
Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 1 UMIACS-TR-96-10

AN INDUCTIVE METHOD FOR DISCOVERING DESIGN
PATTERNS FROM OBJECT-ORIENTED SOFTWARE SYSTEMS

Forrest Shull, Walcélio L. Melo, and Victor R. Basili

Computer Science Department/
Institute for Advanced Computer Studies

University of Maryland, College Park, MD, 20742
{fshull, melo, basili}@cs.umd.edu

© 1996 Shull, Melo and Basili

Abstract

Object-Oriented Design Patterns (OODPs) have been proposed as a technique to encapsulate design
experience and aid in design reuse. However, so far, there is very little empirical evidence about
what we can expect from this emergent technology. For instance, to date little research has
focused on the development of techniques for discovering workable patterns that can be captured,
formalized, packaged, and quantitatively evaluated. Our work is a step in this direction. In this
paper we present an inductive method aimed at helping us discover OODPs in existing OO
software systems. It encompasses a set of procedures rigorously defined in order to be repeatable
and usable by practitioners who are not acquainted with reverse architecting processes. Guidelines
are provided and a case study is shown that demonstrates the usefulness of the approach.

Key-words: Object-Oriented Design Patterns; Reverse Engineering; Empirical Software
Engineering; C++ language.

1. INTRODUCTION

Software developers, working over time in a particular organizational setting, implicitly gain an
understanding of what works and what does not work in their particular environment as they
develop personal techniques for producing successful object-oriented designs. A part of these
techniques lies in knowing what arrangements and interrelations of classes are useful; another part
lies in knowing when and where to apply these arrangements for them to be effective. If taken
together and packaged effectively, these two parts become an Object-Oriented Design Pattern
(OODP) - a practical solution to a typical subproblem, along with a set of guidelines for when to
apply it. From these collections of individual techniques, we can then extract techniques which are
useful within the organization as a whole. Organizations that preserve a collection of successful
designs have thus already made the first step toward creating an "institutional memory" of useful
design techniques. Such collections can be a rich source of OODPs, as they implicitly capture
designer experience. The challenge is in transforming these ad hoc collections of design solutions
into custom knowledge bases of Object-Oriented Design Patterns which can be reused in an
organization-wide context.

To say more specifically just what a design pattern is, we borrow from [Gamma, 1995], who
define their set of design patterns as "descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context." Patterns are a means of
succinctly capturing "simple and elegant solutions to specific problems in object-oriented software
design." These solutions have evolved over time, and so reflect the effort spent in their redesign
and recoding by greater flexibility and reuse potential. Patterns have four essential elements:

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 2 UMIACS-TR-96-10

• The pattern name is a short handle used to refer to the pattern and the problem it solves.
Naming patterns lets designers work at a higher level of abstraction.

• The problem description gives the problem and its context; it describes when the pattern is
applicable.

• The solution provides an abstract description of the elements that make up the design and
their relationships.

• The consequences are the results of applying the pattern, and reflect the fact that even very
successful designs often imply a trade-off of some sort.

As an example of an OODP, consider the Mediator pattern which is illustrated in Figure 1. This
pattern is part of the set of general-purpose patterns proposed by [Gamma, 1995]. It defines a
problem in which its application may be useful (it should be used when an object "refers to and
communicates with many other objects" or when "a behavior that's distributed between several
classes should be customizable without a lot of subclassing") and specifies as a solution a set of
classes that work together in specified ways (the class that corresponds to the concrete instantiation
of the Mediator class maintains links to "colleague" classes; the colleagues inherit a link back to the
mediator class). As a result of its use, certain consequences are observed: control is centralized,
subclassing is limited, object protocols are simplified, etc. We will look at the Mediator class in
somewhat more detail in Section 5.

Figure 1: The Mediator Pattern

Mediator Pattern from

Mediator

Concrete
Mediator

Colleague

Concrete
Colleague2

Concrete
Colleague1

...

