
1

THE EXPERIENCE FACTORY

Victor R. Basili1 Gianluigi Caldiera1 H. Dieter Rombach2

(1) Institute for Advanced Computer Studies
Department of Computer Science

University Of Maryland
College Park, Maryland

(2) FB Informatik
Universitat Kaiserslautern
Kaiserslautern, Germany

1. INTRODUCTION

Reuse of products, processes and experience originating from the system life cycle is seen
today as a feasible solution to the problem of developing higher quality systems at a lower
cost. In fact, quality improvement is very often achieved by reusing and modifying over
and over the same elements, learning about them by direct experience.

This article presents an infrastructure, called the experience factory, aimed at
capitalization and reuse of life cycle experience and products. The experience factory is a
logical and physical organization, and its activities are independent from the ones of the
development organization. The activities of the development organization and of the
experience factory can be outlined in the following way:

• The development organization, whose mission is to develop and deliver systems,
provides the experience factory with product development and environment
characteristics, data, and a diversity of models (resources, quality, product,
process) currently used by the projects in order to deliver their capabilities.

• The experience factory, through processing this information and other state-of-
the-practice notions, will return direct feedback to each project activity, together
with goals and models tailored from previous project increments. It will also

2

produce, store and provide upon request baselines, tools, lessons learned, data, all
presented from a more generalized perspective.

2. MOTIVATION

Any successful business requires a combination of technical and managerial solutions. This
includes

• A well-defined set of product needs to satisfy the customer, assist the developer in
accomplishing those needs and create competencies for future business;

• A well-defined set of processes to accomplish what needs to be accomplished,
control development, and improve the overall business;

• A closed-loop process that supports learning and feedback.

The key technologies for supporting these requirements include: modeling, measurement,
and the reuse of processes, products, and other forms of knowledge relevant to the
business.

In order to be successful in the software business there are some basic requirements [2, 3,
13]. First, we must understand the software process and product. Second, we must define
our business needs if we are to achieve them, i.e., we must define process and product
qualities. Third, we must evaluate every aspect of the business, i.e., we need to evaluate
our various successes and failures. Fourth, we must have a closed-loop process, i.e., we
must feed back information for project control. Fifth, each project should provide
information that allows us to do business better, i.e., we must learn from our experiences.
Sixth, we must build competencies in our areas of business, i.e., we must package and
reuse units of experience relevant to our business to be able to achieve more in the future.

Almost any business today involves the development or use of software. It is either the
main aspect of the business, the value added to the product, or on the critical path to
project success. It permeates every aspect of life. If an organization is not investing heavily
in the basic aspects of the software business then it will not be competitive and may not be
in the business in the future.

Part of the problem with the software business is the lack of understanding of the nature of
software and software development. To some extent, software is different from most
products. First of all, software is developed in the creative, intellectual sense, rather than
produced in the manufacturing sense. Each software system is developed rather than
manufactured. Second, there is a non-visible nature to software. Unlike an automobile or a
television set, it is hard to see the structure or the function of software.

3

The software business requires understanding, continuous improvement, and the
packaging of experience for reuse. There are certain concepts that have become
understood with regard to software:

• There are factors that create similarities and differences among projects; this means
that one model for software development does not work in all situations;

• There is a direct relationship between process and product; this means one must
choose the right processes to create the desired product characteristics;

• Measurement is necessary and must be based on the appropriate goals and models;
that is, appropriate measurement provides visibility;

• Evaluation and feedback are necessary for project control: this means a closed
loop process for project control is needed;

• Software development follows an experimental paradigm, thus, learning and
feedback are natural activities for software development and maintenance.

