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Abstract
The Bitcoin network relies on peer-to-peer broadcast
to distribute pending transactions and confirmed blocks.
The topology over which this broadcast is distributed af-
fects which nodes have advantages and whether some at-
tacks are feasible. As such, it is particularly important
to understand not just which nodes participate in the Bit-
coin network, but how they are connected.

In this paper, we introduce AddressProbe, a technique
that discovers peer-to-peer links in Bitcoin, and apply
this to the live topology. To support AddressProbe and
other tools, we develop CoinScope, an infrastructure to
manage short, but large-scale experiments in Bitcoin. We
analyze the measured topology to discover both high-
degree nodes and a well connected giant component. Yet,
efficient propagation over the Bitcoin backbone does not
necessarily result in a transaction being accepted into the
block chain. We introduce a “decloaking” method to find
influential nodes in the topology that are well connected
to a mining pool. Our results find that in contrast to Bit-
coin’s idealized vision of spreading mining responsibil-
ity to each node, mining pools are prevalent and hidden:
roughly 2% of the (influential) nodes represent three-
quarters of the mining power.

1 Introduction
Bitcoin communication is built upon peer-to-peer broad-
cast, which carries transactions, blocks, and other global
protocol state. Through broadcast, Bitcoin achieves
eventual consistency: information about all transactions
and blocks is relayed to all peers, and despite inconsis-
tent ordering and partial incompleteness, all honest peers
eventually “agree” on a globally consistent state of com-
mitted transactions and blocks.

The underlying peer topology over which protocol
messages are exchanged is of critical importance: broad-
cast over this topology is the only mechanism by which
peers learn and inform each other of transactions and
blocks. Understanding how information propagates
throughout the Bitcoin ecosystem is therefore integral to
being able to reason about attacks and manipulation in
the Bitcoin network. For instance, initial studies have
revealed that “advantages” within the broadcast network
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can be parlayed directly into gains in coins mined [10].
Furthermore, a broadcast advantage enables an attacker
to pull off forms of double-spending attacks against fast-
payments processors [14].

In this paper, we describe mechanisms to discover two
features of Bitcoin’s topological structure: first, we map
the public topology consisting of the edges that comprise
the peer-to-peer network. Next, within the discovered
topology, we find “influential” nodes that appear to di-
rectly interface with a hidden topology that consists of
mining pools that are otherwise not connected to the pub-
lic Bitcoin network. (We are unable to map the hidden
intra-pool topology, since these are private networks op-
erating using potentially proprietary protocols.)

To map the public topology, we introduce a probing
mechanism called AddressProbe that efficiently discov-
ers peer links. Using AddressProbe, we can efficiently
map the connectable Bitcoin network, i.e., AddressProbe
will find links between x and y iff x and y are con-
nected, and permit incoming connections. AddressProbe
can also find links made by non-connectable nodes (e.g.,
nodes that are behind a NAT), as long as such a node ini-
tiates connections to a probe host. Our techniques also
identify a set of artificially high-degree nodes that at-
tempt to connect to many peers, potentially to reduce la-
tency in learning about and propagating new blocks and
transactions. We map these nodes to various services,
including mining pools and wallet services.

Although AddressProbe is able to map the entire con-
nectable Bitcoin network within minutes, discovering
the public topology alone is insufficient to account for
the Bitcoin ecosystem’s mining power. The original
Bitcoin paper [22] proposed a democratic world-view
(“one-cpu-one-vote”) where peers participating in the
broadcast would also mine for new coins. As Bitcoin
has become popular and financially relevant, coin min-
ing has become the domain of specialized miners op-
erating special-purpose hardware around the world or-
ganized into “mining pools.” Miners often do not con-
nect directly to the Bitcoin broadcast network. Instead,
pool operators deploy gateway hosts that transfer trans-
actions and blocks between the Bitcoin network and pool
members. Pools may choose to remain clandestine about
their gateway because they may be targeted by attackers,
such as other competing pools [13, 34], and it is not clear
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how or where these mining pools connect to the Bitcoin
broadcast network.

Furthermore, because of the well-known attacks on
Bitcoin if a single principal gains more than 50% of
the mining power, large pools may prefer to disguise
some of their power. In fact, while a malicious princi-
pal with a majority of the hash power can subvert Bit-
coin’s most basic security goals (i.e., revise the transac-
tion history arbitrarily), prior work has shown that even
a third is sufficient to unbalance the incentive structure
and reward scheme [10]. Thus, large enough pools may
choose to mine anonymously, hiding their true mining
power by paying out to different keys, without disclos-
ing their gateway(s).

A primary contribution of our work is uncovering in-
fluential nodes within the public topology that provide
connectivity to mining pools. In particular, we find that
efficient propagation over the Bitcoin network does not
necessarily result in a transaction being accepted into
the block chain or a block being extended. Instead, there
are a few (approx. 100) hitherto unidentified nodes that
act as “front-ends” to mining pools, and it is far more
important that these nodes receive a transaction or block
more efficiently than others. We introduce “decloaking”
techniques to identify these influential nodes, and ana-
lyze how these nodes map to different mining pools. Our
analysis cannot reveal if an influential node is merely
well connected to a pool or is a gateway run by the pool
operator; instead, our techniques allow us to map specific
nodes to blocks that are claimed by a different pools.

In summary, our contributions are as follows:

• We introduce the AddressProbe technique, which can
find the connectable Bitcoin topology, within minutes,
and can discover other peers over time. Using Ad-
dressProbe, we show that the deployed Bitcoin topol-
ogy is not a random graph.

• We introduce decloaking techniques to find influential
nodes that skew broadcast fairness. First, a random-
ized technique efficiently finds candidate influential
nodes, and a related technique validates these candi-
dates.

• All of our measurements use a new software infras-
tructure, CoinScope. This paper presents results of
running AddressProbe and decloaking using Coin-
Scope over the live Bitcoin network.

The rest of the paper is structured as follows: In Sec-
tion 2, we present a background on the pertinent details
of Bitcoin, along with related work on mapping the Bit-
coin network. Section 3 introduces the design and im-
plementation of our AddressProbe technique, which we
apply in Section 4 to analyze the live Bitcoin network.
We present our techniques for finding influential Bit-

coin nodes in Section 5, and analyze the most influential
nodes in Section 6. Finally, we conclude in Section 7.

2 Background and Related Work
One of Bitcoin’s salient features, especially in contrast
to digital currencies that have preceded it (e.g., Digi-
Cash [32]), is that it runs on a decentralized peer-to-peer
network and has no formally designated administrators.
Instead, participation in Bitcoin is open, and the network
largely self-organizes. Most of the novel aspects of Bit-
coin’s design, and indeed its peculiarities, arise from the
challenge of converging on a global and coherent state.

In this section we provide a brief introduction to the
basic operation of the Bitcoin network, with a focus on
how it achieves globally consistent state (for more gen-
eral information on Bitcoin, please see [5]). We also dis-
cuss the role that Bitcoin’s peer-to-peer broadcast plays
in ensuring consistency and fairness. Finally, we close
this section by reviewing related work on measuring and
analyzing Bitcoin’s broadcast topology.

2.1 The Bitcoin protocol
The Bitcoin protocol is built around the creation and dis-
semination of a public global log of the state of all bit-
coins in the system. Each entry in this log is a trans-
action, which represents the transfer of virtual currency
from one “account” to another. Transactions consist of
inputs and outputs: a transaction “spends” a set of trans-
action inputs and “creates” a set of transaction outputs.
In general, each transaction input contains a reference to
(i.e., the hash of) an output of a previous transaction—
in this sense, the log is append-only, and extending it
requires access to the latest log entry. Each transaction
output contains a value representing the quantity of bit-
coin currency, as well as information describing which
user “owns” those coins. Transactions are structured as
a directed graph, which facilitates maintaining invariants
about the transaction log, (for example, that users cannot
spend more money than they have).