Design Patterns

Our work is a step toward the creation of custom knowledge bases of patterns. We developed an
inductive method, which we call BACKDOOR (Backwards Architecting Concerned with
Knowledge Discovery of OO Relationships) aimed at helping us reverse architect OODPs from
existing OO software systems and package them into reusable design solutions. Such a method
will allow us to:

1) capture the experience of designers, by noting patterns which consistently appear in their work;

2) package useful patterns so that designers can tailor them to their own designs;

3) collect metrics on the OODPs in order to validate the usefulness of these patterns in terms of
defect-proneness, rework effort, reusability, and other attributes;

4) refine the pattern discovery process by using these patterns to hone the search mechanism.

The method encompasses a procedure defined in order to be repeatable and usable by people who
are not acquainted with reverse architecting processes.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 3 UMIACS-TR-96-10

The development of a full pattern-discovery system is too huge a task to be implemented all in one
step. In this paper, we take an initial look at validating the first two uses of our BACKDOOR
method: pattern discovery and packaging. Features that characterize "good" patterns are still open
to debate. Therefore, we choose a reference set of patterns of proven usefulness against which we
compare the patterns found by BACKDOOR. In this way, we hope to gain some insight into good
techniques for finding and packaging patterns. Once we have some confidence that our method is
well-defined in these two areas, we will proceed to future work on adding a metrics suite. Recent
work has already shown the usefulness of using metrics to evaluate OO designs [Basili, 1995]; we
propose to extend this work to the characterization of patterns as well. In particular, coupling
metrics such as those discussed in [Briand, 1994] show promise for application to design patterns.
Another extension to the BACKDOOR process will involve the addition of feedback loops in order
to refine the discovery mechanism based on previous instances of patterns found.

2. CONTEXT AND SCOPE OF THE STUDY

In this section, we outline what the completed knowledge base will look like. We emphasize that
our work is only an initial step in this direction.

We feel that pattern discovery, formalization, and packaging must be done as part of the
organization’s Experience Factory [Basili, 1989], that is, as a separate event apart from the rest of
the software development life cycle, not as an ad hoc process spread throughout the normal life
cycle activities. Therefore we clearly differentiate the Development Organization (DO) from the
Pattern Knowledge Base (PKB), though their roles are complementary.

Pattern Knowledge
Base

Development
Organization

preexisting
patterns

completed,
successful
designs

workable
patterns and
metrics

Figure 2: A pattern-gathering cycle.

The goal of the PKB is to create for the development organization a custom library of patterns that
have been empirically validated to work in the given environment. This is achieved in the long run
by many iterations through a feedback cycle between the DO and PKB (see figure 2). The DO
provides a set of its completed designs. The PKB makes use of these designs in two ways: First,
it looks for new instances of already recorded patterns; if it finds any, then it updates the suite of
metrics associated with the pattern. These metrics refer to qualities of the patterns that the
organization finds of interest, for instance: error-proneness, reusability, repairability. Secondly,
the PKB uses its own collection of patterns that have been found on previous iterations as a basis

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 4 UMIACS-TR-96-10

of comparison from which it can deduce characteristic design structures in the set of designs
provided that should be further studied as potential patterns. It returns to the DO a set of patterns
with associated quality attributes. At the start, the PKB will only be able to identify patterns based
on purely structural features (though we hope to make the method more sophisticated over time);
therefore, the developers within the DO must review the patterns detected in terms of semantic
content. If the designers decide that the patterns do encapsulate a useful design technique, then the
pattern enters the pattern library and is available for use in future designs.

Our difficulty in developing a workable PKB has been in finding a technique for the PKB to use
on the first iteration of the cycle, i.e. when the knowledge base of preexisting patterns is empty. In
this paper, we examine that first iteration more closely and attempt to solve this problem by
providing an initial generic reference set. For this iteration of the cycle only, we seed the PKB
with patterns from a reference set that has proven its usefulness in many different environments,
though perhaps not the current one. We decided to use the set of OODPs found in the book Design
Patterns [Gamma, 1995] as our reference set. This book was an attractive choice for an initial
reference set of patterns since it includes only design patterns that have been applied in multiple
systems, captures the patterns in a consistent and accessible way, and concentrates on general,
rather than domain-specific, patterns.

Using a suite of student projects developed at the University of Maryland, we attempt to validate
the BACKDOOR method for reverse architecting OODPs by examining how it would perform on
this first iteration of the cycle. Thus the scope of this current study is limited to the following two
questions:

• Can our method discover instances of the reference patterns with which to seed the next
iteration of the cycle? (Are we packaging the right things?)