• Process, product, knowledge, and quality models need to be better defined and
tailored; the components of the software business have an evolutionary nature and
must be defined according to it;

• Evaluation and feedback are necessary for learning; a closed loop for long range
improvement, as well as for individual project control, is needed;

• New technologies must be continually introduced; organizations and researchers
need to experiment with technologies;

• Reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement, that is, reuse of knowledge is the basis of
improvement;

• Experience needs to be packaged; organizations must build competencies in
software;

• Experiences must be evaluated for reuse potential; an analysis process is required;

• Software development and maintenance processes must support reuse of
experience, where reuse must be defined in terms of what, how and when to reuse;

4

• A variety of experiences can be packaged: process, product, resource, defect and
quality models can be developed and updated based on experience;

• Experiences can be packaged in a variety of ways; we can use equations,
histograms, algorithms, etc. as mechanisms for packaging experience;

• Packaged experiences need to be integrated; an experience base is a repository of
integrated information, relating similar projects, products, characteristics,
phenomena, etc.

To address the business needs of software, software engineering offers a framework based
on an evolutionary quality management paradigm tailored for the software business, the
Quality Improvement Paradigm. The Paradigm is supported by a tool for establishing
project and corporate goals and a mechanism for measuring against those goals, the
Goal/Question/Metric Paradigm (see Article), and by an organizational approach for
building software competencies and supplying them to projects, the Experience Factory
Organization.

The rest of this article will define and discuss the Experience Factory Organization
concept, after a preliminary discussion of its basic methodological device, the Quality
Improvement Paradigm.

3. THE QUALITY IMPROVEMENT PARADIGM

The Quality Improvement Paradigm is the basic methodological device for the Experience
Factory, and as such it is a basic component of our discussion. Therefore it is useful to
take a closer look at some of the issues associated with it and with its phases.

The Quality Improvement Paradigm developed by Basili, et al., [2] is the result of the
application of the scientific method to the problem of software quality improvement. As
such it is related to the Shewart-Deming Cycle Plan/Do/Check/Act [13] widely used in the
industry for the implementation of quality management plans.

The Quality Improvement Paradigm is articulated into the following six steps (Figure x):

1. Characterize: Understand the environment based upon available models, data,
intuition, etc. Establish baselines with the existing business processes in the
organization and characterize their criticality.

2. Set Goals: On the basis of the initial characterization and of the capabilities that
have a strategic relevance to the organization, set quantifiable goals for successful
project and organization performance and improvement. The reasonable

5

expectations are defined based upon the baseline provided by the characterization
step.

3. Choose Process: On the basis of the characterization of the environment and of the
goals that have been set, choose the appropriate processes for improvement, and
supporting methods and tools, making sure that they are consistent with the goals
that have been set.

4. Execute: Perform the processes constructing the products and providing project
feedback based upon the data on goal achievement that are being collected

5. Analyze: At the end of each specific project, analyze the data and the information
gathered to evaluate the current practices, determine problems, record findings,
and make recommendations for future project improvements.

6. Package: Consolidate the experience gained in the form of new, or updated and
refined, models and other forms of structured knowledge gained from this and
prior projects, and store it in an experience base so it is available for future
projects.

Figure x

Characterize

Execute

Set Goals

Choose Process

Package

Analyze

The Quality Improvement Paradigm implements two feedback cycles:

• The project feedback cycle (control cycle) is the feedback that is provided to the
project during the execution phase: whatever the goals of the organization, the
project used as a pilot should use its resources in the best possible way; therefore

6

quantitative indicators at project and task level are useful in order to prevent and
solve problems;

• The corporate feedback cycle (capitalization cycle) is the feedback that is provided
to the organization and has the double purpose of

• Providing analytical information about project performance at project
completion time by comparing the project data with the nominal range in
the organization and analyzing concordance and discrepancy;

• Accumulating reusable experience in the form of software artifacts that are
applicable to other projects and are, in general, improved based on the
performed analysis.

An appropriate and unambiguous characterization of the environment is a prerequisite to a
correct application of the paradigm. This characterization requires that we classify the
current project with respect to a variety of characteristics. It allows us to isolate the class
of projects with similar characteristics and goals to the project being developed. This way
we can distinguish the relevant project environment for the current project.
Characterization provides a context for goal definition, reuse of experience and products,
process selection, evaluation and comparison, and prediction.

