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ABSTRACT
Mirai and Hajime are two large botnets that came to prominence
in the Fall of 2016, notably due to Mirai’s launching of several large
DDoS attacks. The propagation method of the two botnets is similar,
drawing upon poor security measures in IoT devices. While reverse-
engineering efforts have detailed the propagation logic, measuring
the actual growth of each botnet remains difficult, with current
methods based on honeypot traffic analysis.

This paper presents an alternative method for measuring the
macro behavior of Mirai and Hajime that is based on failed infection
attempts that leak into the DNS requests of the intended victim.
This unexpected backscatter is due to the subtleties of a remote
code execution vulnerability that Mirai and Hajime exploit for prop-
agation. We analyze the growth and behavior of the two botnets
using passive DNS collection at a root nameserver, and using ac-
tive measurements taken by participating in the BitTorrent DHT,
which Hajime uses to help disseminate its payloads. In contrast to
honeypots, our methods provide a unique longitudinal and global
view of the botnets’ evolution.

1 INTRODUCTION
The proliferation of the Internet of Things (IoT) has resulted in
a sudden increase in the number of network-connected devices
in people’s homes, spanning devices such as network-accessible
webcams to network-controllable light bulbs and thermostats. IoT
is intended to be a boon for users, promising unprecedented inter-
operability and control.

However, IoT is also proving to be a boon for attackers. Recent
events have demonstrated that many IoT devices are subject to rel-
atively straightforward attacks. Notably, one of the primary attack
vectors of the Mirai botnet is to log into open telnet servers on IoT
devices that still use default passwords. The combination of the
ease of infection with the fast proliferation of IoT devices has led to
large botnets and powerful attacks. In 2016, the Mirai botnet was
used to launch some of the largest recorded DDoS attacks in history,
including a 623Gbps attack [2] against krebsonsecurity.com, and
a 1.2 Tbps attack [6] against Dyn, a large DNS provider.

In the wake of the release of Mirai’s source code, an interesting
new botnet named Hajime was released late in 2016 [1, 7, 9]. Hajime
exploits the same attack vectors as Mirai (see Section 2), but it has
several key differences that indicate a higher level of sophistication
than its predecessor. For instance, rather than make use of a central-
ized command and control (C&C) infrastructure, Hajime makes use
of existing peer-to-peer infrastructure—the BitTorrent distributed
hash table (DHT)—that its bots use to determine from whom to
download new C&C commands.

Although there have been several honeypot-based studies of
Hajime [1, 7], little is known about its novel network dynamics.
In particular, these prior studies focused on short periods of time,

and because of their nature as honeypots, are only able to see who
attacked them, providing narrow insight into the overall attack
patterns or rates of attack.

In this paper, we develop novel datasets that allow us to perform
a global and longitudinal analysis of Hajime and, to a lesser extent,
Mirai. Our key insight, at a high level, is as follows: Hajime makes
use of a buffer overflow vulnerability in how some devices process
NTP servers in particular configuration files: a vulnerable host
will run the injected command, which includes a wget or tftp to
the attacker’s IP address. However, a non-vulnerable host will not
overrun its buffer, and will instead treat the shell injection as a
domain name. When it issues a DNS query for this domain name,
the query itself will contain the attacker’s IP address, and it will be
an invalid domain name. As a result, the DNS query will be sent
to a root DNS server—a “last-resort” server in DNS that is tasked
with serving queries for unknown top-level domains (TLDs).

Our dataset comprises passive packet captures to one of the root
DNS servers.1 This root server is replicated across over 100 sites
throughout the world, and has been collecting sampled query data
for years, well before the emergence of Hajime. We complement
and cross-validate our passive DNS dataset with active scans of the
P2P distributed hash table (DHT) that Hajime uses to disseminate
its attack payloads in a decentralized manner.

With these datasets, we are able to see millions of instances in
which non-vulnerable hosts are targeted for attack, the IP address
of the targets’ local DNS resolver, and the IP address of the host
attacking them. This offers a unique view into the spread of a botnet:
rarely is it the case that one can track attempts against the safe
targets.

We analyze this data to provide accurate, longitudinal analysis
of the network dynamics of the Hajime botnet. Compared to prior
studies [1, 7], we are able to identify an order of magnitude more
Hajime bots. We use our datasets to investigate a wide swath of
Hajime’s characteristics, including: the number of active bots over
time, their rate of infection, the geographic spread of their infection,
and the bots’ lifetimes.We also correlate Hajime’s use of the peer-to-
peer DHT with the botnet activity we observe through our passive
DNS data.

In sum, we make the following contributions:

• We present a novel dataset that provides insight into the
spread and activity of vulnerable hosts and how non-vulnerable
hosts are targeted.

• We present the first longitudinal analysis of an advanced
P2P-based IoT botnet, Hajime, and compare it to its prede-
cessor, Mirai.

• We cross-validate our findings with active scans of the
DHT that Hajime uses to disseminate its payloads.

1We do not mention which root server so as to preserve the anonymity of this paper
submission.
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The rest of this paper is organized as follows. In Section 2, we
describe the Mirai and Hajime botnets and detail the vulnerability
that we are able to track, and how we use it to obtain our passive
DNS datasets. In Section 3, we describe our data collection method-
ology and our datasets. We analyze the size, location, and churn of
Hajime bots in Section 4, and their attack patterns and targets in
Section 5. In Section 6, we analyze Hajime’s use of the BitTorrent
DHT, and discuss attacks that relying on the DHT exposes Hajime
to in Section 7. Finally, we conclude in Section 8.