• Are the pattern instances we find at a comparable level of detail to the patterns in the reference
set? (Are we packaging things right?)

One consequence of limiting our focus in such a way is that any pattern we discover which we
cannot relate back to the reference set is unusable to us. We do not investigate here whether such
patterns are spurious matches produced by our method, or actually usable patterns which do not
appear in the reference set. We will defer this question to future work when we are more
concerned with successive iterations of the pattern discovery cycle.

3. A TECHNIQUE FOR ASSESSING POTENTIAL PATTERNS

To answer the questions of our study, we find it necessary to have some point of reference against
which we can compare the potential patterns we discover. We therefore divide patterns into three
main components, and assess the conformance of each of our potential patterns to a pattern in the
reference set in terms of each of the components:

Structure - By the structure of a pattern we refer to the classes, objects, and relationships out of
which the pattern is built. As part of the pattern language developed in [Gamma, 1995] the
structure of each pattern is specified to some level of detail. Therefore we used the structural
component as a first step in identifying potential patterns by examining the architectures of the
student projects for corresponding object relationships. Because we did not want to discount
patterns that had undergone some level of tailoring, we did not look for complete structural
matches, but used the structure instead as a general guideline. To use the terminology introduced
in Section 1, by comparing the structures we are really taking a look at whether the patterns are
equivalent solutions.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 5 UMIACS-TR-96-10

Purpose - Every pattern must specify what it was meant to be used for: what situations it might
be useful in, what effects (both positive and negative) it should have on the system. This is what
we refer to as the purpose of a pattern. To assess conformance between our potential patterns and
the reference patterns in this regard, we created for each reference pattern a checklist consisting of
the major points found in the pattern description in [Gamma, 1995]. (Example checklists can be
found in Section 5.) This component allows us to answer the question of whether designers were
using implicit patterns by demonstrating whether or not developers were trying to solve the same
problems the reference patterns were meant to address. Here, we are assessing whether the
potential pattern is addressing the same problem as one in the reference set, as well as whether the
consequences of the patterns are the same.

Implementation - A secondary focus of our study was to see if our discovered patterns were
specified at a useful level of sophistication - that is, could the patterns we had discovered be used
to create a knowledge base of future use to developers? Or would they need to be extensively
generalized before they would make good patterns? This information is specified as part of the
implementation component of a pattern. The structure of a pattern gives the broad outline of what
the pattern looks like; the implementation specifies in a more detailed way how the pattern
accomplishes its associated purpose. The structure specifies only which objects communicate with
one another, while the implementation describes the messages they send to one another. As we did
for the purpose component, we created a checklist for the implementation by summarizing the main
points in [Gamma, 1995] about the interrelationships between the component classes. This
amounts to a more detailed investigation of whether the potential pattern matches the solution
aspect of a pattern in the reference set.

The checklist was applied in the following way: the BACKDOOR method was used to examine
the architectures of the student designs. When a group of classes was found that appeared to
interrelate in a way that was similar to a pattern structure in the reference set, it was flagged as a
potential pattern. Then we rated the correspondence of each of these to its closest reference pattern
on a 4-point scale, where a rating of 4 represents a very close match. In figure 3, it will be noted
that since we emphasize purpose over implementation we weight that axis more heavily:

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 6 UMIACS-TR-96-10

Purpose

Partial Match Complete Match

1

2

3

4

Only part of the
pattern is found, but
that portion has a
sophisticated
implementation.

A pattern is found
that tries to achieve
the same purpose,
but its
implementation is
primitive in
comparison.

Figure 3: Ranking the correspondence of discovered patterns.

Im
plem

entation

Near-perfect
match

Not relevant

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 7 UMIACS-TR-96-10

4. BACKDOOR: AN INDUCTIVE METHOD FOR REVERSE
ARCHITECTING OODPS

In this section we present BACKDOOR, our inductive method for reverse architecting design
patterns from Object-Oriented software systems. The main output of this process will be a
knowledge base that describes patterns used to date by the organization. Once potential patterns
have been identified, they can be reviewed by developers to see if there is any meaning to the set of
classes identified.

