization

tailoring

formalization

anal ysis/synthesis

Develop techniques for Experiment with techniques

designhnplementation

data collectiorr/validatiorr/
analyaia

validation and verification

Build automatic support tools Package and integrate for reuse
experimental results

procesa+mducta

In a correct inmlementation of the ex~rience factory Daradizm. the

projects and &e factory wiU have dikerent process- ;odels; Each

project will choose its process model based on the chamctenstics of
the software product that will be &livered, whereas the factory wiU

define (and change) its process model baaed upon organizational
and performance issues. The main product of the experience fac-
tory is the experience package. There ate a variety of software
engineering experiences that can be packaged resoume baselines

and mo&ls; change and defect baselines and models; product
baselines and models; process &fiitions and model% method and
technique models and evahmtion~ product+ lessons learned, and
quality models. The content and structtm of an experience pack-

age vary based on the kind of experience clustered in the package.

There is, generally, a central element that determines what the pack-
age is a software life-cycle product or process, a mathematical

relationship, an empirical or theonAcal mo&l, a data base, etc.

This centtul element can be used to identify the experience package

and produce a taxonomy of experience packages based on the
characteristics of this central elementi

● Product packages (programs, architectures, designs)

● Tool packages (constructive and analytic tools)

● Process packages (process models, methods)

● Relationship packages (cost and defect mo&ls, resource

models, etc.)

● Management packages (guidelines, decision support

models)

e Data packages (defiied and validated data, standardized
data, etc.)

The strnctme and functions of art efficient implementation of the
experience factory concept are modeled on the characteristics and
the goals of the orgmlization it supports. Theref0n5, diffe~nt levels

of abshaction best describe the mchitectme of an experience factory
in or&r to introduce the ,specKlcity of each environment at the right
level without losing the representation of the global picture and the
ability to compare different solutions [8].

The levels of abstraction that the SELproposestorepresent the archi-
tecture of an experience factory axe as follows:

● Reference level: This first and more abstract level rep-
resents the activities in the experience factory by
active objects, called architectural agents. They are

●

●

specified by their ability to perform specific tasks and

to interact with each other.

Conceptual levek This level represents the interface of
the architectural agents and the flows of data and control

among them. ‘Iltey specify who communicates with
whom, what is done in the experience factory, and what

is done in the project oqynixation. The boundary of the
experience factory, i.e., the line that separates it from the

project organization, is defined at this level based on the
needs and characteristics of an organization. It Can
evolve as these needa and characteristics evolve.

In-mlementatiott levek This level defines the acturd
tec-ticrd and organizational implementation of the ar-
chitectural agents aud their connections at the conceptual

level. They are assigned process and product models,

synchronization and communication rules, and appropri-
ate performers (people or computem). Other implementa-
tion detaiIs, such as mapping the agents over organiza-
tional departments, rue included in the specifications
provided at this level.

The architecture of the experience factory can be regarded as a spe-

cial instance of an experience package whose design and evolution

are based on the levels of abstraction just introduced and on the

methodological frumework of the improvement paradigm applied

to the specific architecture.

The Software Engineering Laboratory (SEL) is an operating ex-

~Ple of m experience factory. Figme 3 shows the conceptual
level of the SEL experience factory, identifying the primary archi-

tectural agents and the interactions among them. The remaining
sections describe the SEL implementation of the experience factory
concept. They discuss its background, operations, and achieve-
ments, and assess the impact it has had on the production environ-
ment it supports.

,!--”~ EXPERIMENTER

TECHNOLOGY

t o
PROBLEMS /-,

I P“’” SYNTHESIZED
INFORMATION

CJDESIGNER/ t
DEVELOPER

o

<!v~’> M“,,’ ~

PACKAGER
gj

Figure 3. The SEL--Conceptual Level

2. SEI . BACKGROUND

The SEL was established in 1976 as a cooperative effort among the

University of Marylan~ the National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC), and
Computer Sciences Corporation (CSC). Its goal was to tmderatand

rmd improve the software development process and its products

within GSFC’S Flight Dynamics Division (PDD). At that time, al-

though significant advances were being ma& in developing new
technologies (e.g., structured development practices, automated

tools, quality assurance approaches, and management tools), there
was very limited empirical evidence or guidance for applying these

promising, yet immature, techniques. Additionally, it was apparent
that there was very limited evidence available to qualify or to

372

quantify the existing software process and associated products, let
alone understand the impact of specific process methods. Thus, the
SEL staff initiated efforts to develop some means by which the

software process could be understood (through measurement),

quWle~ and measurably improved through continually expanding
understanding, experimentation, and process refinement.