The protocol guarantees each transaction output can
be spent by at most one subsequent transaction. Con-
flicting transactions are a pair of distinct transactions that
spend a common transaction input. A valid transaction
is one that has valid signatures for each of the transac-
tion inputs; additionally, the sum of the values of the out-
puts must not exceed the sum of inputs (the difference is
treated as a transaction processing fee, as we’ll describe
shortly). The central tenet behind Bitcoin is that if ev-
eryone has access to the log of transactions, then anyone
can verify who has the right to spend what bitcoins.

2.2 The role of broadcast in Bitcoin
The Bitcoin protocol’s primary goal is to converge on
an eventually consistent sequential log of transactions.
For the system to succeed, users must be able to submit
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transactions for timely inclusion in the directed transac-
tion graph, and the network should converge quickly to a
single valid (prefix of a) graph. If an attacker could pre-
vent transactions from entering this graph or delay agree-
ment, it would deny service to users. Alternatively, if an
attacker could revert an agreed-upon graph, he could ef-
fectively steal funds by double-spending.

Bitcoin achieves this consistency through the use of
a peer-to-peer broadcast topology. Unfortunately, little
is standardized about how exactly this broadcast oper-
ates beyond the format of the various messages; we de-
scribe here what the reference implementation (“Satoshi
client”) does.1 Every Bitcoin peer maintains a database,
called the addrMan, of peers it has heard about. A peer
first learns about a set of peers by contacting bootstrap
DNS nodes; peers subsequently exchange addrMan in-
formation with one another to learn about new peers.
Every Bitcoin peer initiates a connection to up to eight
others, and maintains a maximum of 125 total connec-
tions (incoming and outgoing), rejecting any connection
request that would push it beyond this capacity. Its total
connections constitute that peer’s neighbors.

Bitcoin’s peer-to-peer broadcast is based on flooding
neighbors’ links in a gossip-like manner. At a high level,
when a peer learns of a new transaction or block, it in-
forms its neighbors by sending a INV message containing
the item’s hash to each of its neighbors. In response, if
a given neighbor does not yet have that item, it requests
it with a GETDATA message. The original peer responds
with a TX or BLOCK message containing the relevant data.
Finally, because this new neighbor has learned about a
new transaction or block, the entire process continues re-
cursively until all reachable peers receive it.

This ad hoc broadcast protocol forms the entire ba-
sis of Bitcoin’s global, eventually consistent log, and is
therefore of utmost importance to its correct and fair op-
eration. If a data item does not spread throughout the
network quickly then the system risks reaching an incon-
sistent state. Moreover, if a peer were somehow able to
have their messages spread more quickly than others’, it
could help that peer gain disproportionate profits from
deviating from the protocol [10]. Bitcoin’s network for-
mation procedure is intended to induce a random graph
topology that should propagate information efficiently;
however, as the topology has not been studied, it is un-
known whether this ideal is actually attained. Thus a
quantitative, thorough measurement and analysis of the
Bitcoin peer-to-peer network is of critical importance to
understanding and evaluating its properties.

1Other Bitcoin clients and variants appear to adopt the same proto-
col details.

2.3 Miners and mining pools
A novel and unusual aspect of Bitcoin’s design is the
“mining” mechanism by which the network robustly
reaches global agreement on the set of committed trans-
actions. Some nodes on the network, called “miners,” opt
in to attempt to solve proof-of-work puzzles [2]. As these
proofs of work are based on finding inputs to hashes that
yield digests with many leading zero bits, they are solv-
able only through brute force. The difficulty of the puz-
zle is set so that on average, some miner on the network
finds a solution every 10 minutes. Each puzzle identifier
contains the hash of a previous puzzle solution as well as
a new batch of transactions to append to the log, together
called a “block”; the proof-of-work solutions therefore
form a “blockchain”. Miners always work to extend the
longest such blockchain they know of.2 Upon producing
a block, the miner propagates it to the rest of the network
using the same broadcast mechanism as that for transac-
tions. Honest miners who receive this block accept it and
begin working to append it.

Although it is possible during ordinary operation for
two different puzzle solutions extending equal-length
chains to be found at approximately the same time,
this happens infrequently since the average time be-
tween blocks is relatively slow compared to network la-
tency; [9, 19] any such event is quickly resolved when
one “fork” or the other gets extended and pulls ahead.

Mining is expensive; participation is encouraged
through use of an incentive mechanism. Upon produc-
ing a valid block, the winning miner is rewarded with
bitcoins in two forms: first, any difference between the
input value and output value of a transaction included in
the block is rewarded as a “fee”; second, a “block cre-
ation bonus” of newly minted coins. A miner claims
these rewards by including a single transaction with no
inputs, called the “coinbase” transaction.

These rewards also provide incentives for other, in-
teresting behaviors. In particular, miners have incentive
to garner as much computational power as possible; the
more CPUs they have, the greater then chance they will
be able to extend the block before anyone else. Addition-
ally, miners have incentive to collude by pooling their re-
sources together and splitting the profits rather than com-
peting for them. This has led to so-called mining pools,
who recruit other miners to collude.

On the one hand, mining pools require some degree
of exposure (being able to advertise high win rates can
be a useful tool for recruiting other members). However,
they also have incentive not to appear to have grown too
large: if any one entity approached a majority of the min-
ing power, they could possibly prevent the rest of the net-
work from globally converging on a growing transaction

2More accurately, the blockchain with the greatest cumulative puz-
zle difficulty. These can differ when the difficulty is adjusted.
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log [11, 19, 22]. It is therefore of critical importance to
develop the ability to investigate the true extent of mining
pools’ collusion.

2.4 Related Work
Previous empirical studies have examined facets of Bit-
coin’s surrounding ecosystem, such as online currency
exchanges (and their tendency to collapse) [21] and il-
licit marketplaces [8, 18], and botnets that supplement
their income through Bitcoin mining [12, 26]. A ma-
jor focus has been on evaluating user privacy. While
users can interact with Bitcoin using only pseudonyms,
it has been demonstrated that Bitcoin transactions can be
linked across pseudonyms to effectively “deanonymize”
users [6, 15, 18, 24, 28, 30].

Relatively less work has examined the structure of the
Bitcoin communication network itself. Decker et al. [9]
measured the rate of information propagation through-
out the network, and proposed modifications to accel-
erate it. Babaioff et al. [1] pointed out that peers have
incentives not to participate in broadcast, but this could
be remedied by paying fees to relaying peers. The ef-
fectiveness of the broadcast mechanism is essential to
Bitcoin’s operation for two main reasons. First, it deter-
mines the potential security of “fast payments,” by which
transactions are accepted based on their apparent propa-
gation through the network, even before being ratified
through inclusion in proof-of-work blocks [4, 14]. Sec-
ond, an advantage in the broadcast network can be lever-
aged by a non-compliant miner to gain disproportionate
rewards from mining [3, 10]. Prior work had focused
on strategies non-compliant miners could use to gain re-
ward if they had a broadcast advantage. Our work studies
the underlying network topology, and shows that indeed,
substantial broadcast advantage can be gained on the de-
ployed network.