2 BACKGROUND
In this section, we provide an overview of the Mirai and Hajime
botnets. We also describe a remote code execution vulnerability that
both botnets use to propagate, and discuss why failed exploitation
attempts are observable at a root nameservers.

2.1 Mirai and Hajime Overview
The Mirai botnet was discovered in August 2016, and the Hajime
botnet in early October 2016. Both botnets propagate by scanning
the Internet for hosts with specific open ports. Initially, the scanning
behavior was limited to Telnet; a bot would attempt to login to a
Telnet service using a list of factory default username/password
combinations, and once logged in, would issue the commands to
transfer and execute the bot binary to the victim. Over time, both
bots have added a propagation vector scanning for, and exploiting,
the TR-064 service, which we describe next.

2.2 TR-064 Vulnerability
In addition to the Telnet propagation vector, Mirai and Hajime
also propagate by exploiting a remote code execution vulnerability
in some implementations of TR-064 [5]. TR-064 is a deprecated
technical report published by the Broadband Forum that specifies
themethod for configuring a home router fromwithin the LAN. The
management protocol is based on SOAP over HTTP, and further
mandates that requests to change a configuration value be password
protected.

The enabling problem is that routers continue to run the TR-
064 protocol, and moreover run the protocol without requiring
authentication for configuration changes. The specific vulnerability
is in the implementation of the request handler for the TR-064 time
service, which allows for the configuration of the device’s NTP
client. The following HTTP SOAP message shows a request to set
the domain name or IP address that the device should use as its
primary NTP server.

POST /UD/act?1 HTTP/1.1
Host: VICTIM_HOST:VICTIM_PORT
User-Agent: FAKE_USER_AGENT
Content-Type: text/xml
Content-Length: BODY_LENGTH
SOAPAction: urn:dslform-org:service:Time:1#SetNTPServers

<?xml version="1.0"?>
<SOAP-ENV:Envlope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<u:SetNTPServers xmlns:u="urn:dslforum-org:service:Time:1">
<NewNTPServer1>SHELL_INJECTION</NewNTPServer1>
<NewNTPServer2></NewNTPServer2>
<NewNTPServer3></NewNTPServer3>
<NewNTPServer4></NewNTPServer4>
<NewNTPServer5></NewNTPServer5>

</u:SetNTPServers>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In an infection attempt, instead of specifying a legitimate do-
main name for an NTP server, a bot will specify a sequence of
shell commands, shown above as SHELL_INJECTION. When run,
the commands download a file, change the permissions of the file
to be executable, and execute the file. Once the file is executed, the
vulnerable device is infected and becomes part of the botnet.

If a device is vulnerable, then the value for NewNTPServer in the
SOAP message is given to the shell for interpretation. The sequence
of shell commands in the injection is either:

`cd /tmp;tftp -lX -rY -g HOST PORT;chmod 777 X;./X`

which makes a tftp connection to the attacker and downloads the
remote file Y to a local file names X, or

`cd /tmp;wget http://HOST:PORT/X;chmod 777 X;./X`

which downloads the remote file X over HTTP. In both cases, HOST
and PORT are the attacker’s host and port, with HOST represented
as a either a domain name or an IP address (PORT is optional).

As Mirai uses a centralized command and control (C&C), a Mirai
shell injection typically uses the hostname of the C&C and omits
the port number. Hajime, however, lacks a centralized C&C, and
instead uses a peer-to-peer (P2P) architecture. As such, the Hajime
shell injections use an IP address and an ephermal port number,
where the IP address is that of the bot performing the injection.

2.3 DNS Backscatter
Consider what happens when the above injection attack is launched
against a non-vulnerable device. Safe against an overflow attempt,
the device will treat the SHELL_INJECTION as an NTP server host-
name, and will thus perform a DNS lookup for its IP address. This
involves sending a DNS query to its local resolver (or to a publicly
available open resolver), which in turn recursively issues queries on
behalf of the client. Of course, the SHELL_INJECTION lacks a valid
top-level domain (TLD)—instead of .com or .org, it ends in ./X
for some number X. In such cases that a query has an invalid TLD,
local resolvers must go to a root DNS server to get an authoritative
answer.

In other words, whenever an attacker targets a non-vulnerable
device, this will trigger a DNS query to a root DNS server for the
payload of the attack—which includes the attacker’s IP address. This
resulting “backscatter” effect makes it possible to track unsuccessful
injection attempts, provided querty data from a root name server
is available.

2.4 Root Nameservers
The root of the DNS hierarchy comprises 13 lettered root name
servers, A through M, and each DNS resolver bootstraps with in-
formation about the addresses of each root name server. The role
of each root name server is to provide information about name
servers for valid top level domains, e.g., for all names ending in
.com or .edu. Name servers that ask the root for such information
about valid names will cache what they learn, leaving most queries
that the root receives to be for names that are not valid or not
registered. Each letter typically comprises a set of geographically
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distributed replica servers reached via anycast, whereby internet
routing chooses a particular server that will reply to the query.

2.5 Hajime’s P2P Network
For peer-to-peer communication, Hajime makes use of BitTorrent’s
distributed hash table (DHT) overlay network. To start downloading
a file, BitTorrent clients traditionally start by retrieving a list of
peers from a tracker, a server that tracks peers hosting the file.
Trackerless Torrents do not use a centralized tracker, instead storing
this information in a DHT.