This worling relationship has been maintained continually since its

inception with datively little change to the overall goals of the orga-
nization. In general, these goals have matured rather tham chauge~

they me as follows:

1. Understand Improve insight into the software process rmd

its pro&cts by chamcterizing a production environment.

2. Asses* Measure the impact that available technologies

have on the software process. Determine which technol~
@es arebeneficialto the environment and, most important-

ly, how the technologies must be refined to best match the
process with the environment.

3. Package/Infhstx After identifying process improvements,
package thetechnologyin afonnthatallowsittobeapplied
in the production organization.

These goals are addressed sequentially, in an iterative fashion, as
shown ‘ti Figure 4.

,T%+:PAT:=:F
{(

ASSESSING . GUI DEBCOXS
------- -------- ----

. TAILORING APPP.OACHES

. CLEANROOM

. INSPECTIONS PROCESS

. CAPTURE ADA PROCESS

. COM PARE TEST TECHNKYJES (FUNCTIONAL, READING,
STRUCTURAL)

UNDERSTANDING . IMPACT C+ STANDARDS
------ ------ ------ ------- ----

. WHAT PROCESSES USED

. REIATICSWHIP BETWEEN DEVELOPMENT PARAMETERS

$ ERROW3LWG ES C HARACTERISTICS

. RESOURCE ANO EFFORT CHARACTERISTICS

HCW MUCH SOFTWARE EXISTS/BUILT

Figure 4. SEL Process Improvement Steps

The approach taken to attaining these goals has been to apply
potentially beneficial techniques to the development of production

software and to measure the process and product in enough detail
to quantifiable assess the applied technology. Measures of con-

cern, such as cost, xdiability, and/or maintainability, are &fined as
the organization determines the major near- and long-term objec-
tives for its software development process improvement program.
Once those objectives are known, the SEL statT designs the experi-
ment that is, it &fines the particular data to be captmed and the
questions that must be addressed in each experimental project.

All of the experiments conducted by the SEL have occurred within
the production environment of the flight dynamics software devel-

opment facility at NASA/GSFC. The SEL production environ-

ment consists of projects that are classified as mid-sized software

sy~~s. The average project lasts 2 to 3-1/2 years, with an average
staff sue of 15 software developem. The average software size is
175 thousand source lines of code (KSLOC), counting commen-
tary, with about 25 prevent mused from pE.vious development

efforts. %tually all projects io this environment are scientific

ground-based systems, although some embed&d systems have
been developed. Moat software is developed io FORTRAN, al-

though Ada is starting to be used mo~ frequently. Other lan-

guages, such as Pascal and Assembly, are used occasionally. Since

this environment is relatively consistent, it is conducive to the

experimentation process. Io the SEL, there exists a homogeneous
class of software, a stable development environment, and a con-

trolled, consistent, management and development process.

3. SEL OPERATIONS

The following three major fictional groups support the exper-

imentation and studies withio the SEL (Figure 5):

1. Software developers, who are responsible for producing

the flight dynamics application softvnm

2. Software engineering analysts, who me the researchers

responsible for carrying out the expetimentation process
and producing study results

3. Data base support staff, who are responsible for collect-
ing, checking, and archiving all of the information col-
lected from the development efforts

During the past 15 years, the SEL has collected and archived data

on over 100 software development projects in the organization.

The data are also used to build typical project profdes against
which ongoing projects can be compared and evaluated. The SEL

provides managers in this environment with took (online and

paper) for monitoring and assessing project status.

~ically, there are 6 to 10 projects simultaneously in progress in
the flight dynamics environment. As was mentioned earlier, they
average 175 KSLOC, ranging from small (6-8 KSLOC) to large

(300- 400 KSLOC), with a few exceeding 1 million source lines of
code (MSLOC). Each project is consi&red an experiment within
the SEL, and the gord is to extract detailed information to un-

&rstand the process better and to provide guidance to future

projects.

To suppoti the studies and to support the goal of continually

increasing un&rstanding of the software development process, the
SEL regularly collects detailed data from its development projects.
The types of data collected include cost (measured in effort),
process, and product data. Process data include infonuation about
the project, such as the methodology, tools and techniques used,
and information about personnel experience and training. Product

data include size (in SLOC), change and error information, and the
results of postdevelopment static analysis of the delivered code.

The data may be somewhat different from one pruject to another

since the goals for a particular experiment maybe different between

projects. There is a basic set of information (such as effort and
error data) that is coIkcted for every project. However, as changes

are made to specific processes (e.g., Ada projects), the detailed data

collected may be modified. For example, Figure 6 shows the
standard error report form, used on all projects, and the modified
Ada version, used for speciilc projects where Ada is being studied.