Our AddressProbe technique is directly related to pre-
vious work on network structure detection and analy-
sis [20, 27, 29]. Biryukov et al. [6] disclose a technique
that also uses Bitcoin address propagation messages to
detect peer links. Their technique, however, is some-
what invasive since it involves polluting each node’s ta-
ble of potential peers with fake entries. In contrast, Ad-
dressProbe only gathers and analyzes information that
nodes readily provide, and is better suited to network-
wide mapping.

While Bitcoin mining was initially performed us-
ing commodity computer equipment (i.e., “one-cpu-one-
vote” [22]), the mining landscape has evolved accord-
ing to two main trends: first, mining pools [31] have al-
lowed users to pool their resources and share the rewards;
and second, customized Bitcoin-specific mining hard-
ware have been developed that vastly outperform general
purpose computers [33]. There have been several game-

theoretic analyses of Bitcoin mining coalitions [10, 16]
but, to our knowledge, no systematic empirical analy-
sis that identifies mining entities. However, speculation
about miner activities abounds [23], and we believe our
work (Section 5) provides the first systematic mechanism
to locate nodes correlated with mining pools in the wild.

3 Mapping the Broadcast Topology
In this section we describe an efficient method for dis-
covering peer links in the Bitcoin network. We validate
our approach, AddressProbe, using ground-truth data,
and present an analysis of the broadcast topology.

3.1 Using timestamps to infer links
Recall that new Bitcoin nodes find initial network peers
by querying a set of hard-coded DNS servers. The DNS
servers provide joining nodes with their initial peer list to
try to connect to. Each node maintains a local database
called the addrMan, which it tries to populate with the ad-
dresses of other peers. Nodes exchange address informa-
tion using two protocol messages: GETADDR and ADDR.
GETADDR messages are requests and ADDR messages are
replies that contain address information.

Upon initiating a new connection a Bitcoin node (say
x) requests address information by issuing a GETADDR re-
quest (say to a peer y). Node y will reply with up to 1000
entries from its addrMan database, chosen uniformly at
random.3 For each chosen entry, the reply ADDR message
includes the (IP address, port) pair, a timestamp, and a
list of services offered. The vast majority of entries in
addrMan do not correspond to active connections but to
addresses that the node has learned from ADDR messages
of others. Bitcoin includes a somewhat unintuitive way
of updating the timestamp corresponding to an address,
which we exploit in formulating the AddressProbe tech-
nique. (Appendix A gives a more detailed walkthrough
of the actual code).

• For outgoing connections, i.e., ones that it initiates, a
node updates the timestamp (corresponding to the peer
IP address and port in addrMan) each time it receives
a message from the peer. Therefore, timestamps for
outgoing connections are updated frequently, on the
order of a few minutes maximum.

• For incoming connections, the timestamp is set to
when the connection was created, but it is not updated
as the peers exchange messages. Thus, if an incoming
connection is long-lived, the ADDR message does not
provide information to distinguish it as live.

• For all other (address, port) pairs that a node learns
of (from ADDR messages sent by others), the node

3This is a simplification that describes the general behavior. For full
details see Algorithm 1 in the appendix
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“ages” the address by adding a two hour penalty be-
fore adding the address to its addrMan.

Finally, we note that a node can send unsolicited ADDR

messages in two cases: first, upon receiving an incoming
connection from n, a node x sends an ADDR message, to a
randomly chosen peer, containing only x with the times-
tamp set to the current local time. Nodes keep state about
which addresses their neighbors know of (because they
received/sent information about these nodes from/to their
neighbor). When nodes receive a ADDR messages with
fewer than 10 entries, either as the result of a GETADDR

response or a new connection, they choose two peers at
random and relay the same ADDR information (without
updating any timestamps), as long as the node believes
the neighbors don’t already have this address. Nodes
purge all information about what addresses their neigh-
bors know every twenty-four hours. Thus when a node
with a hitherto unknown address joins the network, the
relay messages containing the node’s IP address eventu-
ally flood the entire network. Whenever an existing node
x makes a new connection, its address propagates in the
network; how far depends on how many nodes already
knew about x. Finally, a node will update addrMan upon
receiving an ADDR message with a newer timestamp for
an address. The two-hour aging penalty is applied to the
new timestamp learned.

We illustrate how timestamps update with a simplified
example: consider a scenario where node x initiates a
connection to node y at time t. Suppose that node y relays
the information about the connection to neighbor n, and
the randomized protocol further relays information about
the connection to nodes r0,r1, . . . . Finally, assume node
l learns about node x from node r0 at a later time (not
during the initial relay but as a reply to a GETADDR).

• As long as this connection is active, node x will report
a recent timestamp for node y.

• Node y will not update its timestamp t for x, regardless
of how long the connection stays open, unless it hears
about x with a more recent timestamp than t − 20m
from a third node.

• Similarly, node y’s neighbor n and the relay nodes ri
will initially also report the same timestamp t for node
x. If this single relay manages to flood the network,
then all nodes except those with outgoing connections
to x will report timestamp t for x. They may update
their timestamp for x later if they hear of a more recent
timestamp or initiate a connection to x.

• Suppose node l received timestamp t ′ for node x. Node
l will report t ′−2h, since it will age the timestamp by
two hours. Any node that learns of x through l will
further age the timestamp by two hours, and so on.

B’s ts of A
Unique Not unique

A’s ts of B ts≥2hr & ts<2hr & ts <2hr

ts ≥ 2hr
@ edge ∃ edge Unclear

B→ A A 6→ B
Unique and ∃ edge ∃ edge ∃ edge

ts<2hr A→ B A↔ B A→ B
Not unique and Unclear ∃ edge

Unclear
ts<2hr B 6→ A B→ A

Table 1: Connection Inference rules for AddressProbe:
Timestamps for nodes A and B as reported by repeated
GETADDR requests. Here, A→B denotes that we can infer
that A initiated the connection to B.

Therefore, by issuing GETADDR messages to all nodes
in the network to whom we can connect, and analyzing
the timestamps, we can obtain a map of connections, and
potentially even when connections are made. By analyz-
ing discrete two hour differences in timestamps, we can
infer how nodes learn about each other. We summarize
the inferences based on timestamps obtained by issuing
GETADDR messages in Table 1.

Unfortunately, the description above simplifies true
behavior in a few ways, which can lead to both false pos-
itive and false negative inferences.
False Positives The addrMan database is not updated
when connections break or peers depart. Hence, a re-
cently (less than two hours) broken outgoing connection
leads to an inferred edge that no longer exists.

Simply receiving a “recent” timestamp is not an in-
dication of an active outgoing connection, since relay
nodes (ri in our example) also respond with the connec-
tion genesis timestamp (t in our example). Thus, for
new connections, all relay nodes (potentially the entire
network) will respond with a recent and identical times-
tamp, which can lead to a false positive diagnosis. This
is why Table 1 requires that a timestamp be both recent
and unique in inferring outgoing connections.
False Negatives The addrMan structure is finite, and
nodes may evict addresses, including those of actively
connected peers. Addresses included in replies to
GETADDR messages are chosen randomly, and it is possi-
ble that multiple GETADDR messages may “miss” an ad-
dress, possibly of an outgoing connection. Both these
scenarios will cause the inference to miss existing edges.

3.2 AddressProbe Implementation
Our approach to measuring the Bitcoin topology relies
on short bursts of message activity to create a snapshot
of the network. Yet, to achieve both a swift measure-
ment and a wide one requires addressing a few technical
challenges.

First, connections take time to establish, which means
that an experimental platform must be long-running. To
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GT Num. Num. Num.
Node true pos. false pos. false neg.