There are a large number of project and environmental characteristics that affect the
software development process and product [1,5]. These include people factors, such as
the number of people, level of expertise, group organization, problem experience, process
experience; problem factors, such as the application domain, newness to state of the art,
susceptibility to change, problem constraints; process factors, such as life cycle models,
methods, techniques, tools, programming language, other notations; product factors, such
as deliverables, system size, required qualities, e.g., reliability, portability; and resource
factors, such as target and development machines, calendar time, budget, existing
software.

A realistic definition of the goals is an important correlate to the characterization of the
environment. We need to establish models and goals for the processes and products.
These goals should be measurable, driven by models, and defined from a variety of
perspectives, e.g., the user, customer, project, corporation. There are several techniques
for defining measurable goals: the Quality Function Deployment Approach (QFD) [16],
the Goal/Question/Metric Paradigm (GQM) [7] , and the Software Quality Metrics
Approach (SQM) [9].

The Goal/Question/Metric Paradigm is the mechanism used by the Quality Improvement
Paradigm for defining and evaluating a set of operational goals using measurement. It

7

represents a systematic approach for tailoring and integrating goals with models of the
software processes, products and quality perspectives of interest, based upon the specific
needs of the project and the organization.

The choice of the process execution model involves choosing and tailoring an appropriate
generic life cycle model, a set of methods, and techniques. It should be noted that
choosing and tailoring any form of process involves providing its goal and procedure
definition. Choosing and tailoring are always performed in the context of the environment,
project characteristics, and goals established for products and processes.

For the purpose of discussion, we define and differentiate the terms technique, method,
life cycle model, and engineering.

• Technique is a basic algorithm, or set of steps to be followed in constructing or
assessing the software. For example, code reading by stepwise abstraction is a
technique for assessing the code.

• Method is an organized approach based upon applying some technique. A method
has associated with it a technique, as well as a set of guidelines about how and
when to apply the technique, when to stop applying it, when the technique is
appropriate and how we can evaluate it. For example, a method will have
associated with it a set of entry and exit criteria and a set of management supports.
Code Inspection is a method, based upon some reading technique, which has a
well-defined set of entry and exit criteria as well as a set of management functions
defined for how to manipulate the technique.

• Life cycle model as an integrated set of methods that covers the entire life cycle of
a software product.

There are a variety of software life cycle models, each of which is useful under different
circumstances [6, 8, 20]. The waterfall model [20] is basically a sequential process model
where each of the major documents are developed in sequence, starting with the most
abstract, i.e. the requirements document. The waterfall model is most efficient when the
problem is well defined and the solution is well understood, that is, when there are not a
lot of iterations through the cycle. If the problem or the solution are not well-defined,
other process models may be more effective. The iterative enhancement model [6] is an
incremental model that builds several versions of the system, each with more functionality.
It starts with a simple initial implementation of a subset of the problem and iteratively
enhances the existing version until the full system is implemented. At each step of the
process, not only extensions but design modifications are made, based upon what we have
learned about the problem and the solution. This process model results in several versions
of the system. Iterative enhancement is effective when the problem or solution are not well
understood, schedule for full function a risk, or the requirements changing over time. It

8

allows the developer to learn through each cycle of development and the user to provide
timely essential feedback, improving each version until the final version of the system is
produced. The spiral model [8] is another incremental model that organizes the activities
like a spiral with many cycles: the radial dimension of the spiral represent the cost of the
system, the angular dimension represents the progress of the project. At each stage of the
development, the model requires the identification of uncertainties and risks involved, and
the development of strategies for resolving them. Another effective process model is
prototyping. It involves the development of an experimental version of some aspect of the
system. The prototype is typically built in a very high level language or using some
modeling or simulation tools. It provides a better specification of the problem
requirements and is effective when the user is unsure of the system needs, some aspect of
the system is unclear, or an experimental version of the system is needed for analysis.