As the information is collecte~ it is quality assured and placed in a
centrrd data base. The analysts then use these data together with

other information, such as subjective lessons leame~ to analyze the
impact of a specific software process and to measure and then feed

back ~snlts to both ongoing projects and follow-on projects.

The data me used to build predictive models for future projects and

to provide a rationale for ~fining particular software processes
being used. As the data are anslyzed, papers and reports are gener-
ated that reflect results of the numerous studies. Additionally, the
results of the analysis are packaged as standards, policies, training
materials, and management tools.

373

4.

The

DEVELOPERS
(DEVELOPFLIGHTDYNAM lCSS/W)

STAFF 275-300 (FTE*)

TYPICAL PROJECT 150-200 KSLOC
SIZE

ACTIVE PROJECTS 6-10
(AT ANY GIVEN TIME)

PROJECT STAFF 15-25 PEOPLE
SIZE

1976-1992 100 PROJECTS REFINEMENTSTO
DEVELOPMENTPROCESS

SOFTWAREANALYSTS
(STUDYPROCESS)

STAFF 5-1ORESEARCHERS

FUNCTION . SETGOALS/QUESTIONS/
METRICS
- DESIGN STUDIES/

EXPERIMENTS
. ANALYSIS/RESEARCH
● REFINEWVPROCESS

– PRODUCE REPORTS/
FINDINGS

197S-1 992 250 REPORTS/DOCUMENTS

DATA BASE SUPPORT (MAINTAIN/QA SEL DATA)

STAFF
I

2-5 (FTE)
I SEL DATA BASE

rl

FUNCTION . PROCESS FORMS/DATA

. QA I

. RECORD/ARCHIVE DATA
I

FORMS LIBRARY

. MAINTAIN SEL DATA BASE D

. OPERATE SEL LIBRARY
I

REPORTS LIBRARY

I

I
@

‘RE = Full-Time Equivalent

Figure 5. SEL Functional Groups

SEL DATA ANALYSIS

overall concept of the experience factory has continually

matured within the SEL as understanding of the software process
has increased. The experience factory goal is to demonstrate

continual improvement of the software process within an environ-

ment by carrying out analysis, measurement, and feedback to

projects within the environment. The steps, previously describe~
include understanding, assessment/ret’inement, and packaging.

The data described in the p~vious section are used as one major
element that supports these three activities in the SEL. Jh this sec-
tion, examples are given to demonstrate the major stages of the
experience factory.

4.1. UNDERSTANDING

Understanding what an organization does end how that orga-
nization operates is fundamental to any attempt to plan, manage, or
improve the softwme process. This is especially true for eoftwme
development organizations. The following two examples illustrate

how understanding is suppoxted in an operation such as the SEL.

Effort distribution (i.e., which phases of the life cycle consume
what portion of &velopment effort) is one baseline characteristic of
the SEL softswmv &velopment process. Figure 7 presents the effoti
distributions for 11 FORTRAN projects, by life-cycle phase and by
activity. The phase data count hours chmged to a project during
each calendar phase. The activity data count all hours attributed to

a particular activity (as rcpotied by the prog rammer), regardless of
when in the life cycle the activity occurred. Understanding these

distributions is impoxtant to assessing the similarities/differences
observed on an ongoing project, planning new efforts, rmd evaluat-

ing new t=~ology-

The error detection rate is smother interesting mo&l from the SEL
environment. l%e~ are two types of information in this model.

The first is the absolute error rate expected in each phase. By

collecting the information on software exrors, the SEL has

constructed a mo&l of the expected emor rate in each phase of the

life cycle. The SEL expects about four errors per 1000 SLOC dur-

ing implementation: two during system test, one during acceptance
test, and one-half during operation and maintenance. Analysis of

,mo~ mxmt projects indicates that these absolute error rates arc de-
clining as the software development process and technology

improve.

The trend that can k derived from this model is that the error
detection rates teduce by 50 percent in each subsequent phase

(Figure 8), This pattern seems to be indepen&nt of the actual
values of the error rate% it is still true in the recent projects where

the overaU error rates me declining. This model of error rates, as
well as numerous other similar types of models, can be used to
better predict, manage, and assess change on newly developed
projects.

42. ASSESSING/REFINING

In the second major stage of the experience factory, elements of the
process (such as specific software development techniques) me ss-
sesse~ and the evolving technologies are tailo~d to the pmticuku
environment. Each project in the SEL is consi&red to be an ex-

periment in which some software method is studied in &tail.
Generally, the subject of the study is a specific modification to the
Wsndard process, a process that obviously comprises nnmemus

software methods.