BitTorrent uses the Kademlia DHT protocol. Each node is iden-
tified by a unique 20-byte Node ID. To join the DHT, a new node
must know at least one other node that is already a member. As
a node discovers other nodes in the DHT, it stores their Node ID
and IP address in a routing table. Values are mapped to a key in
the same space as the Node IDs, usually some type of hash of the
value data. A value is stored at the k closest nodes in the DHT to its
key, where k is a system-wide replication parameter, for instance
20. The distance between two identifiers in Kademlia is calculated
as a simple XOR of the two. A node storing a value periodically
looks up the k closest nodes to the value’s key and ensures all are
storing the value.

To find a value in the DHT, a client performs a lookup of the
value’s key. Lookup is a recursive function that proceeds as follows.
If a node is storing the value for that key, it returns the value.
Otherwise it forwards the lookup request to the peer with the
Node ID closest to the key that the client is aware of. In BitTorrent,
the values being stored in the DHT are lists of peers. The key the
peer lists are mapped to is the corresponding torrent’s info_hash,
the SHA1 hash of the torrent’s metadata uniquely identifying the
torrent. Thus to start downloading a torrent, a BitTorrent client
will lookup that torrent’s info_hash in the Kademlia DHT.

2.5.1 Kadnode. Hajime uses an additional feature fromKadNode,
a DNS resolver extension built on top of Kademlia. With KadNode,
a node can announce that it owns some domain name, which other
nodes can then resolve to the announcer’s IP address. In the an-
nounce function, KadNode will store the announcer’s IP address
mapped to the domain identifier in the DHT, meaning the k nodes
closest to the identifier will store the identifier to IP address map-
ping. A node that looks up the domain identifier will then get that
IP address in return from one of those k nodes.

2.5.2 Hajime’s Protocol. Hajime uses this DNS resolution fea-
ture to find peers hosting Hajime files. On being infected, Hajime
bots join BitTorrent’s Kademlia DHT. It is important to note that
this DHT is the same ring used by BitTorrent, so it is not solely
populated Hajime bots. Periodically, bots download a config file
that directs the bot’s behavior. To find a peer hosting the config file,
the bot looks up an identifier through KadNode, then attempts to
connect to each returned IP address until it successfully downloads
the file. The identifier consists of daily time string concatenated
with the SHA1 hash of the filename [7].

TheDHT is used to find nodes that announce the config. files. The
files themselves are downloaded using a direct unicast. For direct
P2P communication, Hajime bots use uTorrent Transport Protocol
(uTP), which implements congestion control over UDP. The initial

messages of the uTP protocol exchange in Hajime exchange a key,
and subsequent packets are encrypted with the RC4 stream cipher.

2.6 Related Work
The most immediately related prior work are the studies of the
Hajime botnet performed by Kaspersky Labs [7], Radware [1], and
Symantec [9] in the wake of the Hajime discovery. These prior stud-
ies involved a combination of honeypots and reverse engineering of
the botnet payloads. By comparison, we perform a broader study of
the network dynamics of Hajime, introducing a novel dataset that
spans the entire lifetime of Hajime’s use of the TR-064 vulnerability,
and that includes far more bots. As we demonstrate in Section 4,
for instance, we are able to identify an order of magnitude more
bots than prior studies.

More broadly, there have been many studies of live botnets and
the spread of malware. Staniford et al. [13] measured the quick
spread of Internet worms; it turns out that Hajime differs consid-
erably in that it does not appear to outpace human reaction, but
rather to simply compromise as many devices as possible, and thus,
as we will show, its infection rate is more modest. Stone-Gross et
al. [14] took control of a botnet’s centralized C&C infrastructure for
a short period of time, and used it to measure the number of bots
and the various sensitive information that they report back to their
bot master. Conversely, we study Hajime longitudinally, over the
course of months; so doing allows us to see the spread of a botnet
over time. Moreover, we perform an extensive analysis of Hajime’s
decentralized C&C infrastructure, to the best of our knowledge this
is a novel feature of this botnet.

3 DATASETS AND METHODOLOGY
We make use of two novel datasets to analyze Hajime’s network
dynamics.

3.1 Passive Root DNS Backscatter
Our passive DNS data set consists of sampled queries from one of
the root DNS letters that comprises over 100 replicas in different
geographic locations. The samples capture 20% of all queries to these
replicas, corresponding to approximately 30K queries per second.
All told, our traces include roughly one fifth of one thirteenth of
the queries that reach root name servers in general. (The precise
ratio may vary due to imbalance between letters.) Although not
every query is captured, since attacking hosts attack many targets,
the attacking bot IP address and port information can (and does)
appear in our dataset.

Recall that the only hosts that will trigger a DNS query after
an attack are the non-vulnerable devices. This provides a unique
insight into the activity of a botnet, in that it provides us with data
on attack attempts. However, it is not without its limitations. DNS
query packets are not always large enough to contain the entire
attack payload; as we discuss in Section 4, some of the attacker
IP addresses in the queries are truncated (fortunately, this only
represents 6.2% of the queries we analyze).
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3.2 Active BitTorrent DHT Measurement
In order to analyzeHajime’s novel use of an existing P2P infrastructure—
as well as understand the error in the passive DNS measurements—
we also perform small active measurements of the P2P network. To
this end, we collect two datasets:

• Seeder dataset: Hajime bots download C&C configura-
tion files from one another. To learn about which bots
are serving it, they leverage BitTorrent’s P2P distributed
hash table. In essence, Hajime bots act like “seeders” by
announcing their IP address and port, keyed by that day’s
C&C configuration file. We periodically (roughly every 5
minutes) download the list of these “seeders” over span of
several days. To mitigate any potential geographic bias, we
issue these queries from 7 distinct locations.