In order to execute the processes, experience should be accessible in a packaged form as
processes that have been chosen, prior products available for reuse, appropriate resource
and data models, and software development models that allow to take advantage of the
reusable packages. One needs to analyze the data according to the project specific models
and goals in close to real time in order to make the project visible to management and feed
back information for corrective action. Data collection must be integrated into the
processes, not considered as an add on, e.g., the defect classification form should be part
of the configuration control mechanism. Data validation is important to assure we are
making decisions based upon valid data. It is clear that automation is necessary to support
some mechanical tasks, deal with the large amounts of data and information, and aid in the
data analysis.

There is a wide variety of data that can be collected. Resource data include effort by
activity, phase, type of personnel, computer time, and calendar time. Change and defect
data include changes and defects by various classification schemes. Process measurement
includes process definition, process conformance, and domain understanding data. Product
data includes product characteristics, both logical,(e.g., application domain, function)
and physical (e.g. size, structure) and use and context information.

4. THE EXPERIENCE FACTORY

The Quality Improvement Paradigm is based upon the notion that improving the software
process and product requires the continual accumulation of evaluated experiences
(learning) in a form that can be effectively understood and modified (experience models)
into a repository of integrated experience models (experience base) that can be accessed
and modified to meet the needs of the current project (reuse). The paradigm implies the
logical separation of project development (performed by the Project Organization) from
the systematic learning and packaging of reusable experiences (performed by the
Experience Factory) [3].

9

The Experience Factory is a logical and/or physical organization that supports project
developments by analyzing and synthesizing all kinds of experience, acting as a repository
for such experience, and supplying that experience to various projects on demand (Figure
2). It packages experience by building informal, formal or schematized, and productized
models and measures of various software processes, products, and other forms of
knowledge via people, documents, and automated support.

Characterize

Set Goals

Choose Process

Execute Process

EXPERIENCE

BASE

Execution
Plans

Environment
Characteristics

Data, Lessons
Learned

Project Analysis

Generalize

Tailor

Formalize

Package

Project Organization Experience Factory

Analyze

Project
Support

Goals, Processes, Tools,
Products, Resource Models,
Defect Models, ...

The development organization, whose goal is to produce and maintain software, provides
the analysis organization with project and environment characteristics, development data,
resource usage information, quality records, and process information. It also provides
feedback on the actual performance of the models processed by the experience factory and
utilized by the project.

The analysis organization, by processing this information received from the development
organization, will return direct feedback to each project, together with goals and models
tailored from similar projects. It also produces and provides upon request baselines, tools,
lessons learned, and data, parametrized in some form in order to be adapted to the specific
characteristics of a project.

The support organization sustains and facilitates the interaction between developers and
analysts, by saving and maintaining the information, making it efficiently retrievable, and
controlling and monitoring the access to it.

Figure 2

10

The analysis and interpretation of the data collected is based upon the goals. We can use
this data to:

• characterize and understand, (e.g., what project characteristics affect the choice of
processes, methods and techniques? which phase is typically the greatest source of
errors?);

• evaluate and analyze, (e.g., what is the statement coverage of the acceptance test
plan? does the Inspection Process reduce the rework effort?);

• predict and control, (e.g., given a set of project characteristics, what is the
expected cost and reliability, based upon our history);

• motivate and improve, (e.g., for what classes of errors is a particular technique
most effective?).

Systematic learning requires support for recording experience, off-line generalizing and
tailoring of experience, and formalizing experience. Packaging useful experience requires a
variety of models and formal notations that are tailorable, extendible, understandable, and
accessible.

An effective experience base contains an accessible and integrated set of analyzed,
synthesized, and packaged experience models that capture past experiences. Systematic
reuse requires support for using existing experience, and necessary generalizing or
tailoring of candidate experience. This combination of ingredients requires an
organizational structure that supports them. This includes: a software evolution model that
supports reuse, a set of processes for learning, packaging, and storing experience, and the
integration of these two functions. The experience factory is the organizational unit that
performs this integration.