A 15.12±1.84 0.08±0.03 5.02±0.69
B 8.29±1.10 0.41±0.17 2.13±0.36
C 8.28±1.13 0.29±0.14 2.22±0.37
D 7.63±2.12 0.02±0.04 2.92±0.95
E 6.52±0.81 0.20±0.13 1.64±0.27

Figure 1: Ground truth validation of Ad-
dressProbe, using runs spanning October 20–
November 7 with five ground-truth nodes. Val-
ues denote averages with 95% confidence inter-
vals.
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Figure 2: False negatives typi-
cally do not persist across more
than one or two AddressProbe
experiments, thus they are due to
under-scraping peers’ addrMan.
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Figure 3: The vast majority of
ADDR messages containing two
or more addresses arrive within
at most 24 GETADDR queries, thus
we rarely under-scrape addrMan.

connect to some hosts requires patience, as they may be
temporarily “full” of connections and refuse more. In-
coming connections, such as from hosts behind NATs
and firewalls, accumulate slowly, as such hosts must first
learn about our node through ADDR advertisements and
then choose to connect to us. Once established, connec-
tions must be kept active to be maintained.

To provide a long-running platform, we isolate typical,
base Bitcoin protocol functionality that accepts, creates,
and maintains connections. This forms the CoinScope
“connector”.

Second, the measurement techniques we apply are di-
verse and rely on wide distribution of messages. For
example, requests for addresses may be sent to all con-
nected hosts or inventory messages (Section 5) sent to a
select set. Fortunately, techniques do not always need to
process responses on-line.

We design the interface for CoinScope clients so that
they issue commands to the connector using a library that
connects via a control channel, and handle responses in
a separate path. Typical commands include requests to
connect to an address, list connected peers, or to broad-
cast GETADDR messages. Multiple CoinScope clients can
connect to the control channel simultaneously to support
concurrent (non-conflicting) experiments. CoinScope
is efficient: it can saturate a 1Gbps network connec-
tion with Bitcoin protocol messages without significant
CPU overhead. In our experiments, CoinScope is throt-
tled such that messages to the entire network, such as
GETADDR requests, are transmitted over one minute.

Third, developing measurement techniques can re-
quire substantial reinterpretation of data as a model of
protocol behavior is refined. For example, our approach
to interpreting ADDR messages based on their size has
evolved. This encourages persistent storage of responses
at the most primitive level—connection events as they
occur and messages as they are received—so that these
results can be reinterpreted.

To provide both persistent storage and the feedback re-
quired by some CoinScope clients, we apply a logserver
that marshals tagged messages from the connector to
subscribers. A “verbatim” subscriber collects all events
and writes them to disk for archival. A CoinScope client
may subscribe to only relevant log messages, for exam-
ple, to only those associated with ADDR messages to de-
termine when to stop requesting from a given host. We
have found that the tagged logserver architecture simpli-
fies the combined task of archiving data while supporting
on-line experiments.

In sum, the CoinScope architecture permits a wide
view of the network by maintaining long-lived connec-
tions; supports concurrent, short-lived experiments by
allowing clients to issue requests to the connector via a
control channel; and transparently stores measurement
results persistently by marshaling all responses through
a logging system.

3.3 Validation using Ground Truth
To validate AddressProbe’s accuracy, we operated five
“ground-truth nodes” throughout our experiments (from
October 20, 2014 to November 7, 2014). Each of our
ground-truth nodes was a mainline Satoshi client. Ev-
ery two minutes, we collected a list of all active connec-
tions each peer has (as reflected in the PeerInfo data
structure). Unfortunately, not all ground-truth nodes re-
mained up the entire 18 days; in the results that follow,
we average only over the experiments when a given node
was available.

For the purposes of comparing ground-truth edges to
edges inferred from AddressProbe, we distinguish be-
tween what we call stable and transient edges. We de-
fine an edge to be “stable” with respect to a given ex-
periment if it appears in all PeerInfo snapshots within
four hours before and four hours after the experiment. If
AddressProbe fails to detect a stable edge, then we treat
that as a false negative—it is very likely that the edge
exists during the experiment if our ground-truth says it
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was consistently present before and after the experiment.
Similarly, if an edge appears in at least one such snapshot
but not all, then we call it a “transient” edge. Failing to
detect a transient edge is less dire than for a stable edge:
it might not have existed during the experiment. Thus, if
AddressProbe detects a transient edge, we count it as a
true positive, whereas if it fails to detect a transient edge,
we do not count it as a false negative. Finally, we clarify
that we only consider edges between our ground-truth
nodes and other nodes to whom we could connect—in
particular, we do not include NAT’ed nodes.

We present our ground-truth results in Figure 1. Our
false positive rates are extremely low across all ground-
truth nodes: that is, AddressProbe is very unlikely to ever
assert that an edge exists when it does not. A false pos-
itive can occur when a non-unique time-stamp less than
two hours old appears to us to be unique, for instance be-
cause the time-stamp did not propagate far into the net-
work. These data reflect such a case to be rare.

Next, we turn to the false negative rates in Figure 1,
that is, cases when AddressProbe fails to find an edge.
Although higher than its near-zero false positive rates,
AddressProbe’s false negative rates are still consider-
ably less than its true positive rate. Broadly speaking,
there are two possible causes for a false negative Ad-
dressProbe:

1. AddressProbe under-scraped a peer’s addrMan and
simply did not send enough GETADDR messages to
learn about all of the peer’s edges, or

2. the peer evicted the edge’s corresponding entry from
its addrMan. This can occur in the mainline Satoshi
client if its addrMan has too many entries.

Ideally, the more common cause would be under-
scraping: if eviction was common, that would be prob-
lematic for AddressProbe, as it would violate our as-
sumption that if an edge exists, then so does a time-
stamp less than two hours in at least one of the peer’s
addrMan. Because peers’ responses to GETADDR choose
randomly from addrMan, we expect that if we were to
under-scrape, then it would be very unlikely to obtain a
false negative on the same edge for many consecutive ex-
periments. To evaluate this, we plot in Figure 2 how often
AddressProbe obtains the same false negative for multi-
ple consecutive experiments. This shows that 70% of
the false negatives are resolved in the subsequent exper-
iment; nearly 90% are resolved within two experiments.
This provides strong evidence that under-scraping is the
most likely cause for AddressProbe’s false negatives.

Figure 2 also shows evidence of eviction. There was
a single edge, for instance, which AddressProbe failed
to detect over 19 consecutive experiments. Because it is
astronomically unlikely for an edge not to be randomly
chosen from a peer’s addrMan after so many trials, we

EC2/Linode
Bitcoin Network

Affiliate Mining Pool
Bifubao web
wallet service

Unclassified

Figure 7: A snapshot of the (reachable) Bitcoin network
discovered by AddressProbe on Nov. 5. The highest de-
gree nodes (with degrees ranging 90–708) are colored.

believe this is an example of eviction. Fortunately, while
the tail is long, it is also shallow, and thus we conclude
that the root cause of false negatives is under-scraping.

We could of course improve AddressProbe’s false neg-
ative rate by simply scraping more. However, Figure 3
shows that we quickly reach a point of diminishing re-
turns. In this figure, we show how many ADDR mes-
sages we received that contain two or more addresses (as
these are the ADDR messages in response to our GETADDR
queries). The x-axis represents how many GETADDR

queries we sent until a peer stopped sending us ADDR

responses with two or more addresses. The concentra-
tion at x = 0 corresponds to the set of nodes who had yet
to populate their addrMan data structures. Most nodes’
addrMan were exhausted after sending 16 GETADDR re-
quests, with a sharp decline after the 20th GETADDR.
Guided by this, we instituted a cut-off at 24 GETADDR

messages in order to balance between completeness of
results and bandwidth preservation.