• Leecher dataset: After downloading the list of seeders,
bots open a uTP connection to them to download that
day’s configuration file, similar to BitTorrent’s “leechers.”
To understand the set of active bots, we announce our own
hosts for several months’ worth of Hajime configuration
files, and record the IP addresses and ports of the bots who
connect to us (we do not serve any files in return). We have
collected these for several days, as well.

4 HAJIME BOTNET SIZE AND LOCATION
The first broad set of questions we ask pertain to the overall size
and locations of the Hajime botnet over time. Although these broad
statistics have been addressed in recent reports on Hajime [1, 7, 9],
we offer a longitudinal view of Hajime’s growth and change over
time.

4.1 How large is the Hajime botnet?
We begin by investigating the overall size of Hajime over time.
To this end, we analyze the distinct number of full IP addresses
we obtain over time, ignoring an IP address if we are unable to
determine whether or not it was truncated. Across all of the Hajime
attack attempts we see, we obtain a total of 3,475,896 distinct IP
address strings; 93.8% (3,278,579) of them are full IP addresses, and
the other 6.2% (215,140) contain at least three full octets. Therefore,
although our results are a lower bound, we believe the error to be
low.

Figure 1 shows the cumulative number of distinct attacker IP
addresses that we have observed. We make three key observations.
First, the initial injection attempt occurs on December 28, 2016,
nearly two full weeks before Hajime began to spread. Given the gap
in time, it is possible that this was part of Hajime’s initial testing
phase for the tftp and wget vulnerabilities, but we are unable to
confirm this. The IP address of this first attacker was located in
Amsterdam.

Second, by the end of our window of data,2 we have observed
3,260,756 distinct IP attacker addresses. This is one to two orders of
magnitude greater than what has been previously reported [1, 7, 9].

Third, the overall growth rate in Figure 1 indicates a faster initial
spread followed by a smooth, nearly linear, sustained rate of growth
for months thereafter. At first glance, it may seem surprising that
2We continue to collect these data, and will update the results in future versions of
this paper.
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Figure 1: Number of unique Hajime IP addresses (cumula-
tive).
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Figure 2: Number of unique Hajime IP addresses (daily).

this does not follow the more traditional logistic growth function
that modern worms typically have [13]. To understand this result,
it is important to keep in mind that many of the attackers in these
results were compromised before our data captured them: the attack
vectors that we are able to collect were introduced months after
Hajime was first observed. Thus, we are unlikely to witness the
initial propagation, but should be able to see the activity over time.

We can envision several possible explanations for the smooth-
ness in the growth rate. One possible explanation for this is that
this linear growth is by design: Hajime may be conservative in
how rapidly it spreads, favoring a slow, broad coverage over a fast
spread that may harm low-resource IoT devices. As we will see
in Section 5, however, some Hajime bots attack in a very bursty,
consistent manner, making it unlikely that that they are particularly
cautious in their rate of spread.

Another possible explanation is that we are not witnessing the
spread of new Hajime bots per se, but rather the spread of which
Hajime bots are employing the attack vectors we are able to see.
To investigate whether this is the case, we present in Figure 2 the
number of unique Hajime attacker IP addresses we observe on a
daily basis. These results show that the new attack vector spread
at an exponential rate among infected hosts; within three days,
over 100K hosts began using the tftp or wget attacks. After this

4



Anonymous submission #884 to ACM CCS 2017

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

12/24 01/07 01/21 02/04 02/18 03/04 03/18 04/01 04/15 04/29

B
ir

th
s
 a

n
d

 D
e
a
th

s
 p

e
r 

D
a
y

Date

births

deaths

Figure 3: Daily attacker churn in Hajime. “Births” denote
the first time we saw a given address, “deaths” denote the
last time.

initial spike, we observe that the overall number of daily attackers
is largely consistent within the range of 75K–100K.3

Rather, as we show next, the smooth growth of Hajime can be
largely attributed to its churn.

4.2 What is Hajime’s churn?
A distributed system’s churn is the rate at which hosts enter and
leave the system. To study churn in Hajime, we define the birth of
an attacker’s IP address to be the time at which we first observe
the address. Likewise, the death of a bot is the time at which we
last see its IP address in our data.

Figure 3 shows the number of births and deaths observed on a
daily basis. We draw two conclusions from this data that confirm
our above results. First, the rate at which bots are leaving the system
has, as of early March 2017, overtaken the rate at which bots are
entering the system. This is reflected in the slight overall downward
trend in Figure 2 since March. Second, the birth rate changes at a
roughly linear rate and does not vary widely over small windows of
time (after the initial surge). This helps explain the smooth growth
in Figure 1.

To be precise, these trends reflect the variability of Hajime’s use
of the exploit that appears in our passive DNS dataset; to what
extent do they reflect the variability in the number of bots them-
selves? Ostensibly, Hajime bots could remain infected (and not
“dead”), but shift away from using these attack vectors. For instance,
one might speculate that Hajime bots launch this attack for only
short periods of time and then move on to another attack vector
altogether. To evaluate this hypothesis, we present in Figure 4 the
cumulative fraction of bot lifetimes (the difference in their death
date and birth date). We see that the median lifetime of a bot is just
under 10 hours; 39% of bots appear for more than a day’s worth
of data, and 17% appear for more than a month out of our nearly
four-month trace. We therefore believe it is likely that, as of the
beginning of 2017, Hajime bots use these attack vectors regularly,
and thus our datasets reflect true bot behavior and persistence.