It is important to understand that the term "reuse" is used here to mean more than product
reuse. Reuse, in the software domain, has been a long sought after goal with little
historical success. Why has reuse been a problem in the software domain? There are
several reasons. First we need to reuse more than just code, we need to reuse the context
from which the code originates. Second, the reuse of experience is too informal, not fully
incorporated into the development or maintenance process models. Third, experience has
not yet been analyzed and evaluated for it reuse potential, nor has been appropriately
packaged. Fourth, it is often assumed that reuse means reuse as is. On the contrary most
experiences need to be tailored in some way to meet the needs of a new context. Lastly, it
is also often assumed that reusable packages of experience, be it product, process or any
other form of experience, could be developed as a by-product of the project. Clearly this is

11

not the case. The project focus is delivery, not reuse. If we want reuse, the activities that
create reusable packages of experience need to be outside of the project.

The packaging of experience is based on tenets and techniques that are different from the
problem solving activity used in project development:

In a correct implementation of the experience factory paradigm projects and factory will
have different process models: each project will choose its process model based upon the
characteristics of the software product that will be delivered, while the experience factory
will define (and change) its process model based upon organizational and performance
issues.

This creates the need for separate organizations, at least from a logical point of view: the
Project Organization for product development and the Experience Factory for packaging
experience. Both organizations have different focuses and priorities, use different process
models, and have different expertise requirements. Trying to mix them in the same
organization is destined to failure [11].

In practice, the Quality Improvement Paradigm/Experience Factory Organization
approach is implemented by first putting the organization in place. This means collecting
data to establish baselines, e.g., defects and resources, that are process and product
independent, and measuring the strengths and weaknesses of the organization in order to
provide business focus and goals for the improvement process. The initial data collection
is also critical for establishing the product quality baseline that should be improved
through the program. Using this information, the organization selects methods and
techniques to improve process and products, and experiments with them. Better and
measurable processes can be defined and tailored based on the experience and knowledge
gained within the project environments. The results are always validated with respect to
process conformance and domain understanding.

When the relationship between some process characteristics and product qualities within a
specific environment is better understood, the organization is ready to manipulate its
processes to achieve those product characteristics. Changes in processes establish new
baselines and provide new goals for improvement.

In this way the organization defines itself as continuously improving, even if its maturity
level is not very high, because it learns from its own business, not from an external, ideal
process model. Process improvements are based upon the understanding of the
relationship between process and product in the specific organization. Technology infusion
is motivated by the local problems, and people are more willing to try something new.

12

5. EXAMPLES OF PACKAGED EXPERIENCE

The experience factory can package all kinds of experience. It can build resource models
and baselines, change and defect models and baselines, product models and baselines,
process definitions and models, method and technique models and evaluations, products
and product models, a library of lessons learned, and a variety of quality models.

There are a variety of forms for packaged experience:

• Equations defining the relationship between variables, (e.g., Effort a Size b= ∗);

• Histograms or pie charts of raw or analyzed data, (e.g. % of each class of fault);

• Graphs defining ranges of "normal" (e.g., graphs of size growth over time with
confidence levels);

• Specific lessons learned associated with project types, phases, activities,(e.g.
reading by stepwise abstraction is most effective for finding interface faults), or in
the form of risks or recommendations, (e.g., definition of a unit for unit test in Ada
needs to be carefully defined);

• Models or algorithms specifying the processes, methods, or techniques, (e.g. an
SADT diagram defining Design Inspections with the reading technique as variable
dependent upon the focus and reader perspective);

Examples of resource models and baselines include cost models, resource allocation
models for staffing, schedule, and computer utilization, and the relationship between
resources and various factors that affect resources, e.g. specific methods, customer
complexity, the application, the environment, and defect classes [4].

In building resource models, the experience factory is interested in capturing data
associated with a variety of factors associated with prior projects, e.g., size, effort, pages
of documentation, calendar time. These relationships can be used to build equations that
define the empirical relationships between these factors. Using these data it can either
generate separate equations representing characteristically different environments (based
upon characterizing factors), or it can use the characterizing factors to adjust the
equations to provide better fits to the range of data. These relationships package the
organization's experience with respect to various resources. The characterizing factors
also provide insight into those factors that effect resources. The equations can be used for
prediction, project monitoring, and evaluation.