To summarize, AddressProbe is effective at accurately
detecting edges, and its threats to validity (predominantly
eviction) are extremely uncommon. Our main source of
errors is due to our decision to trade off false negatives
for increased bandwidth consumption, but future appli-
cations of AddressProbe need not make this trade-off.

4 The Bitcoin Topology
We begin our analysis of the Bitcoin topology by inves-
tigating the topological features of the peer-to-peer net-
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Figure 4: Degree distributions from
AddressProbe runs on 10/20–11/7.
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Figure 6: Community connectedness.

work using AddressProbe measurements over a period
of 18 days. Most of our measurements span four con-
secutive days (10/28–10/31), allowing us to see if there
are topological changes within a relatively short win-
dow of time. We also performed AddressProbe mea-
surements one week before and one week after this pe-
riod of time, though less frequently, so as to determine if
these were representative or sensitive to longer-term di-
urnal patterns. In sum, we collected 133 snapshots of the
network using AddressProbe.

We present a representative snapshot of the Bitcoin
topology in Figure 7. Each node is sized proportionally
to its degree. Two features immediately stand out: First,
a handful of nodes have far greater degree than others in
the system; in this section, we identify these high-degree
nodes. Second, upon visual inspection, this graph ap-
pears to be random; we demonstrate in this section, how-
ever, that it exhibits properties that distinguish it from a
random graph.
Node degree. Figure 4 shows the degree distributions
averaged across all our network snapshots. We also plot
the single minimal and single maximal distributions (as
determined by the runs’ average degree). This demon-
strates that the mean is representative, and that the shape
is upheld across all 2.5 weeks of our experimentation.

On average, the majority of nodes to which we could
connect have degree in the range of 8–12. This is con-
sistent with the mainline Satoshi client implementation:
unmodified peers seek to maintain eight outgoing con-
nections, and permit incoming connections, as well. Be-
cause this is constrained only to the edges for which
we could connect to both nodes, this result does not in-
clude any edges from NAT’ed nodes, and thus nodes are
likely to have greater degrees than is plotted here. How-
ever, recall that peers cannot create outgoing connections
to NAT’ed nodes—if AddressProbe is accurate, then it
should be able to detect all outgoing edges. The fact that
the degree distribution is so heavily concentrated near
eight indicates that AddressProbe is indeed accurate at
detecting these outgoing edges.

Another feature of the mainline Satoshi client is that

it permits a maximum of 125 active connections, but
we consistently see nodes that far exceed this maximum,
sometimes by a factor of nearly 80. This is not a singu-
lar phenomenon; we see these high degree nodes across
all runs of AddressProbe. That is, extremely high-degree
nodes are persistent over time.

Benign measurement studies seeking to understand the
Bitcoin topology could appear to be high-degree nodes.4

In an effort to understand the root cause behind these
high degrees, we tried to manually classify all nodes with
degree at least 90 in the network snapshot of Figure 7.
Of the nodes we could classify, over half of them were
members of the Bitcoin Affiliate Network mining pool.
Also, we identify one node from a Bitcoin wallet ser-
vice. These results indicate that the long tail of high de-
gree nodes is indeed not an anomaly of AddressProbe,
but rather an accurate reflection of coordinated efforts to
measure the network. We also identify many high-degree
nodes running within cloud providers such as EC2, but
have thus far been unable to classify them further.
Graph randomness. Visual inspection of Figure 7
seems to indicate that the Bitcoin network is random. To
evaluate this more formally, we apply the so-called Lou-
vain community detection algorithm [7] to each snapshot
graph of the Bitcoin network AddressProbe returns. This
algorithm returns a set of communities, with the property
that nodes within a given community exhibit greater con-
nectivity than two nodes in different communities. Fig-
ure 5 shows that the largest community in the network
typically constitutes roughly 25% of the overall network.

For a given community C, let Eintra(C) denote the set
of intra-community edges (edges connecting two mem-
bers within C) and let Eall(C) denote all edges involv-
ing a member of C (inter- and intra-community edges).
For each graph returned by AddressProbe, we com-
pute what we call the graph’s community connectedness:
the weighted average of communities’ fraction of intra-
community edges. Concretely, if a graph has N nodes

4Acknowledging this, AddressProbe does not reply to GETADDR

messages like other clients, so we expect that our experiments have
not affected others.
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and M communities (C1, . . . ,CM), then its community
connectedness is:

M

∑
i=1

|Ci|
N
· |Eintra(Ci)|
|Eall(Ci)|

(1)

This definition of connectedness serves as a useful metric
for determining how well the graph supports fast mix-
ing and dispersion of data. Note that community con-
nectedness is maximized with a value of one for graphs
whose communities’ edges are strictly inside the com-
munity, that is, the graph would be fragmented. Broadly
speaking, low values of connectedness indicate a health-
ier Bitcoin network.

Figure 6 shows the community connectedness (bot-
tom) and overall number of communities (top) across all
133 snapshots of the Bitcoin network we obtained with
AddressProbe. Note that the community connectedness
remains within a relatively small bound over these 18
days, tightly centered around 0.24. This low variance
indicates that there are few major changes to the inherent
structure of Bitcoin’s network over time.

We use connectedness to answer the question of
whether the Bitcoin network is truly a random graph.
To lend perspective to the raw values of connectedness,
we also generated random graphs with the same vertex
and edge counts of each 133 networks and computed
their connectedness. We do not model the high-degree
nodes in our generation of these random graphs; because
the high-degree nodes constitute a small fraction of the
overall edges, we believe this not to affect the results.
Figure 6 presents the average connectedness among ten
random graphs, as well as the average plus two stan-
dard deviations. We observe that truly random graphs of
the same size exhibit connectedness that is statistically
significantly smaller than those of the Bitcoin network.
In more than 98% of the runs, the measured graph’s
connectedness was more than two standard deviations
greater than that of the random graph. This indicates that
the Bitcoin network is not purely random. We hypothe-
size that this deterministic structure is due to the process
by which nodes join the Bitcoin network: recall that they
connect to a small set of DNS nodes, and slowly perco-
late to more distal parts of the graph as they learn of new
peers. Quantitatively evaluating the source of determin-
ism is an area of future work.

Discussion. AddressProbe provides an accurate, re-
peatable snapshot of the entire Bitcoin network within
tens of minutes. With this unprecedented view into the
Bitcoin topology, we make two important observations:

1. There are peers who connect to∼125×more than the
typical peer; these almost exclusively correspond to
mining pools and other measurements nodes.

Bitcoin Network

e.g., stratum+tcp://uk1.ghash.io:3333Pool Server

Gateway

Member Member

Pool Peer

Pool Peer

...

...

stratum protocol

e.g., BFGminer, cgminer

bitcoin rpc protocol

Figure 8: A typical mining pool architecture. The gate-
way and pool servers are administered by the pool op-
erator. A pool server generally has a publicly known ad-
dress, while the gateway does not. A gateway may accept
inbound connections.

2. The Bitcoin graph is, for the most part, consistently
well connected, but it exhibits properties that distin-
guish it from a truly random graph.

In small doses, these topological abnormalities are not
detrimental to Bitcoin’s operation. However, it is im-
portant to note that the Bitcoin protocol does nothing
to keep them from happening. Malicious or misguided
behavior could drive the network to bad states, such
as worse connectedness or, worse yet, a disconnected
network. Regularly running AddressProbe to collect
network-wide topology information can help the com-
munity more quickly detect and react to attacks and mis-
takes. We continue to run AddressProbe and will make
our data publicly available for the Bitcoin and research
communities.