374

d d

❑ un

d

d

— .

~ocln
-DOD

375

BY LIFE-CYCLE PHASE: BY ACTIVITY:
DATE PROGRAMMER

DEPENDENT REPORTING

BASED ON 11 PFIQJECTS IN FLIGHT DYNAMICS
ENVIRONMENT (of Similar Size and Complexity)

Figure 7. EffortD~tribution

6 x
1

1 -

, “ ,+x=: 1
0

COD13TEST SYSTEMTEST ACCEPTANCETEST OPERATIONS

WSED ON 5 PROJECTS SEIWEEN 1983 AND 1987

Figure 8. Derived SEL Error Model

One recent study that exemplifies the assessment stage involves the

Cleanroom software methodology [9]. This methodology has been

applied on three projects within the SEL, each providing additional
insight into the Cleanroom process and each adding some element

of “refiiement” to the methodology for this one environment.

The SEL tmined teams in the methodology, then defined a
mo~led set of Cleattroom-specific data to be collected. The

projects were studied in an attempt to assess the impact that Clean-
room had on the process as well as on such measures as

productivity and reliability. Figure 9 &picts the characteristics of
the Cleanroom changes, as well as the results of the tie exper-

iments.

The Cleanrmm experiments included significant changes to the
standard SEL &velopment methodology, thexeby ~quiring ex-
tensive training, preparation, and careful execution of the studies.
Detailed experimentation plans wem generated for each of the
studies (as they are for all such experiments), and each included a
&saiption of the goals, the questions that had to be wkhesaed, and
the metrics that had to be collected to answer the questions.

Since this methodology consists of multiple specific methods (e.g.,
box structure design, statistical testing, rigorous inspections), each

particular method had to be rmalyzed along with the full, integrate~
Cleanroom methodology in general. As a teault of the analysis,
Clesnroom has been “assessed” as a beneficial approach for the
SEL (as measured by specific goals of these studies), but specific
elements of the full methodology had to be tailoted to better fit the
particular SEL environment. The tailoring and modifying resulted
in a nxised Cleanroom process model, written in the form of a
process handlmok [10], for future applications to SEL projects.

That step is the “packaging” component of the ex~nence factory
process.

43. PACKAGING

The final stage of a complete experience factory is that of pack-

aging. After bcneficid methods and technologies ate identified, the
organization must provide feedback to ensuing projects by cap-
turing the process in the form of standards, tools, and training. The

SEL has produced a set of standards for its own use that reflect the
results of the studies it has conducted. It is appment that such

standards must continually evolve to capture modified character-

istics of the process. (The SEL typically updates its basic standard

every 5 years.) Examples of standards that have been produced as

part of the packaging process include:

● Manager’s Handbook for So~are Development [11]

● Recommended Approach to Software Development [12]

One additional example of an extensive packaging effort in the
SEL is a management tool called the Software Management Envi-

ronment (SME). ‘Ile concepts of the SME, which is now an opera-

tional tool used locally in the SET+ have evolved over 8 years.
This tool accesses SEL project data, models, relationships, lessons

learned, and managers’ rules of thumb to ptesent project charac-

teristics to the manager of an ongoing project. This tallows the

manager to gain insight into the project’s consistency with or devi-
ation from the norm for the environment (Figure 10).

This example of “packaging” reflects the emphasis that must be
placed on making results of software projects, in the form of
lessons learned, refried models, and general understanding, easily
available to other follow-on development projects in a pmticulm or-
ganization.

The tool searches the collection of 15 years of experience mchived

in the SEL to select appropriate, similar project data so that manag-

ers can plan, monitor, predict, and better un&tstand their own
project based on the analyzed history of similar software efforts.

As an example, all of the error characteristics of the flight dynamics

projects have resulted in the error model &picted in Figure 8,
where histo~ haa shown typical software etror rates in the ditletent

phases of the life cycle. As new projects are developed and error
discrepancies are tuutinely reported and added to the SEL data
base, the manager can easily compare error rates on his or herproj-

ect with typicrd emor rates on completed, similar projects.
Obviously, the data ate environment depen&nt, but the concepts of

measurement, process improvement, and packaging are applicable
to all environments.