13

Examples of change and defect models and baselines developed by an experience factory
include: change baselines by various classifications, defect baselines by various
classifications, defect prediction models, reliability models [22].

An appropriate analysis can capture the number of errors, faults and failures associated
with various phases, e.g., in total, by various classes (error domain, time of detection,
omission/commission, software aspect, failure by resolution date opened/date closed).
Histograms and Pareto charts are built to analyze the various defect classes in order to
identify overall patterns as well as common patterns representing characteristically
different environments. These defect distributions package the organization's experience
with respect to defects associated with various project characteristics. They can be used
for prediction, project monitoring, evaluation, and provide specific focuses for
improvement.

Project characteristic models and baselines developed by an experience factory include:
growth and change histories for size, staffing, computer use, number of test cases, test
coverage, etc. These can be compared with the norm for the environment or for a set of
characteristically similar projects to make predictions and estimates for the current project
and provide guidance for the project manager based upon variation from expectation [17].

For a variety of data the experience factory can define graphs of various variables over
time. The accumulation of such data over a variety of projects provides baselines for
planning and monitoring projects. For example, it can plot: growth in lines of code vs.
schedule, CPU hours vs. calendar time, the amount of code covered vs. number of tests
run, the amount of reuse in each project over time.

The experience factory packages experiences with techniques, methods, and life cycle
models by defining and refining models of their definitions and goals, understanding where
they are appropriate and how they need to be tailored to a particular set of environmental
characteristics. To focus on improvement, the organization needs to introduce new
technology. It needs to experiment and record the findings in terms of lessons learned and
eventually adjustments to the current processes. When the technology is substantially
different from what we are currently using, the experimentation may be off-line. It may
take the form of a controlled experiment (for detailed evaluation in the small) or of a case
study (to study the scale effects). In both cases, the Goal/Question/Metric paradigm
provides an important framework [5].

Based upon experimentation, a set of lessons learned can be written that can be made
available in the experience base for future uses of the technology. New methods and
techniques can be defined or old ones refined.

The main product of the experience factory is the Experience Package. The content and
the structure of an experience package vary based upon the kind of experience clustered in
the package. There is a central element that determines what the package is: a software

14

life cycle product or process, a mathematical relationship, an empirical or theoretical
model, a data base, etc. The experience packages are defined by the life cycle product.
Examples of experience packages are:

1.- Product Packages have as their central element a life-cycle product, clustered with
the information needed to reuse it and the lessons learned in reusing it. Examples:
Programs, Architectures, Designs.

2.- Process Packages have as their central element a life-cycle process, clustered with
the information needed to execute it and the lessons learned in executing it.
Examples: Process models, Methods.

3.- Relationship Packages have as their central element a relationship or a system of
relationships among observable characteristics of a software project. There are
time based relationships and time independent relationships. In any case, these
packages are used for analysis and/or forecast of relevant phenomena. Examples:
Cost and Defect Models, Resource Models.

4.- Tool Packages have as their central element a specific tool, either constructive
(Examples: Code Generator, Configuration Management Tool) or analytic
(Examples: Static Analyzer, Regression Tester)

5.- Management Packages have as their central element any container of reference
information for project management. Examples: Management Handbooks,
Decision Support Models.

6.- Data Packages have as their central element a collection of defined and validated
data relevant for a software project or for activities within it. Examples: Project
databases, Quality records

6. EXAMPLES OF EXPERIENCE FACTORIES

A software organization that has for a long time recognized the value of accumulation and
reuse of experience is the NASA Goddard Space Flight Center which has developed since
1977 the Software Engineering Laboratory, in conjunction with the Department of
Computer Science of the University of Maryland and with the Computer Sciences
Corporation.

The Software Engineering Laboratory (SEL) is today a very advanced example of the
concept of experience factory. The experience packages developed by the SEL have
mainly focused on project management and control, acquisition and tailoring of new
technologies for software development and maintenance. The SEL has produced several

15

types of experience packages, specific to its application domain, flight dynamics
applications [14].