5 Discovering Influential Nodes
AddressProbe can efficiently map the reachable Bitcoin
topology, and our analysis has shown both the struc-
ture of the network, and how malicious nodes can af-
fect broadcast. However, the vast majority of compute
power that sustains Bitcoin and extends the block chain is
not visible, but instead is concealed within mining pools.
This is apparent from observing that these pools mine the
vast majority of blocks and reap new coins. In this sec-
tion, we describe the structure of these pools, and then
introduce techniques that discover how pools interact and
interface with the visible broadcast network.

5.1 Structure of Mining Pools
Commercial mining pools have a centralized administra-
tive structure. The mining pool operator uses a command
and control (C&C) system to coordinate the pool’s com-
putation.

A prototypical mining pool (Figure 8) consists a pool
server, one or more gateways, and the pool members. We
describe each in turn next.
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Pool Server The pool server assigns units of work to
pool members. Specifically, the mining pool periodically
assigns each member a Merkle root of a set of trans-
actions, and a range of nonce-space to search through.
Mining participants explore this search space looking for
nonces that result in valid “shares”, which are partial
proofs-of-work that are a superset of the ones that qual-
ify as actual Bitcoin blocks. Mining pools support one
of several protocols for communicating with members’
mining-rigs, the most popular of which is Stratum [25].
Generally, the IP address of a pool’s Stratum server is
publicly known, and can be found in documentation for
joining the pool.

Many pools operate multiple pool servers in differ-
ent geographic regions to improve fault tolerance and la-
tency. There are several open source implementations of
pool servers, although mining pools may also use custom
implementations.5

Gateways A mining pool typically connects its pool
server to a local or trusted instance of a Bitcoin node
—the gateway– to which the pool server communicates
using the Bitcoin RPC protocol. Gateways interface pool
resources with the global Bitcoin network, and must pro-
vide low latency broadcast for the following reasons:

• When a pool member finds a share that is a winning
Bitcoin solution, the pool operator needs to claim the
embedded coins and fees by broadcasting the new
block to the rest of the network. This should be
done as quickly as possible, since any delay increases
the risk that a competing pool will find a competing
block (we ignore for now block-withholding attacks,
in which a pool may deliberately delay block propaga-
tion if it harms competing pools more than itself [10]).

• A pool must also learn about blocks and transactions
broadcast by other nodes in the network quickly to
minimize wasted work done by mining on an old
block. The pool also has an incentive to learn about
transactions so it can include them in its blocks and
collect the transaction fees.

Pool Members Mining pool participants typically run
specialized mining-rig control software, such as BFG-
Miner, cgminer, and poclbm. One reason for the use
of various software like this is the need to control vari-
ous mining equipment, such as overclocking, monitoring
temperature, and detecting errors. Mining pool partici-
pants need not run an ordinary Bitcoin node; the task of
receiving, validating, and relaying transactions is dele-
gated to the mining pool operator.
Tracking mining pool power On average, a mining pool
wins a number of blocks in proportion to the total amount

5See https://en.bitcoin.it/wiki/Poolservers for a comparison of pub-
licly available pool server software.

of hash power the pool members contribute. Mining
pools often claim credit for the blocks they produce by
posting them on the pool’s website. (Presumably pub-
licly claiming blocks help pools recruit new members.)
Pools often use a longstanding public key, and mine
blocks that pay the block reward to this key. It is possible
for a pool to mine a block, forego the block reward, and
reward another, since only the public key is necessary
to pay the block reward to a key. Pools may also claim
its blocks by including a short message in the coinbase
transaction (effectively, a string that miners can use to
convey arbitrary information); these can be more readily
spoofed since it does not require the miner to forego the
block reward.

Occasionally, large enough pools may have an incen-
tive to conceal their hashpower. Since there are devas-
tating attacks on Bitcoin (e.g., history revision attacks)
that become feasible when a single entity wields more
power than the rest of the network, when a pool grows
very large in size it attracts the concern and suspicion of
the Bitcoin community [17].

Several aggregator websites, including blockchain.
info, maintain low-latency connections to a thousands of
nodes and record the IP address of the first connected
node to relay each block. This method is most effec-
tive when the aggregator has a direct connection to the
gateways that initiate the broadcast of each block; in any
case, this method is sensitive to transmission latency.

Several other websites such as http://organofcorti.
blogspot.com and http://mempool.info/ use the methods
described along with other anecdotal evidence specifi-
cally to monitor the activity of large mining entities.

5.2 Influential Nodes
In the rest of this section, we describe a new technique
for finding a small set of “influential” nodes in the Bit-
coin broadcast network. We show that this small set of
nodes (≈100 or so) seemingly account for over three-
quarters of the hash power. We hypothesize that these
nodes are either gateways to mining pools, or are other-
wise connected with low-latency to gateways.

Interestingly, the set of influential nodes have entirely
benign topological and protocol features: they don’t have
exceptionally high degree, don’t form an exclusive com-
munity, don’t have a unique version string, or are even
particularly long lived in the network, making it difficult
to find and track these nodes. However, these nodes pro-
vide an exceptional network advantage for broadcast: as
long as a transaction (block) reaches these nodes, it is far
more likely to be included in a block (extended in the
block chain).

Prior work [10] has shown that a selfish mining pool
can gain advantage if it initially withholds blocks it finds,
but then releases them as soon as a competing block is
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found. The advantage accrues proportional to the frac-
tion of the rest of the mining pool that extends the block
released by the selfish pool. Assuming honest pools
broadcast using the standard protocol, and the selfish
pool selectively creates low latency connections to the
influential set, the latter can gain huge broadcast advan-
tage. In the limit, the attacker can win every broadcast
race, and therefore profits from selfish mining regardless
of its fraction of hashpower. As the rest of the section
will demonstrate, such an attack is not hypothetical, but
indeed feasible on the current Bitcoin network.

5.3 Decloaking
We introduce a randomized protocol for identifying in-
fluential nodes. Our protocol has two phases: Candidate
Selection (CS), which finds potential influential nodes,
followed by Influence Validation (IV), which demon-
strates the candidates do indeed represent disproportion-
ate mining power. In practice, the CS and IV phases
should be run concurrently, with IV validating the out-
put of CS.

The CS and IV algorithms both use two low-level
primitives, which we introduce first.

Coloring Nodes Each Bitcoin node maintains a set of
transactions it has received in a data structure called
memPool. Typical mining pool server implementations
(e.g., CoiniumServ) use the memPool of the connected
gateway node to determine which transactions to include
in their blocks. Two Bitcoin transactions “conflict” if
they both spend a common transaction input (i.e., repre-
sent a double spend). Bitcoin requires that among a pair
of conflicting transactions, at most one may be included
in a block. Nodes must guarantee that none of the trans-
actions in their memPool are conflicting. The reference
client always prefers the first transaction it receives, i.e.,
a node discards any transaction that conflicts with one
already resident in its memPool.

Ideally, we could color each node with a different
conflicting transaction, and upon repeating this step, we
would find the influential nodes, because the transac-
tions sent to them would “win”, or be included in a
block, more often. This could potentially be accom-
plished by creating a unique conflicting transaction for
each reachable node in the network, and delivering them
to each node simultaneously. (Otherwise, once a node
receives its transaction, following the protocol, it would
forward to others, and the mapping of transaction to node
would no longer remain one-to-one.) Unfortunately, due
to varying network latencies and connections between
nodes via other unreachable (NAT’ed) nodes, it is practi-
cally impossible to simultaneously send a distinct trans-
action to each node using simultaneous delivery. We de-
scribe a feasible technique for coloring next.