5. ADA ANALYSIS

A more &tailed example of one technology that has been studied

in the SEL within the context of the expedience factory is that of

Ada. By 1985, the SEL had achieved a good understanding of
how software was developed in the FDD, it had baselined the &-
velopment process and had established rules, relationships, and

models that improved the manageability of the process. It had also
fine-tuned its process by adding and refining techniques within its
standard methodology. Realizing that Ads and object-oriented

techniques offered potential for major improvement in the flight
dynamics environment, the SEL decided to pursue experimentation

with Ada.

The first step was to setup expectations and goals against which
results would be measured. The SEL’S well-established baseline
and set of measures provided an excellent basis for comparison.
Expectations included a change in the effort distribution of &vel-
opment activities (e.g., increased design and deereased testing); no
greater cost per new line of cods increased reusq decreased main-
tenance cost% and inc~ased reliability (i.e., lower error rates, fewer
interface errors, and fewer design errors).

376

Figure 9. Cleanroom Assessment in the SEL

377

Software Management Environment

EXPERIENCE BASE AUTOMATED TOOL (SME) MANAGEMENT AID

\ / 1. COMPAR13EXPLAIN

1. HISTORICAL DATA

F1SEL
DATA BASE

2, PROCESS MODELS

1$1
DESIGN

2T% OTHER

20%

TESTING

28% CODE

25%

3. KNOWLEDGE
– LESSONS LEARNED
- INTUITION

The SEL started with a small, controlled experiment in which two
versions of the same system were developed in parallefi one was

developed in FORTRAN using the standard SEL structured meth-
odology, and the other was developed in Ads using an object-

onented development (OOD) methodology. Because the Ada
system would not become operational, analysts had time to investi-
gate new ideas snd learn about the new technology while extmeting
good crdibration information for comparing FORTRAN and Ada
projects, such as size ratios, average component size, error rates,
and productivity. These data provided a reasonable means for
planning the next set of Ada projects that, even though they wete

small, would deliver mission support software.

Over the past 6 years the SEL has completed 10 Ada/OOD

projects, ranging in size from 38 to 185 KSLOC. As projects com-

pleted and new ones started, the methodology was continually
evaluated and refined. Some characteristics of the Ada envi-
ronment emerged early and have remained rather constan~ others

NO. OF
~ MODEL

ERRORS
— CURRENTPROJECT

~~

,.,.,,,.,.:.,,,,..
.........:.,,,,,,,,,,,., ERRORS SELOW N0Rh44L,,i~:::

BECAUSE
,,,,,.,:,, 1. INSUFFICIENT TESTING
...........:,:,:::,,, 2. EXPERIENCED TEAM

.:~.:. 3. PRCSLEM LESS DIFFICULT,,:,,,.,,.
,.,,,.,.:,. THAN EXPECTED

,.,.,,,.,.
............

,,,:::~

CT END
(ESTIMATEI

TIM F

3. ASSESS
r

ABOVE

NORMAL

BELOW
RELIA. MAINTAIN- QUALITV

I BILITV ABILITY

Figure 10. SME: A Tool for ‘Tackagin#

PREDICT

ERRORSI
1000 KSLOC

L2L
....

CURRENT ERROR

\

....7......=.=
,::

RATE ,i~

\

,,:
FINALERROR

RATE

CT ST AT

TIME

took time to stabilize. For example, Ada projects have shown no

significant change in effort distribution or in error classification
when compared with the SEL FORTRAN baseline. However,
reuse has increased dmrnaticdly, as shown in Figme 11.

Over the 6-year period, the use of Ada and OOD has matmed.
Source co& analysis of the Ada systems, grouped chronologically,
revealed a maturing usc of key Ada features, such as generics,
strong typing, and packaging, whereas other features, such as task-
ing, were deemed inappropriate for the application. Generics, for
example, were not only used more often in the recent systems,

increasing from 8 to 50 percent of the system, but they were also
used in more sophisticated ways, so that parametetiation increased

eightfold. Moreover, the use of Ada features has stabilized over the
last 3 years, creating a SEL baseline for Ada development.

The cost to develop new Ada co& has remained higher than the
cost to &velop new FORTRAN code. However, because of the
high reuse, the cost to deliver an Ada system has significantly

378

6 PROJECTS USING Ada AND 00D cosr To DEVELOP
EFFORTPER DEVELOPEDSTATEMENT100 1.6

1.4

~ 1.2
zw

E ‘“0
g

g 0.8
3
0
: 0.6
u.
~

- 0.4

0.2

0.0

1.6 _

, ~F~~TR*N

m Ada
1.2

80
1.2

1.1

0.7

I

..
, X!!i!$$$

#!

*
~i ~~

%%.$.,:.*:.*.4$:*::~g+x+:<g:+.:.:.:........ .,.:x::.:.:.:.:::::.:.:.:.:::::::::::$:v~j:.:.:.:.:.:.............