To date, little research has focused on the development of techniques for creating such knowledge
bases. There is a lack of guidelines to help software developers in the process of searching for,
formalizing and packaging workable patterns. In a general discussion, Peter Coad [Coad, 1992]
emphasized the salient characteristics such a process should have:

• The interrelations and interactions among classes and objects form the basis of OO patterns
and so should be the focus of study.

• The most useful patterns are those that recur in a large number of situations; therefore
pattern discovery requires careful observation of many OO models and a trial-and-error
approach.

We feel that formalizing techniques for pattern discovery and packaging may prove helpful to
practitioners attempting to cull such knowledge from their own past history.

John Vlissides [Vlis, 1995] also touches briefly on the problem of finding patterns in OO designs.
We adopt his term of "reverse architecting" to refer to the approach of analyzing many software
systems in an effort to find recurring patterns and rationales. (He differentiates this from "reverse
engineering," analyzing a particular system for the purpose of recovering its design.) He also
emphasizes the important fact that a successful OODP is consistent and generally applicable; a
particular solution is not enough, but the general principle behind the solution is required. The
challenge lies in recognizing general patterns from specific instances that may be superficially quite
different; the trick is in recognizing common features between solutions that are addressing the
same issues even when they have been heavily tailored to the particular environment.

BACKDOOR consists of six steps. Although the steps are defined sequentially, they are really
iterated within and across steps. The process as a whole could be greatly assisted by tool support.
Maintenance tools exist which automatically generate cross-references (which would help in
identifying associations between classes) and link the documentation to the code (which would
help in identifying semantic content), among others. We developed our own guidelines for reverse
engineering assuming no tool support, however, and include them here. This choice was
motivated by a number of reasons: the systems we analyzed were not very large and could be done
by hand (though the process is time-consuming), we wanted to gain an in-depth knowledge of the
systems as part of the process, and we wanted to develop useful techniques for situations in which
tool support was not available.

1) Review the problem specification and design documents.

While we would like to formalize the technique as much as possible (and in the future
develop tool support) the fact remains that semantic content is a large component of pattern
definition. For this reason any attempt to approach the code without getting as much
semantic information as possible beforehand is bound to be unsuccessful. A study of the
problem specification is necessary to identify problem constraints and issues as well as to
get some idea of the functionality provided; while it remains rare in practice to encounter a

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 8 UMIACS-TR-96-10

design document which is an exact match to the system it purports to describe, such
documents are still very helpful in identifying relationships between subsystems.

2) Develop a preliminary model of the system from the class declarations.

The class declarations represent the clearest and most concise descriptions of the objects in
the system and so represent a natural place to start reverse architecting. As we discover
how the classes interact, however, we will need a notation for representing this knowledge.
We have found it helpful to use OMT object notation [Rumbaugh, 1991] since it provides a
notation for describing specialized interactions between classes as well as the structures of
the classes themselves.

As mentioned before, we are mostly concerned with the relationships between classes.
Some relationships, such as inheritance, are not difficult to detect. Communication
between classes can be harder to characterize because of the number of variations possible;
at this step we content ourselves with identifying associations between classes without
worrying about their specific characteristics. In C++, these associations are often
implemented as pointers: one class keeps a reference to another and uses the link to send
messages to the target class. Class attributes and the return values of class methods are
thus good places to look for associations between classes.

By focusing first on the class declarations, we are able to sketch relatively quickly the
broad outlines of the system. In general, large subsystems can be readily identified based
on the amount of coupling between object classes; a high rate of coupling indicates a high
rate of message passing, which often indicates a set of classes working closely together.

3) Refine object notation from class implementation.

It is uncommon, however, for the class declarations to capture all of the details of class
associations. Therefore we take a more detailed look at the code implementing the classes.
Any time one object communicates with another - by sending a message to a class attribute,
to a parameter passed to a class method, to a global variable which happens to be of some
class type, or to a friend class - we make sure to capture the communication in our model
diagram.

At this stage, we also spend more time characterizing the associations we find, and using
the appropriate OMT notational devices to represent this knowledge. Classifying the
multiplicity of links (as one-to-many, one-to-one, or many-to-many) is especially important
as it may point out hidden assumptions in the system. Some associations appear at first
glance to be one-to-one until a closer look is taken at the implementation. For example,
customer databases often keep track of phone numbers. Whether or not the system allows
customers to have more than one phone number can be detected by examining the kind of
data structure used to represent the field [Rumbaugh, 1991].