InvBlocking Bitcoin uses a flooding protocol to prop-
agate transactions (and blocks) throughout the network.
To reduce bandwidth, and indeed to curb uncontrolled
flooding, a node does not simply broadcast any new
transaction (or block) to all neighbors, but instead em-
ploys a three-round protocol. After a node accepts a new
transaction into its memPool, it floods an INV message
containing the transaction hash only to each neighbor.
Neighbors may choose to pull the transaction using a
GETDATA message with the corresponding hash.

As a broadcast makes its way through the network,
a node may receive the same INV from more than one
neighbor prior to receiving the transaction itself. Upon
receiving subsequent INV messages containing the same
hash, the node adds subsequent message to a queue, and
waits for two minutes before timing out on any outstand-
ing GETDATA messages before sending another a neigh-
bor who had also sent an INV. It is therefore possible to
block a node from hearing about a transaction for two
minutes by sending an INV message and then ignoring
the resultant GETDATA.6

The InvBlock procedure (Algorithm 2) sends a set
of INV messages (corresponding to a set of conflicting
transactions when coloring nodes), before sending out
the transaction itself. This provides a two minute win-
dow over which selected transactions can be sent to spe-
cific nodes, without having to win a network latency race.
InvBlocks could used to distinctly color each node, but
it can also be used to color disjoint sets of nodes, where
each node in a set receives the same transaction, but each
set receives a different transaction. This latter method
allows a more precise control on bandwidth overhead,
since the number of INV messages sent to each node is
not dependent on the size of the network but on the num-
ber of sets. We use this generalized InvBlock in the CS
and IV algorithms as described next.

5.3.1 Candidate Selection (CS)
The CS algorithm 3 is parameterized with an integer M
corresponding to the number of node sets in generalized
InvBlock. The set of all known nodes is partitioned into
M (roughly) equal sets, with each node having the same
probability of being mapped to any set. These sets are
colored using generalized InvBlock, i.e., each node in
the randomly generated set receives the same transaction,
and each set receives a conflicting transaction.

One of these transactions eventually gets included in a
block. We identify the set to which this transaction was
sent, and increment a “win” score for each node in the
set by one.

6 Technically, it is possible to delay a node longer by sending multi-
ple INV messages. This bug was found concurrently to our work by Bit-
coin developers (see https://github.com/bitcoin/bitcoin/pull/4547) but a
patch has not yet been deployed.
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Figure 9: Candidate Selector Results

Over multiple trials with different randomly generated
sets, this simple procedure identifies influential nodes as
they tend to have disproportionately high scores. Fig-
ure 9 shows the observed results of approximately 500
trials on the deployed Bitcoin network with M = 100.
Each trial was spaced 5 minutes apart over two days.
The figure shows the number of wins per node (IP ad-
dress, port) compared to a distribution obtained through
100 rounds of Monte Carlo simulation in which the win-
ning node is chosen uniformly at random. (We used a
MC simulation since the number of nodes in the network
changed in each run). The signal from CS is stark: com-
pared to uniform chance, CS cleanly identifies the small
number of influential node candidates.
5.3.2 Influence Validation (IV)
We have seen that CS cleanly distinguishes a small set
of nodes as influential. The IV algorithm validates this
set (or indeed a candidate set generated from any other
source) using a similar procedure. IV uses generalized
InvBlock with the following structure: each CS identified
influential node is a singleton set, and the rest of the net-
work is one other (giant) set. Thus each potential influ-
ential node works on a different conflicting transaction,
and the rest of the network works on a single (conflicting)
transaction. This procedure is detailed in Algorithm 4.

We ran IV 258 times in total—always after running
CS—with runs spaced 5 minutes apart. A different con-
flicting transaction was sent to the influential nodes, and
the rest of the network received yet another conflicting
transaction. The influential nodes comprised the top 86
from CS and the 14 top relayers of unknown blocks from
blockchain.info/pools (together < 2% of the network in
total) and won in 189/258 trials (73%). The candidates
identified by CS accounted for 179 out of 189 wins.

6 Bitcoin’s Influential Nodes
In this section, we present an analysis of the influential
nodes: how they map to mining pools, and how our pro-
cedure can identify pools that were previously unknown.

The IV experiment shows that the candidate nodes
found by the CS experiment are indeed influential, ac-
counting for roughly 3/4 of transactions injected during
our two day experiment. In this section, we present an
analysis of the “winning-most” IV nodes (referred to as
the IV set below). Here, we say an IV node “wins” when
the transaction sent to it (and it alone) is the unique one
(among the set of conflicting transactions) that gets in-
cluded in a block.

Our analysis infers details about the organization of
mining pools (at the time of writing); in some cases we
can corroborate these details with supplemental evidence
found by public records on the web and DNS records.
We present our results in Table 2, which shows aggre-
gate behavior of nodes (columns) and pools (rows) that
had multiple “wins”. Each entry shows how often a node,
that corresponds to an IP address and port, but we’ve des-
ignated with a letter, wins for a pool. The table includes
pools our experiment has discovered.

The two largest pools at the time of writing, Discus-
Fish and GHash.IO, account for 17/35 nodes and 115
wins among the multiple winners in the IV set. Ad-
dresses for the DiscusFish nodes (registration, location)
or their protocol messages did not distinguish them as
influential; we were able to locate these nodes only by
the CS experiment. The IP addresses for two of the
nodes (L and O) associated with GHash.IO resolve to
the DNS name of GHash.IO’s Amsterdam pool server
(nl1.ghash.io); the two nodes with the most wins for this
pool (H and I) are located within the same /24 block.

BitFury is in fact not a mining pool, but rather a com-
mercial entity that manufactures Bitcoin mining equip-
ment and operates large-scale mining centers. All of
the “wins” from blocks paying out to BitFury’s publicly-
known Bitcoin address correspond to two nodes (S and
T) with IP addresses within the same /24 block registered
in Iceland (one of the locations where BitFury claims to
have a mining operation, see bitfury.com).

Three “unknown” entities, identified only by the ad-
dresses they pay out to (1AcAj..., 19vvt..., and 1FeDt...)
correspond respectively to nodes located in Germany and
Georgia. Nodes U and V are both resolved to by names
within the “high.re” DNS hierarchy. The association be-
tween node U and 1AcAj... was previously suspected
(see below), and was confirmed by CS and IV; the other
IP and Bitcoin address associations are new.

Associating Bitcoin addresses with pools (or IP ad-
dresses) is an open problem. There is public speculation
about an association between the anonymous Bitcoin ad-
dress 1AcAj... and BitFury [23]. Our techniques inde-
pendently associated node U’s IP address with the pay-
out address, as it did for the previously unknown nodes
V and W with different anonymous Bitcoin addresses.
We end by noting that the nodes S, T, U, V, and W are
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A B C D E F G H I J K L M N O P Q R S T U V W X Y

DiscusFish 21 14 13 12 10 3 3
GHash.IO 8 6 5 5 3 3 3 3 4

KnCMiner 1 3 2 2
BitFury 13 7

1AcAj... 2
19vvt... 2
1FeDt... 19

Slush 2 2 2

Total 21 14 13 12 10 3 3 9 6 5 5 3 3 3 3 5 2 2 13 7 2 3 23 2 3

Table 2: Selected results from the Gateway Identifier experiment. Each column (A-Y) represents the IP address of a
reachable node, and each row represents a mining pool. Each value indicates the number of times a transaction sent to
the corresponding node was included in a block mined by the corresponding pool.