One of the most interesting experience packages developed by the SEL is the Software
Management Environment (SME): a set of data, tools, manuals and analysis techniques
supplied to the project management in order to control the execution of a project,
compare it with similar ones, detect and analyze problems, identify solutions. An essential
part of the SME package is the SEL database, an on-line information base for storage and
retrieval of software engineering data.

Another interesting experience package developed by the SEL is built around the
Cleanroom process model proposed by Mills. Here the analysts produce the requirements
and the developers produce and verify designs and code that are then released to the
testers who run statistical tests and release a system with certified reliability. Systematic
design, implementation without testing, and statistical testing are the cornerstones of the
Cleanroom model. The relevant existing models in the experience base include: the
standard SEL models, the IBM/FSD Cleanroom Model [19], and a Cleanroom model used
for a controlled experiment at the University of Maryland [21].

The US Department of Defense has supported several efforts in the direction of the
accumulation of software experience, especially in the field of code reuse. The original
goal of the STARS (Software Technology for Adaptable and Reliable Systems, 1983-
1995) Program [14] is the expansion of the technological basis available to a software
project. Several products of the STARS program can be seen as experience packages.
The RAPID Center, developed by SofTech for the US Army Information Systems
Engineering Command (ISEC), operates as an experience factory in the area of
composition technologies for software reuse [15]. The RAPID Center supports the
activities of other ISEC development centers by

• Developing and maintaining a repository of reusable software components;

• Assisting the development centers in the selection and use of the needed reusable
components;

• Assisting the development centers in the design, implementation and identification
of reusable components;

• Providing methods, tools and strategies for maximizing reuse and associated
benefits;

• Collecting data and measuring the program progress.

16

The major software industries, Japanese (Toshiba, Hitachi, NEC, Fujitsu) and American
(GTE) have identified experience accumulation and reuse as a strategic objective [12].
The Japanese software factories have chosen a strategy based on small improvements,
slowly but constantly introducing new technologies, tools and organizational solutions that
in many cases can be seen as partial implementations of the software factory. The
scenarios targeted by specific quality improvement and experience packaging programs in
those software factories have been: code reuse, reliability modeling, productivity
improvement, service quality enhancement.

7. EXPERIENCE FACTORY IMPLICATIONS

The Experience Factory offers an organizational structure that separates the product
development focus from the learning and reuse focus. It supports learning and reuse and
generates a tangible corporate asset in the form of packaged experiences. It aids in the
formalization of management and development processes. It links focused research with
development.

The Experience Factory can be used to consolidate and integrate activities, such as
packaging experience, consulting, quality assurance, education and training, process and
tool support, and measurement and evaluation.

The Experience Factory makes existing technologies more relevant, e.g., verification
techniques for product packaging. It forces research to focus on corporate needs and
technology transfer. Areas of research for supporting the activities include defining and
tailoring models, the integration of technologies, scaling-up techniques and methods,
building and accessing the experience base, and automation.

It makes existing education in formalism, models and notations more relevant. It requires
education in verification technologies, formal requirements and specification notations,
formal models of measurement and management, and assessment technologies.

How the experience factory is funded depends upon the organizational structure of the
corporation. Clearly the project organization and the experience factory should be
separate cost centers, initially funded out of corporate overhead. However, eventually one
would like to have projects billed for packages, so that the factory can be self-supporting
and focused toward project support.

There are costs involved in instituting such a program. The level of funding clearly
depends upon the size of the program. However, some relative data is available. Based
upon the SEL experience where a full measurement program has been in progress for over
14 years, project data collection overhead is estimated to be about 5% of the total project
cost. Although our experience shows that this typically does not affect total project cost,
since the data collection activity pays for itself on the first project in terms of

17

improvement, it must be established as an up-front cost. With regard to the Experience
Factory, the costs depend upon the number of projects supported, level of effort and set of
activities performed, e.g., quality assurance, process definition, tool building, education
and training, etc. One might consider that it takes a minimum of two people, however to
create the critical mass necessary to develop such and activity at the minimal level.