1.0

20

n
“

GFIOOY GOESIM GOADA UARSTELS EUVEDSIM EUVETELS
(W67) (8716a) (66/69) (SS/89) (ss/90) (W90)

Figure 11. Reuse ‘lkends

1 1 1
decreased and is now well below the cost to deliver an equivalent
FORTRAN system (Figure 12).

FORTRAN 6W8 6716s 66/69 90/91

Reliability of A& systems has rdso improved as the environment
has matured. Although the error rates for Ada systems, shown in
Figure 13, were significantly lower from the start than those for

FORTRAN, they have continued to decrease even further. Again,
the high level of reuse in the later systems is a major contributor to

this greatly improved reliability.

COST *TO DELIVER

EFFORTPER DELIVEREDSTATEMENT

t

,4 ~ FORTRAN

m Ada
1.2

During this 6-year peno~ the SEL went through various levels of
packaging the Adrs/OOD methodology. On the earliest project in

1985, when OOD was still very young in the industry, the SEL

found it necessary to tailor and package their own General
Object-Oriented Development (GOOD) methodology [13] for use
in the flight dynamics environment. This document (produced in
1986) adjusted and extended the industry standard for use in the

local environment. In 1987, the SEL also developed an Ada Style
Guide [14] that provi&d coding standards for the local environ-

ment. Commercial Ada training courses, supplemented with lim-
ited project-specific training, constituted the early training in these

techniques. The SEL also produced lessons-learned teports on the
Ada/OOD experiences, recommending refinements to the method-
ology.

1.0 L

1.0 1.0 I

1 1 1 10.0

FORTRAN 66/66 67/6% S6/69 90/91
Recently, because of the stabilization and apparent benefit to the
organization, Ada/OOD is being packaged as part of the baseline
SEL methodology. The standard methodology handbooks [11, 12]

include Ada and 00D as mainstream methods. In addition, a com-
plete and highly tailoted training program is being developed that

teaches Ada and 00D as an integrated part of the flight dynamics

environment.

‘ Cost - Effort/Siie
Sue (dedaped). New statements+ 20X ~ ,eU~~
Sue (delivered). Total dsliiered statements

NOTE Cost per statetmnt is used here as the basis for mmparison, since
lhe SEL has found a 3-to -1 rstio when mmparing Ada with
FORTRANsourcs lines of mde (carriagereturns)bul a 1-to-1 ratio
when mmpwing statements.

Although Ada/OOD will continue to be refried within the SEL, it

has pmgnxsed through all stages of the experience factory, moving
fmm a candidate trial methodology to a fully integrated and pack-

aged part of the standard methodology. The SEL considers it base-
lined and teady for further incremental improvement.

Figure 12. Costs To Develop and Deliver

commonplace throughout both NASA and the software community

in general. The benefits far outweigh the costs.

6. IMPLICATIONS FOR TEE DEVELOPMENT ORGANI-

ZATION
Since the SEL’S inception in 1976, NASA has spsnt approximately

$14 million dollars (contract suppofl) in the three major support
areas requixed by this type of study envimnmenti research (&fin-
ing studies and amdyzing results), technology transfer (producing
standards and policies), and data processing (collecting forms and

maintaining data bases). Approximately 50 stai%years of NASA
personnel effott have been expended on the SEL. Dmittg this same
period, the flight dynamics area haa spent apptmintately $150 mil-

lion on building operational soflware, all of which has been part of

the study process.

For 15 years, NASA has been funding the efforts to carry out
expetitnents and studies within the SEL. There have been signifi-

cant costs and a certain level of overhead associated with these ef-

fortv a logical question to ask is “Has there been significant bene-
fit?’ The historical information strongly supports a very positive
answer. Not only has the expenditure of resources been a wise

investment for the NASA flight dynamics environment, but mem-

bers of the SEL strongly believe that such efforts should be

379

5.00

4.50

4.00

3.50

8A 3.00

E
GK 2.5o

z
% 200

1.60

1.00

0.50

0.00

TRENOSIN ERRORRATES

3.9

:~:;~........... ..,.,.,
.......................+:=::2%%:::.
.:.,.,.,.:.,.:.:<.,....
::>:~:fi,f
:>:::::::::::::::::::::.
::::::::.:.:.,.,:::,:.:..“.”.”.”.:.:+.:.,.,.X.
=:;
:.:.:.:..................-. +,==+:.
::::::::::++::::.
:>::>:::::::::::::::
:::.::::::::;.~
::fw<::.:x:.w
~~::?.f*: 1.8.....................W,:::2.::::::.
f<:<>.;~:%.<
m:&.x:,S.:......Z*.
q<j/f&+*
:::,.,.,.:<+:.:,,:.::.:::::,:,*J::.
:?>::><::::*::::

1 IIUL

0.9>.,+:::;+:~.j<
==W.N
fjj$g

;);~~~.y,~
;~:y~*. /
:W::::::A::::.A
:::,:,:,:W>;:
X2X2$3........................