3There appears to be a small decline at the end of this data; as we process more data,
we will be able to determine whether this is a diurnal trend.
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Figure 4: CDF of a Hajime bot’s lifetime.

Country Bots
Iran 1,071,399
Russia 328,269
Italy 295,377
Pakistan 197,921
India 177,682
Turkey 150,127
China 144,470
Australia 121,571
Thailand 112,023
Vietnam 110,376
Brazil 97,962
United Kingdom 52,740
France 46,308
Unknown 42,812
Trinidad and Tobago 25,147

Table 1: Top 15 countries by number of Hajime bots in that
country

Taken together, these results indicate that Hajime’s spread is
currently on the decline; although it continues to introduce new
attackers on a daily basis, it is losing bots faster than it is recovering.

4.3 Where are Hajime bots located?
To understand where Hajime bots are located, we apply the Max-
Mind IP geolocation database4 to each of the attacker IP addresses
we observe. Table 1 shows the top 15 countries by the number
of attacker IP addresses we have observed. Overall, these results
show a globally distributed set of bots, with a particularly heavy
concentration in a small number of countries.

Our results in Table 1 differ from previous honeypot-based stud-
ies [1, 7], both in terms of raw number (recall that we see one to two
orders of magnitude more bots) and in terms of relative ranking of
countries. In our datasets, Iran is by far the most prevalent attacker,
constituting 32.8% of all of the unique attacker IP addresses we see,

4https://www.maxmind.com/en/geoip2-databases
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Figure 5: Unique Hajime bots for the top-ten countries
(daily)

whereas Radware’s honeypot study found only 9% of their hosts
from Iran. Conversely, Vietnam and Brazil have appeared in the
top three of other studies’ most prevalent countries, yet in our data
they constitute only 3.4% and 3.0%, respectively. The methodolog-
ical distinction between our study and these prior studies is that
while they rely on fixed honeypots themselves receiving attack
traffic from compromised sources, we leverage a distributed, global
“honeypot” of thousands of machines that are not vulnerable. Iran is
known to have a sophisticated system for detecting and throttling
communication using unknown protocols [3], and this system may
interfere more with the attack traffic used by prior studies than
with the DNS traffic used here.

To understand whether our overall numbers are representative
over time, Figure 5 shows the daily unique number of Hajime bots
from each of the top ten countries from Table 1. We make four key
observations from these results. First, it is immediately clear that
Iran constitutes a large portion of the overall population; indeed,
the shape of the aggregate number of bots in Figure 2 is largely
determined by the number of Iranian bots on a given day. Second,
while most countries exhibit a relatively consistent number of bots
across days, Iran and Pakistan see considerable deviation. Although
Pakistan is ranked fourth in terms of overall bots, it had the second
most number of bots in April 2017.

Third, there is a pronounced dip in late January 2017 that affected
multiple countries. We have verified that this is not a measurement
artifact (we collected no less data on those days than on others).
Interestingly, this dip is correlated with a BrickerBot [8] attack we
also observe with our passive DNS dataset. As of this time, however,
we are unable to verify the root cause.

Finally, the results in Figure 5 show that our overall country
ranking is reflective of true bot activity over time. It is possible
that the raw number of IP addresses overestimates the number
of attackers because IP addresses can (and often are) reassigned
to home network addresses; sometimes on the order of every few
hours [12]. However, using RIPE Atlas probes in Iran, we verified
that ISPs in Iran do not appear to change IP addresses every day,
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Figure 6: Hajime injections per day.

lending confidence in our results on the number of unique bots per
day.

Summary The results in this section provide the most complete,
longitudinal view of the Hajime botnet to date, yielding an order of
magnitude more attacker IP addresses than previous studies. Our
main results point to a decline in the number of daily active Hajime
bots, dipping from a peak of 115K at the beginning of the year to
approximately 75K today. We find that these dynamics are largely
attributable to moderately high churn rate; tens of thousands of
new bots are “born” every day, but a nearly equivalent amount “die.”
Next, we turn our analysis to what these bots do while alive.

5 ATTACK ACTIVITY
In this section, we investigate the attack attempts made by the
Hajime botnet. Because our passive DNS dataset only captures
the tftp and wget attacks, we limit our analysis to those. We also
compare Hajime’s attack dynamics to those of Mirai.

5.1 How often do bots attack?
We begin our study into Hajime’s attack behavior by looking at the
daily number of injection attempts made by Hajime over time, as
shown in Figure 6. From this figure we draw three key observa-
tions. First, soon after adding the attack vector to Hajime, its bots
started employing it quickly, reaching over 400K daily injections
attempt within three days after rollout. Second, the overall num-
ber of injection attempts on a daily basis has remained quite high,
peaking at nearly 1.2M attempts, but typically averaging roughly
600K per day (on average roughly 7 injection attempts per active
bot per day). Finally, the overall distribution reflects the number
of bots, including the two pronounced spikes in mid-February and
Mid-March.

Because the number of daily injection attempts tracks so well
with the daily number of bots, this would seem to indicate a consis-
tent distribution of injection attempts across bots. Figure 7 shows
the number of attacks issued by each bot as a distribution across
all 3.2M Hajime bots in our dataset. These results indicate that the
number of injection attempts per attacking IP address exhibits a
skewed distribution, with a median of 3, a 99th percentile of 126,
and one IP address in France sources 28,776 attacks. Combining
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Figure 7: Distribution of the number of attack attempts is-
sued per Hajime bot. (Note the x-axis is log-scale.)

this result with the fact that Hajime bot lifetimes tend to be some-
what short (Figure 4) leads us to conclude that many Hajime bots
enter the system, issue a small number of injection attempts, and
then depart (or, at the very least, cease to launch more tftp/wget
attacks).

