

ATP: Autonomous Transport Protocol

Tamer Elsayed, Mohamed Hussein, Moustafa Youssef, Tamer Nadeem, Adel Youssef and Liviu Iftode

Department of Computer Science University of Maryland, USA

Tracking in Sensor Networks

- To conserve energy, target is tracked using only one camera
- Data is transmitted through a streaming application (Src) to a mobile command center (Dst)
- Active camera changes as target moves (streaming application migrates)
- Cannot tolerate data loss during camera change

What is ATP?

- Autonomous Transport Protocol
- Why autonomous?
 - Decoupled from physical network
 - Decoupled from the physical location of application endpoints
- Provides reliable communication between mobile endpoints

Features I

- Application-specific naming
 - Connection endpoints are defined as contents in the P2P network
- Dynamic endpoints relocation on different end hosts without disrupting the connection
 - ATP is responsible for forwarding segments to the destination and acknowledgments to the source regardless of their current location

Features II

- Reliable transmission between users not end-hosts
- Established connections maintained independent of intermediate node availability
- TCP-like interface
 - Easy to write new ATP-aware applications
 - Current applications can be made ATP-aware with minor modification

System Architecture

Application

Autonomous Trasnport
Protocol

Instance-Based Network

P2P Lookup Service

Underlying Network

- Mobile applications
- TCP-like interface

- Reliable transmission over IBN
- Transparent mobility

- Network of "contents"
- Location-independent addressing

- Communication infrastructure
- IP/MANET

Content-Based Network (CBN)

- Network of endpoint entities "Contents"
 - Active Contents
 - communicates together by messages
 - performs a lookup for other contents
 - e.g. application service, network connection agent, ...
 - Passive Contents
 - stored in the network
 - e.g. document, ...
- Location-independent addressing
 - Extends P2P lookup services (e.g. CAN, Chord,...)
 - Maps a content to a specific node

ATP

IBN=CBN++

- Allows different instances of same content
- Instance Publishing
 - Self (active) / Free (passive)
 - Reliable
 - Leased
- Instance Routing
 - Decoupled from instance physical location
 - Routes to specific or closest instance
- Replicates contents for fault-tolerance
- Caches info for future queries

IBN Routing Example

ATP over IBN

- IBN Content/Instance Addressing
- Contents are the communication endpoints
- Instances are agents working on behalf of mobile entities
- AS:i: ATP agent for the source S with index i
- Index i means the agent is responsible for sending packets starting from sequence number i

Source Migration Scenario

Design Issues

- Reclaiming Network Resources
 - Enforcing a lifetime or using a leasing mechanism for publishing in the IBN
- Acknowledgement Mechanism
 - Cumulative vs Range Acks
- Fault tolerance
 - Relies on IBN route discovery service and/or on ATP mechanism to alleviate the node failure and link failure problems
- Security
 - How to handle privacy, authenticity, and trust ?
- End-to-End Semantics
 - Shifts the burden of waiting from the source endpoint which allows the source to terminate earlier.

Related Work

- TCP over Mobile IP
- TCP Connection Migration
- I3
- Mobile Tapestry
- Shortcomings
 - User is bound to a single host during connection lifetime
 - Communication endpoints must exist simultaneously

Current Status

- Implemented a Java prototype of the ATP protocol over Pastry
 - The prototype is deployed over a set of independent nodes at University of Maryland.
 - A simple ATP-aware application runs on each node of the network
- Simulation in progress
- Further information
 - http://www.cs.umd.edu/projects/atp
 - http://www.cs.umd.edu/projects/ibn