Discerning whether an association represents an acquaintanceship or aggregation can be a
more difficult problem. Acquaintanceship signifies that one class knows of the existence of
another and can send messages to the class. Aggregation is a special case of
acquaintanceship in which one object entity is actually composed of other objects with
which it can communicate. From a reverse engineering point of view, the difficulty arises
from the fact that though acquaintance and aggregation links are often implemented the
same way, they effect the model of the system very differently. For example, some
component objects cannot exist apart from the aggregate object to which they belong - does
it make sense to refer to a "binding" existing independently of a "book"? At the same time,
other aggregations are not so constrained - a monitor can exist independently of a computer

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 9 UMIACS-TR-96-10

system, although it may be modeled as a system component. Such considerations are
important to understanding the semantics of a system [Rumbaugh, 1991].

At the very least, we find it helpful to record whether an association is "read" or
"read/write". One object communicating with another to perform a lookup of information
is a very different interaction than to modify another object in some way. Such a
characterization requires a careful examination of the implementation of the method in order
to see if it modifies object attributes or simply returns data, but captures much information
about the purpose of the association.

4) Using the refined model of the system architecture, identify potential
candidates for patterns based on inheritance and communication links
between classes.

At this step we focus on interesting relationships within the architectures, looking for
recurring structural similarities. A few indicators that we have found to be useful:

• Classes which are at the receiving end of communication links from many other classes
may play some role in mediating the interactions between these other classes.

• A class at the sending end of links with many other classes may act as an interface to
those classes.

• Classes with parallel inheritance (that is, each subclass of one class is linked to a
subclass of another class) are likely to be working together closely.

• An object which links two clusters of classes with high coupling may be a sophisticated
communication link between two subsystems.

In order to initially create our PKB, we search for structures corresponding to the OODPs
in our reference set [Gamma, 1995]. As part of the pattern language developed there, the
pattern structure is specified. Our first pass at finding patterns is to search the project
architectures for classes and relationships that match the structures in the reference set.

5) Analyze pattern candidates detected in step 4.

This is the most difficult portion of the mining process: What characteristics indicate a
useful design pattern?

We have yet to be able to formulate generally applicable guidelines in this area; this is the
most human-intensive portion of the process, and pattern discovery still relies heavily on
individual skill. Part of the answer comes from a knowledge of the problem domain: what
are recurring subproblems that the organization must deal with? The focus here is on
semantics rather than structure, making the process difficult.

For this case study, we are comparing the potential patterns identified in step 4 against a set
of reference patterns. We first distilled the description of each reference pattern into a
checklist of its most important features. In this way, we could get some measure of how
closely the patterns we thought we had discovered actually matched in terms of structure,
purpose, and implementation (we describe how we assess conformance along these
dimensions in section 2.2). Our search strategy is a successive narrowing of focus
(illustrated in figure 4) in which we filter sets of classes from consideration based first on
structure and then on semantics.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 10 UMIACS-TR-96-10

Figure 4: Focusing on patterns

System
Architectures

Potential
Patterns

Patterns
In System

Pattern
Structures
(step 4)

Purpose
and
Implementation
(step 5)

We then classified the potential patterns based on their conformance to reference OODPs.
If the correspondence is low, our identification of a section of the design as a pattern was
presumably spurious. Or perhaps we have identified a pattern not identified in the
reference set. At any rate, it is not useful in our current focus of study. A high
correspondence, on the other hand, presents evidence that the classes we identified as a
pattern had been found generally useful in other environments. In this way, we received
feedback as to whether or not the structural features we had focused on were good
indicators of patterns. Because our classification scheme is important to our identification
of patterns, we discuss it further in the next section.

6) Interview designers and implementors to clarify design issues.

Of course, just because the architecture of the system and the system functionality can both
be recovered does not mean that the one can be mapped perfectly to the other. Interviews
with the responsible designers and coders can be a crucial step in understanding. Such
interviews can sometimes be the only way to gain an understanding of what context issues
influenced a particular design, or how various subsystems interrelate.

It is expected that the information gained in interviews may lead to a return to steps 4 or 5
for a more detailed iteration.