This leaves the question of how more persistent, active bots
pattern their injection attempts: do they send in quick bursts, or
do they spread their injection attacks over time? As an evaluation
metric, we use the Kolmogorov-Smirnov (KS) test: for each attacker,
we compute the CDF of the attacker’s injection attempts over the
course of its lifetime, andwe compare it to the CDF that would occur
if the bot were to spread its attacks out perfectly evenly in time. The
KS test reports the largest magnitude difference between the CDFs:
a value of zero means there is no difference in the distributions (the
attacks were evenly dispersed throughout the bot’s lifetime), while
a value of one in this case means the bot performed virtually all of
its attack injections at its birth date.

Figure 8 shows the distribution of these KS scores for all bots
that have lifetimes of at least 10 hours and that issue at least 10
injection attempts. We make two key observations. First, 72% of the
bots have a KS score near one, confirming our hypothesis above
that many bots perform almost all of their injection attempts in a
bursty manner. Second, the other 28% of hosts have surprisingly
low KS scores, indicating that they take a more measured approach
to attacking others. Roughly 5% of the hosts have a KS score near
zero, indicating they spread their injection attacks very evenly over
their 10 or more hours of lifetime.

To understand from where the injection attempts originate, we
show in Table 2 the top 15 countries by the number of injection
attempts made from that country. The number of attacks from a
given country is largely a function of the number of bots within that
country, with some exceptions. For instance, Australia is responsible
for the second most number of attacks, and yet has only the 8th
most bots (8.8× fewer bots than Iran, but only 3.1× fewer injection
attempts). Whether or not we obtain a given injection attempt is
partly due to the location (and latency and resolver software) of
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Figure 8: The Kolmogorov-Smirnov (KS) score comparing
the distribution of Hajime bots’ rate of attack versus a per-
fect uniform attack rate. A value of zero represents a consis-
tent rate over time; a value of one represents bursty attacks
all at once.

Country Injection Attempts
Iran 7,773,806
Australia 2,498,408
Italy 2,227,875
Russia 1,921,586
Pakistan 1,856,696
China 1,814,055
Vietnam 1,809,609
India 1,660,489
Turkey 1,560,802
Republic of Korea 1,545,808
Thailand 1,202,764
United States 769,120
Brazil 680,073
United Kingdom 529,321
Trinidad and Tobago 521,882

Table 2: Top 15 countries, sorted by the number of Hajime
injection attempts from that country

the target’s local resolver; thus, to determine whether these results
may be biased, we next turn to where the locations of the targets
of the attacks.

5.2 Whom does Hajime target?
In reasoning about the attack targets, it is important to recall that
our passive DNS data provides us with failed attempts to non-
vulnerable hosts. Thus, there will also be many injection attempts
that succeed; because these successful attacks will create new at-
tackers, we can in essence infer where the successful attacks took
place (where the attackers are located).

We present in Table 3 the 15 countries that are targeted most
often in our dataset. Note that these do not align with the countries
with the most attackers—Iran does not even show up in the top 15.
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Country Resolvers
United States 1489
France 621
United Kingdom 619
Russia 556
Turkey 320
Germany 292
Australia 209
Canada 200
Argentina 195
Vietnam 178
Italy 171
Brazil 158
India 141
Netherlands 132
Philippines 132

Table 3: Top 15 countries, sorted by the number of (non-
public) resolvers within that country that are targeted by
Hajime.
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Figure 9: Distribution of Hajime bots’ distances to the re-
solver of their intended victims (not including open re-
solvers).

Intuitively, the reason for this may be rooted in the fact that we
are only seeing the injection attempts against the non-vulnerable
hosts. This suggests that the fraction of vulnerable hosts varies
considerably across countries. An interesting area of future work
would be to fingerprint devices on a country-by-country basis to
investigate the relative vulnerability rates.

Having explored the most likely sources and targets of attacks,
we now seek to understand how attackers and targets are paired.
For each attack attempt, we IP-geolocate the attacker (whose IP
address is in the DNS query) and the victim’s DNS resolver (the
source IP address of the DNS query), and compute the great-circle
distance between them. We ignore public (“open”) resolvers—ones
that service queries for any host—in the expectation that the non-
public resolvers are geographically proximal to their clients (the
targets of the attack injection) [10]. As a result, we believe these

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

11/01 12/01 01/01 02/01 03/01 04/01 05/01

In
je

c
ti

o
n

s
 A

tt
e
m

p
ts

Date

Figure 10: Mirai injections attempts per day.

distances to be representative of the distance from attacker to target.
Of the 63,094,223 total resolvers from which we receive backscatter
Hajime attacks, we were able to identify 15,913,183 (25.2%) of them
as open resolvers; our analysis focuses on the other 47,181,040
(74.8%).

Figure 9 shows the distribution of these distances. We make
three key observations. First, a sizeable fraction (5%) have an ef-
fective distance of 0 km, indicating they are attacking their own
country or even their own network. Second, there is no strict bound
on the distance an attacker’s query can travel; in fact, we see some
queries travel to the opposite side of the Earth (the longest query
travels half the circumference of the Earth).