0 50 100 150 200 250
Trial #

Other (~4800 nodes) [69 wins]
Total IV (35 nodes) [189 wins]

Other IV (6 nodes) [10 wins]
Slush (4 nodes) [7 wins]

1FeDt... (1 nodes) [23 wins]
19vvt... (1 nodes) [3 wins]
1AcAj... (1 nodes) [2 wins]

BitFury (2 nodes) [20 wins]
KnCMiner (3 nodes) [9 wins]

GHash.IO (10 nodes) [39 wins]
DiscusFish (7 nodes) [76 wins]
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GHash.IO
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19vvt...
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Slush
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Figure 10: IV set versus the rest of the network: wins over time. The win patterns appear ‘bursty’ because a single
block often contains multiple IV transactions.

associated with IP addresses registered in countries that
BitFury publicly claims to host infrastructure in, they all
run the same version of Bitcoin, host the same web server
(with the same version of nginx), and T-W serve the same
(insecure) authentication page.

In Figure 10 we show the time-varying behavior dur-
ing the IV experiment. Horizontal lines across time show
wins by different sets of nodes, e.g., all wins for nodes
that win for a pool, e.g., A-G for DiscusFish, are ag-
gregated on the highest horizontal line. The penultimate
lowest horizontal line shows all wins by the IV set and
the lowest horizontal line tabulates the wins by all the
other reachable nodes in Bitcoin. Recall that this time-
series spans two days in total, with new conflicting trans-
actions, configured as described in the IV experiment,
injected every five minutes. The figure provides a visual
measure of the pool influence, and also of how influential
the IV set is.

7 Conclusion
Bitcoin’s successful, fair operation is predicated on the
notion of peers being able to reach a global consensus. A
critical component of the Bitcoin protocol is a broadcast
substrate that serves as the sole means by which honest
peers can learn from and inform other peers. We have

described techniques for efficiently mapping the Bitcoin
broadcast network and for identifying nodes who have
disproportionate influence on the Bitcoin network.

Our AddressProbe technique is distinguished from
prior work in that it is efficient and operates without pol-
luting peers’ local state—we therefore believe that it is
more scalable and more likely not to affect Bitcoin peers
when applied widely. Indeed, with our CoinScope im-
plementation, we show that we are able to scan the entire
network in minutes, and at regular intervals.

Bitcoin network topologies reconstructed using Ad-
dressProbe show that the broadcast network is resilient,
but does not behave like a traditional random graph.

A major contribution of this paper is the finding that
the broadcast topology conceals influential nodes that
represent disproportionate amounts of mining power. We
introduced novel mechanisms to find these nodes and
to measure their impact. Our results show that roughly
2% of the nodes account for three-quarters of the mining
power.

Our intent is that these techniques can be applied to
perform longitudinal analyses of the Bitcoin network.
We acknowledge, however, that AddressProbe is some-
what “fragile” in that it depends on undocumented fea-
tures of the mainline Satoshi client; it would not be in-
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feasible for a developer to modify some of the inter-
nal data structures in a way that would confuse Ad-
dressProbe. Conversely, disabling the decloaking tech-
niques would be far more difficult, as it is based on the
three-round exchange on which Bitcoin’s efficient broad-
cast depends. We hope that the findings in this paper—
that understanding topology can identify structural faults
to the broadcast—will encourage the Bitcoin commu-
nity to evolve the protocol to explicitly support efficient
topology discovery.
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A Bitcoin Address Propagation
This section lists pseudocode for the behavior followed by the Bitcoin
reference client for handling peer addresses. The pseudocode, listed in
Algorithm 1 describes the algorithm found in the version 0.9.2 satoshi
client, files addrman.[cpp,h], and net.cpp. The data structures used in
the algorithm are as follows:

• addrMan: A data structure containing every address the Bitcoin node
currently knows about.

• addrKnown: Bitcoin will not send the same ADDR message to a node
twice within 24 hours. This structure maps ADDR sets to the peers
they have been sent to.

• addrBuf: A buffer that accrues future ADDR messages for a given
node.

B Pseudocode for Candidate Selec-
tion and Influence Validation Al-
gorithms

In Algorithm 2, we provide detailed pseudocode listings for the In-
vBlock procedure. In Algorithm 3 (resp. Algorithm 4) we provide
pseudocode for the Candidate Selection (resp. Influence Validation)
routines described in Section 5

InvBlock(n,tx,τ) :
for dτ/(2 minutes)e do

send INV[H (tx)] to n

on recv GETDATA[H (tx)] from n do
Ignore; Do not send tx to n.

Algorithm 2: The InvBlock procedure delays node n
from learning about transaction tx for time τ .
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at node x store the following data:
addrMan: a mapping from node n to timestamp ts
list of connected peers, for each peer

outbound // peer is an outbound connection
addrKnown // peer knows about address (can set/get)
addrBuf // set of addresses to send to peer

on receive (∗,y) // any message received from peer y do
if y.outbound // y is an outbound connection then

if addrMan[y].ts < (now−20 minutes) then addrMan[y].ts← now

on receive (ADDR[addr vector], y) // ADDR message from peer y with addresses in addr vector do
for each address a in addr vector do

y.addrKnown� a
if a.ts is invalid (very old or 10+ minutes in the future) then a.ts← (now−5 hours)
if a.ts < (now−10 minutes) then

choose 1-2 nodes n uniformly at random
buffer-to-send(n,a)

addrMan[a].ts← (now−2 hours) // store in addrMan with a 2 hour penalty

on receive (GETADDR, y) do
y.addrBuf← /0 // clear send buffer
q← up to 2500 addresses chosen uniformly at random from addrMan
buffer-to-send(y,q)

on receive (VERSION, y) do
send GETADDR to y
if y.outbound then buffer-to-send(y,x)

procedure buffer-to-send(peer y, addr vector A)
for each address a in A do

if a /∈ y.addrKnown then y.addrBuf� a

every 100 ms do
for one randomly chosen connected peer p do

p.addrKnown� p.addrBuf // upto 1000 (addr, ts) in each message
send p.addrBuf to p and clear p.addrBuf // could be multiple messages

every 24 hours do
for every connected node p do buffer-to-send(p,x)

Algorithm 1: Address Propagation Behavior
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CandidateSelection(n1, ...,nN ) :
Partition the N nodes into M = 100 random sets
c1, ...,cM of size C = d N

M e where each
ci = (ci,1, ...,ci,C).

for 1≤ i≤M do
// Each txi conflicts with the others

txi := MakeT x(tx /0[0])

for 1≤ i≤M do
for 1≤ j ≤ N do

InvBlock(n j,txi, 20m)

Wait for time ∆? for INV to settle

for 1≤ i≤C do
for ci, j ∈ ci do

send TX[txi] to ci, j

Wait until a block is found containing some txi.
Increment wins j for every n j ∈ ci.

Algorithm 3: Candidate Selection (CS)

InfluenceValidation(w1, ...,wW ,n1, ...,nN ) :
/* (w1, ...,wW ) are the candidates */

for 1≤ j ≤W +1 do
// Each txi conflicts with the others

tx j := MakeT x(tx /0[0])

for 1≤ i≤W +1 do
for 1≤ j ≤ N do

InvBlock(n j,txi, 20m)

Wait for ∆? for INV to settle

for 1≤ i≤W do
send TX[txi] to wi

for 1≤ j ≤ N do
send TX[txW+1] to n j

Wait until a block is found containing some txi. If
i =W +1, then discard. Otherwise, determine which
mining pool P is associated with this block and
increment winsi,P.

Algorithm 4: Influence Validation (IV)
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