5. A CASE STUDY

To validate our BACKDOOR method, we used a suite of seven Object-Oriented student projects
developed at the University of Maryland. Because the student projects are all implementations of
the same basic system, this provides us with seven distinct solutions to the same problem. We
apply our method to the project architectures, in order to answer the following questions:

• Did our technique turn up any patterns similar to those found in the reference set? That is,
can we use our method to find patterns like those people are already finding useful?

• How close is the correspondence - are the patterns found packaged at a level of
sophistication that actual developers are likely to find helpful?

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 11 UMIACS-TR-96-10

The set of projects we examined were seven small management information systems supporting the
rental/return process of a hypothetical video rental business; as such they were required to
maintain databases for customers, videos, and transactions. The systems were implemented in
C++ by teams of students in a graduate level course offered by the Computer Science department at
the University of Maryland. OO design was taught as part of the course material. The
development environment and technology used are representative of what is currently used in
industry and academia.

Figure 5 characterizes the seven projects used in our case study with respect to the patterns we
identified. Some projects had only one or two patterns in their design, while others had several, at
varying degrees of correspondence to the reference set. Of the potential patterns identified, it
turned out that at least one for each project matched a pattern in the reference set. The project
which yielded the most reference patterns was project 5, with 6 patterns detected. Exactly half of
the 22 patterns we detected were classified at a correspondence level of 3, signifying a close match
to a problem addressed by a pattern in the reference set, though not an equally sophisticated
solution. Only 3 matches were rated as a level 4, while the remaining 8 were considered at level 2.
("Patterns" at level 1 are discarded as being irrelevant - we cannot define them as real patterns, at
least in terms of our reference set. Whether they are of use in themselves awaits a future analysis.)

1 2 3 4 5 6 7
0

2

4

6

8

Level 2
Level 3

Level 4

Figure 5:
Characterization of Projects

Project

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

F

o
u

n
d

As a more concrete example of our results, we present here an example of a pattern discovered in
our student projects for each of the levels 2 through 4 in our classification scheme.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 12 UMIACS-TR-96-10

Level 4

Patterns at level 4 are considered to be a near-perfect match to one of the patterns in the proposed
set. As such, they provide some evidence that the pattern we discovered does in fact capture a
relatively sophisticated solution as it appears in practice.

In our set of projects, however, only 3 contained a level-4 pattern. All three of these were
implementations of the same pattern: the Facade. The Facade pattern provides a single, high-level
interface to subsystems that makes the system easier to use. (See figure 6 for a simplified diagram
of the pattern structure.) In our system, the Facade takes the form of a relatively advanced user
interface that manages all requests sent to the three database subsystems. We focus on one of the
instances as an illustrative example.

Figure 6: The Facade Pattern

Facade Pattern from Facade Pattern as Implemented in System

Facade
subsystem classes

Facade

subsystem classes
MainWindow
and subclasses

Rental
Database classes

Transaction
Database classes

Design Patterns

The example found in the student project is a good match to the reference pattern in terms of
purpose. It agrees on the following points (assessed via the checklist):

• It provides a unified interface to a set of subsystems - here, the subsystems implementing the
various databases for the video system.

• It minimizes communication between subsystems. In the particular student project in which it
was found, there was only a limited amount of interaction for cross-referencing lookups.

• The Facade provides a default view of the subsystems, so that only clients requiring more
customizability need look beyond the facade.

The example found in the student project also agrees in general implementational detail to the
proposal:

• Subsystem functionality is implemented only in the subsystems, which handle work assigned
by the Facade object. Subsystems have no knowledge of the Facade (that is, they keep no
reference to it).

• The Facade class knows which subsystems are responsible for handling requests, and
delegates requests to appropriate subsystem objects.

• Clients communicate with the subsystem by sending requests to the Facade, which forwards
them to the appropriate subsystem objects.