Finally, and most importantly, there does not appear to be any
geographic preference in the injection attempts. With a median of
5000 km (3106 miles), attackers do not have a strong preference to
remain close. Although Figure 9 does not show a uniform distribu-
tion, Hajime bots may still be choosing attack targets uniformly
at random; the difference in distribution is likely due to the fact
that the location of attackers is not uniformly distributed (from
most hosts, there are more targets within 3000 km than there are
9,000–12,000 km away).

5.3 How does Hajime compare to Mirai?
We close this section by comparing Hajime’s attack patterns to
those of its predecessor, Mirai. Because Mirai’s attack vector uses
hostnames instead of IP addresses, we are unable to geolocate
attackers. However, we can still obtain counts of injection attempts
and geolocate the target; we analyze these both here.

Figure 10 shows the number of daily injection attempts from
Mirai (to non-vulnerable hosts). Compared to Hajime (Figure 6),
Mirai has far fewer injection attempts: typically by an order of
magnitude. Mirai does not appear to be subject to the same dip in
the third week of January that Hajime is; this may indicate that it
was a Hajime-specific event, but we are unable to confirm that at
this time.

Although the raw number of injection attempts differ greatly
between Hajime and Mirai, their targets have surprisingly simi-
lar features. Table 4 shows Mirai’s top targeted countries, which,
in terms of rank, tracks very similarly to Hajime’s (Table 3). One
notable difference is that Mirai unsuccessfully targets Iran dispro-
portionately more often than Hajime. It is possible that Mirai fails in
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Country Resolvers
United States 728
United Kingdom 490
Russia 378
Turkey 308
Germany 227
France 223
Italy 181
Vietnam 168
India 142
Brazil 135
Argentina 132
Iran 126
Australia 118
Canada 112
Spain 112

Table 4: Top 15 countries by number of Mirai victim (non-
public) resolvers

these attempts because the Iranian nodes are already compromised
by Hajime (its most common country).

Summary The results in this section show that Hajime attempts
to infect hosts uniformly at random, and with relatively few attacks
per bot on average. We note that our results in this section are a
strict lower-bound, as our dataset comprises only one of the 13 root
DNS servers, and the data we get is further sampled. It is possible
that the true rate of infection attempts is therefore 13× or more
what we are able to directly observe. Nonetheless, our view into
infection targets is far wider and more longitudinal than honeypot-
based approaches, because of our use of the DNS “backscatter” that
arises from attacks on non-vulnerable hosts. All together, these
results demonstrate that Hajime has truly supplanted Mirai, and
continues to actively (attempt to) spread; as new vulnerable devices
come online, Hajime is likely to continue to proliferate.

6 COMMAND & CONTROL ACTIVITY
One of the unique aspects of Hajime is its use of an existing P2P
infrastructure to coordinate command and control. We close our
analysis by investigating how Hajime’s bots make use of this P2P
network. More precisely, we study the bots’ activity on this net-
work (how many of them join, upload, or download), not the C&C
payloads themselves. Recall that active bots download a new config-
uration file periodically. Configuration files contain pointers to new
executable modules, which can be used to change the bot’s behavior
after deployment. Hajime configuration filenames have a standard
format [7], which changes once per day. Configuration files are dis-
tributed using the BitTorrent DHT, which implements the Kademlia
DHT protocol. In our experiments, we adapt the KadNode client
(version 1.0.0 5) to search for seeders, and to announce configuration
files as described below.

We structure our analysis around the role the bots play: seeders
host configuration files that leechers periodically download.

5Available at https://github.com/mwarning/KadNode

6.1 Seeder activity
We begin our analysis of Hajime’s C&C by focusing on the seeders:
the bots that host the configuration files that other bots download.
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Figure 11: Number of seeders in the DHT over time.

Bots download new configuration files periodically. The set of
nodes that host new configuration files changes, and the BitTorrent
DHT is used to synchronize the bots with the current “seeders”
of the configuration files. We conducted periodic searches of the
BitTorrent DHT for names corresponding to Hajime configuration
files. Each peer we ran was an EC2 instance, and they were iden-
tified by EC2 to be located in data centers in California, Ireland,
Mumbai, Seoul, Sydney, Frankfurt, London, Sao Paulo, Singapore,
and Northern Virginia. The BitTorrent DHT is built over the Kadem-
lia protocol: each query uses the Lookup command, and can take
several minutes to complete. We issued queries at most once every
five minutes.

Figure 11 shows the number of unique seeders we discovered
binned into 72 minute periods. We chose that binning interval since,
after the few initial searches, we received information about new
nodes once every 72 minutes. (Subsequent searches during the same
epoch did not return new information.) We believe, but have not
yet confirmed, that this is due to a rate limiting feature employed
by BitTorrent DHT peers. Our data shows that the config files are
seeded by many peers: over 2.5 days, we retrieved 42, 793 distinct
seeder IP addresses, with 2000–6000 seeders being present at all
times.

The change in numbers of seeders over time show that they are
not persistent, and we analyzed the lifetime of seeders by noting
the interval over which their IP address was retrieved over the
DHT: this is plotted in Figure 12. The seeder lifetime plot shows
a few interesting features. First, the nearly vertical line after one
hour corresponds directly to the 72 minute interval over which we
received new data. The data to the left of the vertical line corre-
sponds to the data collected during startup, when our queries were
not rate-limited allowing us to confirm lifetimes shorter than 72
minutes. The 72-minute interval accounts for fully 80% of the nodes
(i.e., after startup, we saw these nodes only once in our logs.) Seeder
lifetime is nearly linear beyond the hour, with 10% of the nodes
persisting over 10 hours. No seeder in our data persisted beyond
one day: 7 out of 42, 794 showed a lifetime of 86, 392 seconds (eight
seconds less than one day). This leads us to believe that a bot is
nominated to be a seeder for at most one day.
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Figure 12: Lifetime of nodes that seed config files.