2.1

0.5

FORTRAN 85/S6 87/S3 Sslo’a 90/sl

Figure 13. ‘lkends in Error Rates

During the past 15 years, the SEL has had a significant impact on
the software being developed in the local environment, and the~ is
strong reason to believe that many of the SEL studies have had a

favorable impact on a domain broader than this one environment.

Examples of the changes that have been observed include the fol-

lowing:

1. The cost per line of new code has decteased only slightly,
about 10 percent —which, at fiist glance might imply that
the SELhas failed at improving productivity. Although the
SEL finds that the cost to produce anew source statement
is nearly as high as it was 15 years ago, the~ is appreciable

improvement iII ~efinction~ty of fie sofiw~el =we~ m
a he.mendous increase in the complexity of the problems
timg addressed [15]. Also, there has been an appreciable

increase in the Ruse of software (code, design, methods,
test data, etc.), which has driven the overall cost of the

equivalent functionality down significantly. When the

SEL merely measures the cost to produce one new soutce

statement, the improvement is sm~, but when it measures

overall cost and productivity, the improvement is sig-

tilcant.

2. Reliability of the software has impmvedby 35 percent. As
measured by the number of errors per thousand lines of
co& (E/KSLOC), flight dynsmics software has improved
from an average of 8.4 E/KSLOC in the early 1980s to

approximately 5.3 E/KSLOC today. These f@m cover

the software phases through acceptance testing and &liv-

e~ to %mtions. Although opemtions and maintenance
data arenotnearly soextensiveasthe developmentdata, the
small amount of data available indicates si~lcant
improvement in that mea as well.

3. The “manageability” of softwrue has improved dramat-

ically. In the late 1970s and early 1980s, the environment
experienced wi&vmiationsinproductivity,reliabili~, and
quality from project to project. Today, however, the SEL
has excellent models of the proces~ it has well-defined
methody and managers are better able to pdict, control,
and manage the cost and qurdity of the softsvare being
produced. This conclusion is substantiated by recent SEL

data that show a continutiy improving set of models for

planning, predicting, and estimating all development
projects in the flight dynamics environment. The= no
longer is the extreme uncertainty in estimating such
common parameters as cost, staffing, size, and reliability.

4. Other measures include the effottput forth in rewotk (e.g.,
changing and conecting) and in overall software teuse.

These measures rdsoindicate a significant improvement to

the software within this one environment.

In addition to the common measures of software (e.g., cost and reli-
ability), there are many other major benefits derived from a “mea-

smement” pmgmtn such as the SEL’S. Not only has the under-
standing of softwae significantly improved within the research
community, but this understanding is apparent throughout the
enthe development community within this environment. Not only
have the researchers benefited, but the developers and managers
who have been exposed to this effort ate much better prepared to

plan, control, assure, an~ in general, develop much higher quality
systems. One view of this program is that it is a major “trsining”

exercise within a large production environment, and the 800 to
1000 developers and managers who have participated in develop-

ment efforts studied by the SEL are much better trained and effec-
tive software engineers. This is due to the extensive training and

generrd exposure all developers get from the reseroch efforts contin-
ually in progtess.

In conclusion, the SEL functions as an opmational example of the
experience factory concept. The concepturd model for the SEL
presented in Section 1 maps to the functional groups discussed

under SEL operations in Section 3. The experience base in Fig-
ure 2 is realized by the SEL data base and its archives of man-

agement models and relationships [16]. The analysis function from

Figure 2 is performed by the SEL team of software engineering
anrdysts, who analyze processes and products to understand the
environment, then plan and execute experiments to assess and

rellme the new technologies under study. Finally, the synthesis
function of the experience factory maps to the SEL’S activities in
packaging new processes and technology in a form tailored spe-

cifically to the flight dynamics environment. The products of this
synthesis, or packaging, are the guidelines, standards, and tools the

SEL produces to infuse its fiidings back into the project orga-
nization. These products rue the experience packages of the expkn-

ence factory model.