REFERENCES AND FOLLOW-UP READING

[1] V. R. Basili, "Data Collection, Validation, and Analysis," in Tutorial on
Models and Metrics for Software Management and Engineering, IEEE
Catalog No. EHO-167-7, 1981, pp. 310-313.

[2] R. Basili, "Quantitative Evaluation of Software Engineering Methodology,"
Proceedings of the First Pan Pacific Computer Conference, Melbourne,
Australia, September 1985.

[3] R. Basili, "Software Development: A Paradigm for the Future", Proceedings of
the 13th Annual International Computer Software & Applications Conference
(COMPSAC), Keynote Address, Orlando, FL, September 1989.

[4] R. Basili, J. Beane, "Can the Parr Curve help with the Manpower Distribution
and Resource Estimation Problems," Journal of Systems and Software, vol. 2,
no. 1, 1981, pp. 47 - 57.

[5] R. Basili, R. W. Selby, D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Transactions on Software Engineering, vol.SE-12, no.7,
July 1986, pp.733-743.

[6] R. Basili, A. J. Turner, "Iterative Enhancement: A Practical Technique for
Software Development," IEEE Transactions on Software Engineering, vol.
SE-1, no. 4, December 1975.

[7] R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software
Engineering Data," IEEE Transactions on Software Engineering, vol. SE-10,
no.6, November 1984, pp. 728-738.

[8] W. Boehm, "A Spiral Model of Software Development and Enhancement,"
IEEE Computer, May 1988, pp. 61 - 72.

18

[9] W. Boehm, J. R. Brown, and M. Lipow, "Quantitative Evaluation of Software
Quality," Proceedings of the Second International Conference on Software
Engineering, 1976, pp.592-605.

[10] Brophy, W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada
Oriented Design Methods," Proceedings of the Joint Ada Conference,
Arlington, Virginia, March 16-19, 1987.

[11] Caldiera and V. R. Basili, "Identifying and Qualifying Reusable Components",
IEEE Software, February 1991, pp. 61 - 70.

[12] A. Cusumano, Japan's Software Factories, Oxford University Press, New
York, NY, February 1991.

[13] Edwards Deming, Out of the Crisis, MIT Center for Advanced Engineering
Study, MIT Press, Cambridge, MA, 1986

[14] E. Druffel, S. T. Redwine and W. E. Riddle, "The STARS Program: Overview
and Rationale", IEEE Computer, November 1983, pp. 21-29.

[15] Guerrieri, "Searching for Reusable Software Components with the RAPID
Center Library System", in Proceedings of the Sixth National Conference on
Ada Technology, March 14-18, 1988, pp. 395-406.

[16] Kogure, Y. Akao, "Quality Function Deployment and CWQC in Japan,"
Quality Progress, October 1983, pp.25-29.

[17] E. McGarry, "Recent SEL Studies," Proceedings of the 10th Annual Software
Engineering Workshop, NASA Goddard Space Flight Center, December 1985.

[18] McGarry and R. Pajerski, "Towards Understanding Software - 15 Years in the
SEL", Proceedings of the 15th Annual Software Engineering Workshop,
NASA Goddard Space Flight Center, Greenbelt, MD, Software Engineering
Laboratory Series, SEL-90-006, November 1990.

[19] D. Mills, M. Dyer, R. C. Linger, "Cleanroom Software Engineering", IEEE
Software, September 1987, pp. 19 - 25.

[20] W. Royce, "Managing the Development of Large Software Systems: Concepts
and Techniques," Proceedings of the WESCON, August 1970.

19

[21] W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software
Development: An Empirical Evaluation," IEEE Transactions on Software
Engineering, Vol. 13 no. 9, September, 1987, pp. 1027-1037.

[22] M. Weiss, V. R. Basili, "Evaluating Software Development by Analysis of
Changes: Some Data from the Software Engineering Laboratory," IEEE
Transactions on Software Engineering, vol. SE-11, no. 2, February 1985, pp.
157-168.