• Clients that don't use the Facade don't have access to subsystems directly - all user requests are
processed by the system interface (the Facade) and translated into appropriate requests to the
database subsystems.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 13 UMIACS-TR-96-10

Level 3

Level-3 patterns indicate that our student subjects were attempting to solve the same problem as is
addressed by one of the reference patterns, but did not manage to implement the solution in a
manner as sophisticated as the reference pattern. We found 11 instances of 7 different level-3
patterns in our projects. The Proxy pattern is a good example. Its purpose is to provide a
surrogate object that controls access to some other object. (See figure 7.) The instance we
detected in the student project is a mechanism encapsulated within a window for the main menu.
As options are selected, the window creates and initializes windows for submenus, transfers
control to the new windows, and then receives control back again when the new window has
finished processing. In this way, creation and access to the other windows of the program are
controlled through the main menu window.

Figure 7: The Proxy Pattern

Proxy Pattern from Proxy Pattern as Implemented in System

Subject

ProxyRealSubject

MainWindow

Rental
MainMenu

AddCustomer
Dialog

Subject

RealSubject Proxy

Design Patterns

The pattern we discovered is a good match to the intended use of the Proxy pattern:

• An object is provided which controls access to some other object.

• The full cost of object creation and initialization is not incurred until absolutely necessary, if
ever. If a submenu is never accessed in a session with the program, the object corresponding
to its window is never created.

• Proxies can be used to create expensive objects on demand.

However, the Proxy as presented in Design Patterns exhibits a much cleaner design than the
pattern which we identified.

• The Proxy does provide an interface identical to Subject's. All windows have the same
interface for their management as their superclass, the abstract MainWindow.

• Proxy does control access to the RealSubject, and is responsible for its creation (when an
option is selected) and deletion (when the program is exited).

• However, the student implementation is not as sophisticated as the implementation suggested in
Design Patterns. The Proxy object is expected to forward requests to its appropriate
RealSubject. However, the student implementation simply creates the RealSubject and then
passes control to it, letting the RealSubject handle user requests directly after that rather than
forwarding requests itself. Because only one window can be active at a time in this system, the
student implementation achieves the same effect as the reference pattern. However, it should
be apparent that it is neither as flexible nor as reusable as the solution presented in Design
Patterns.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 14 UMIACS-TR-96-10

Level 2

Patterns at level 2 are patterns which we detected in our student projects with some - but not all - of
the same functionality as is found in a reference pattern, implemented at a comparable level of
detail. It is possible that the same problem is addressed, but a key piece of functionality is
missing. Or perhaps our pattern represents a very specific solution, but no effort was made to
make it more generalizable.

Our projects contain 8 examples of 4 different level-2 patterns. One good example is the Mediator
pattern. The Mediator is meant to serve as a mechanism for handling the interaction of other
classes. It defines the way in which the Colleague classes can interact. One of our student projects
implemented something along the same lines as this, using C++ templates to allow a single class to
handle communication requests between database subsystems. In this implementation, all
interactions between objects in the databases (the Concrete Colleagues) occur by means of
communication going through the List class (the Concrete Mediator). Note that the pattern is only
an inexact match because the students implemented no inheritance (i.e. there are no general
Colleague or Mediator classes).

Figure 8: The Mediator Pattern and how it was implemented in our data set.

Mediator Pattern from Mediator Pattern as Implemented in System

Mediator

Concrete
Mediator

Colleague

Concrete
Colleague2

Concrete
Colleague1

... ...List CAcct
Database

CRental
Database

Concrete
Mediator

Concrete
Colleagues

Design Patterns

The pattern we discovered is a loose match to the Mediator in the reference set:

• Both define an object that controls and coordinates the interactions of a group of objects.

• Objects in the group do not refer to each other explicitly; they only know the mediator.

• Mediator limits subclassing, centralizes control, and decouples colleagues.

• However, our Mediator class is not subclassed from an abstract type as in Design Patterns -
the objects implemented by the students are very specific instances that were not generalized.

The student implementation is very different, but still quite sophisticated, as the student project
relies on C++ templates:

• Our pattern defines no interface for communicating with Colleague objects, but communicates
via templates instead.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 15 UMIACS-TR-96-10

• ConcreteMediator implements cooperative behavior by coordinating Colleague objects.
However, it "knows" its colleagues through templates only.

• Colleague classes do know their Mediator object.