Cmmnt SEL efforts are focused on addressing two major questions.
The first is “How long does it take for a new technology to move

through all the stages of the experience factory?” That is, from
understanding and baselining the current environment, through

assessing the impacts of the technology and refiming it, to paek-

agin.g ~ process and infusing it into the project organization.
Pdurunary fimdings from the SEL’S Ada sod Cleanroom expe-

riences indicate a cycle of roughly 6 to 9 years, but further data
points are needed. The second question the SEL is pursuing is
“How large an organization can adopt the experience factory mod-
elT’ me SEL is interested in learning what the scaleup issues arc

when the scope of the experience factory is extended beyond a
single environment. NASA is sponsoring an effort to explore the
infusion of SEL-like implementations of the experience factory

concept across the entire Agency.

ACKNOWLEDGMENT

Material for this paper represents WO13Cnot only of the authors
listed, but of many other SEL staff members. Special acknowl-
edgment is given to Gerry Heller of CSC, who played a key role in
editing this paper.

REFERENCES

Numerous papers, reports, and studies have been generated over

the SEL’S 15-yeru existence. A complete listing of these csn be
found in the Annotated Bibliography of Software Engineering

380

Laboratory Literature, SE1-82-1OO6, L. Morusiewicz and J. Vrdett,

November 1991.

This bibliography may be obtained by contacting:

The SEL Library
Code 552
NASAIGSFC
Greenbel~ MD 20771

A listing of references specific to this paper follows.

1.

2.

3.

4.

5.

6.

7.

8.

V. R. Basili, “Towards a Mature Measurement Environment:

Creating a Software Engineering Research Environment;’ Pro-
ceedings of the Fifteenth Annual Software Engineering Work-
shop, NASA/GSFC, Greenbelt, Maryland, SEL-9&O06, No-
vember 1990.

V. R. Basiii, “QuantitativeEvrduationof aSoftwareEngineering

Methodology;’ Proceedings of the First Pan Pacific Computer

Conference, Melbourne, Austmli~ September 1985.

V.R. Basili and D. M. Weiss, “A Methodology for Collecting

Valid Software Engineering Data: IEEE Transactions on

Softwaxe Engineering, November 1984, pp. 728-738.

V. R. Basili, “SoftwareDevelopment: AParadign fortheFutnre

(Keynote Address):’ Proceedings COMPSAC ’89, Orlando,
Florida, September 1989, pp. 471-485.

V.R. Basili andH.D. Romback, “Tailofigthe SoftwmeProcess
to Project Goals and Environments,” Proceedings of the Ninth

International Conference on Software Engineering, Monte~y,
Califomi% March 30 – Ap& 2, 1987, pp. 345-357.

V.R. Basili and H.D. Rombach, “The TAME Project: Towards

Improvement-tiented Software Environments:’ IEEE Trans-

actions on Software Engineering, Vol. 14, No. 6., June 1988,

pp. 758-773.

V. R. Basili andG. Caldiera, “Methodologicaia ndAditectural

Issues in the Experience Factory: Proceedings of the Sixteenth

Annual Software Engineering Wodwhop, NASA/GSFC,

Greenbelt, Maryland, Software Engineering Laborato~ Series,
December 1991.

V. R. Basili, G. Caldier% and G. Cantone, “A Refermce
Architectuxw for the Component Factory” ACM Transactions
on Software Engineering and Methodology, Vol. 1, No. 1,
January 1992, pp. 53-80.

9.

10.

11.

12.

13.

14.

15.

16.

H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom Software
Engineering:’ LEEE Software, November 1990, pp. 1%24.

S. Green, Sof~are Engineering Laboratory (SEL) Cleanroom

Process Model, SEL-91-004, November 1991.

L. Landis, F. E. McGarry, S. Wrdigom, et al., Manager’s

Handbook for Software Development (Revision 1),

SEL-84-101, November 1990.

F.E. McGarry, G. Page, S. Eslinger, et al., Recommended

Approach to Software Development, SEL-8 1-205, April 1983.
Revision 3 inpreparatio~ scheduledforpublication June 1992.

E. Seidewitz and M. Stark General Object-Oriented Sojiware

Development, SEL-86-002, August 1986.

E. Seidewitz et rd., Aa2rcB Style Guide (Mersion 1.1),

SEL-87-002, May 1987.

D. Boland et al., A Study on Size and Reuse Trends in Attitude

Ground Support Systems (AGSSS) Developed for the Flight

Dynamics Division (FDD) (1976-1988), NASA/GSFC, CSC/
TM-89/603 1, February 1989.

W. Decker, R. Hendrick, and J. Valett, So@are Engineering

Laboratory (SEL) Relationships, Models, and Management

Rules, SEL-91-001, February 1991.

381