6. LESSONS LEARNED

In this section, we take a qualitative look at the results of our validation. All in all, we found 22
instances of 9 different patterns across the three levels of our classification system. Given that the
input to the PKB was only seven relatively small systems, this seems to us to be a relatively good
number of patterns to store in the knowledge base for use in the next iteration. Realistically,
however, we shall have to wait for further experimentation with PKBs to be able to tell if this is
sufficient.

In terms of whether we are packaging patterns at the proper level, we note that only three of the
instances we discovered were at a the same level of sophistication similar to the patterns in our
reference set. We can formulate several hypotheses as to why this might be true, but unfortunately
have no way of testing them currently:

• Our student subjects are not as experienced designers or implementors as practitioners, who
would generally make use of such a level of sophistication.

• The system to be created did not require a high level of functionality, and our student subjects
did not make their solution any more general than it needed to be for the problem at hand.

• The patterns as specified in Design Patterns are very sophisticated; practitioners in general do
not use this level of functionality.

Obviously, this is an aspect that requires further study before we will be able to implement custom
pattern libraries most effectively.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we described an inductive method making it possible to characterize OO systems
with respect to their use of OODPs. The method was validated using a suite of OO projects
developed in a controlled study performed at University of Maryland in a graduate level class.
Although it was shown that we may not yet be packaging patterns at the right level of generality,
we have shown that our method is useful for finding implicit design patterns in system
architectures. We have also shown that our method can provide an initial pattern base which can
be expanded on further iterations of the pattern discovery process.

We view this current work as part of an ongoing series of experiments aimed at clarifying our
knowledge of patterns. Having found instances of OODPs in the suite of student projects, we next
aim to experimentally assess the capabilities of OO design patterns with respect to quality,
repairability, and reusability. These patterns will be statistically analyzed in order to determine
which are the most error-prone of the patterns we uncover.

We plan to further validate our work by using our method to analyze a sample of OO projects
developed at the NASA Software Engineering Laboratory. The SEL is currently in the process of
moving to C++ from Ada, and we intend to apply our reverse architecting method in order to
analyze their OO products and provide a library of useful domain-specific patterns which can be
honed over time.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 16 UMIACS-TR-96-10

The results from this work seem to indicate that the creation of an OODP library would be a
worthwhile endeavor; practitioners are using patterns in practice, but in general not using very
sophisticated implementations. By associating metric values with the patterns in our knowledge
base in the next step, we will be able to get a much clearer insight into the potential for a library. In
particular, if system designers introduce extra errors into the system by reinventing these patterns
from scratch, then system design could clearly be improved if a library of tailorable, error-free
patterns was provided.

Finally, we intend to create tools to assist in the process of reverse architecting and automate as
much of the feedback loop as possible. We feel that such tools could be of significant benefit to
the design community (and intend to validate this assumption through pilot studies) as well as
representing a significant challenge to construct, combining several areas at the state of the art:
Program slicing techniques have great potential as a means of investigating control flow and class
interactions. Reasoning about pattern matching will be necessary to find tailored examples of
patterns from the knowledge base within system architectures. Perhaps most importantly, much
work must be done with knowledge-based Software Engineering databases, in order to package,
store, manage, reason about, and retrieve patterns which have been detected.

Technical Report, University of Maryland, Computer Science Department, College Park, MD, 20742 USA.

CS-TR-3597 17 UMIACS-TR-96-10

REFERENCES

[Basili, 1989] Victor Basili, "Software development: A paradigm for the future" (keynote
address). In Proc. of COMPSAC’89 (Orlando, Fl, Sept. 1989), pp. 471–
485.

[Basili, 1995] Victor Basili, Lionel Briand, and Walcélio Melo. "A Validation of Object-
Oriented Design Metrics." Department of Computer Science, Univ. of
Maryland, April 1995. CS-TR-3443.

[Briand, 1994] Lionel Briand, Sandro Morasca, and Victor Basili. "Defining and
Validating High-Level Design Metrics." Department of Computer Science,
Univ. of Maryland, June 1994. CS-TR-3301.

[Coad, 1992] Pl. Coad. “Object-Oriented Design Patterns”. Communications of the ACM,
35(2):152–159. Sep. 1992.

[Gamma, 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

[Rumbaugh, 1991] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenson. Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[Vlis, 1995] John Vlissides. "Reverse Architecture" Position paper for Software
Architectures Seminar, Schloss Dagstuhl, Germany.