6.2 Leecher activity
We now turn to the leechers: the bots that download the configura-
tion files.
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Figure 13: Leecher download requests separated by config
file date.

Kademlia allows DHT clients to “announce” named content.
Peers seeking the named content search for the name; if the name
had been announced, the DHT search returns a list of announcing
peers. The actual data transfer is conducted outside the DHT itself
using the µtp protocol.

During May 15, 2017 (2300 hours UTC) until May 19, 2017 (0100
hours UTC), we ran twelve BitTorrent DHT peers. They were co-
located with our seeder-searcher nodes, but we ran one extra in-
stance each in Frankfurt and Northern Virginia. These peers an-
nounced the availability of 200 Hajime config files, starting from
Nov. 1, 2016. We assigned a different download port for each config
file, enabling us to track requests for individual files. Over the 74
hours when we gathered data, we received 1.12 million requests
for config file downloads from 51,039 unique IP addresses.

The bots requested files for 115 different days, though 1.05 mil-
lion (93.7%) of the requests were for files for five days starting May
15, 2017. Figure 13 shows requests over time for these five files.
Prior analysis had suggested that Hajime bots download a config
file every ten minutes [7]. Our data shows much burstier behavior,
with large activity peaks around midnight UTC. Most download
requests for a given config file corresponds cleanly with the date;
however, for each file, there are two peaks: one around midnight
of the file’s date in UTC, and the second around midnight the next
day. Note that our data shows a much smaller second request spike

for May 16th, but the other days with high traffic volume (15th,
17–19th) follow the trend of two request peaks.

6.3 Correlating DNS and DHT data
Finally, we present a correlation comparison of our passive data,
and the data collected by actively participating in the DHT. Fig-
ure 14 shows how the bots identified using the DNS data relate to
seeders and leechers in the BitTorrent DHT. The figure counts all
bot IP addresses that we had identified in our DNS data (starting
December 2016): these addresses are intersected with the seeder
and leecher data collected over three days in May. (We also ana-
lyzed data from all three sources over a twelve hour period. The
number of leechers and passive nodes reduced by a factor of 3, but
the number of seeders only reduced by a third. The intersections
reduced proportionately.) The intersection data shows the validity
and utility of both approaches, as they both locate bots not found
by the other. The passive DNS approach finds many more bots,
partly because any bot that tries to infect another causes it to be
logged depending on whether the attempt is successful (and, in our
case, the probability that the DNS query is routed to the root we
monitor and is sampled by our data collection.) Aggressive efforts
to propagate the worm causes the probability of detection to rise
commensurately, and whether the DNS query is issued or not is not
in control of the bot (author), as this is a pre-programmed reaction
from the victim. Searching the DHT for the config file seeders is
also an effective way to find bot addresses—about 30% of the seeders
were also seen to launch active attacks that were logged by the
DNS data. Hosting configuration files and inviting downloads is
a seemingly less effective way to find bots, undoubtedly because
there are many thousands of seeders, which reduces the probability
that a particular bot will visit a specific seeder (or seeder-honeypot).

Seeders

Attackers from

Passive DNS

Leechers

66,400

31,573

14,516

15,333

2,098

9,945
3,595

Figure 14: Hajime Bots in the DHT and in the DNS data.

7 DISCUSSION
In relying on a peer-to-peer substrate for command and control,
Hajime represents an evolution in the design of botnets. Relying on
the DHT enables a further level of indirection that further obfus-
cates the command and control structure; however, the very same
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design choice also exposes Hajime to generic attacks that DHTs are
vulnerable to. In the rest of this section, we discuss a few of these
attacks, along with a weaknesses that are specific to Hajime.

Decentralized DHTs are vulnerable to Sybil attacks [4], whereby
malicious nodes join the DHTmultiple times as different peers, with
a view to “taking over” part of the namespace. In general, nodes are
hashed to points in the DHT namespace uniformly at random using
a cryptographically strong hash function, and it is not usually not
easy to join a DHT at a specific point in the namespace. However,
a sufficiently determined attacker could possibly hijack parts of
the namespace that host the configuration file, thus stopping bots
from obtaining files on a given day. Since the filename changes
daily, this attack would have to be sustained in order to be effective.
Encrypting or obfuscating the filename is not a particularly viable
solution, since the seeders have to be looked up by DHT nodes,
which is not controlled by Hajime. Finally, note that the attacker
does not have to specifically host the key that corresponds to the
configuration file: the attacker can be effective if it can generate
“nearby” keys that are on the lookup path. The attacker would
simply discard lookups for the configuration file key—this type of
attack is called an “insertion” attack, whereby the attacker inserts
themselves on the lookup path, and has been shown to be effective
against Kademlia DHTs in the wild [11].

A somewhatmore blunt approach is to simply look up the current
set of seeders, and then disable them, perhaps by mounting a Denial
of Service or an Eclipse attack [11]. Our combined seeder-leecher
data points out an interesting contradiction. The number of seeders
is at a minimum when the number of configuration file requests
peak. It is currently unclear whether this behavior is by design
(seeders are allowed to voluntarily stop seeding after they have
uploaded a sufficient number of bytes, perhaps to evade detection),
or whether it is a result of a yet unforeseen interaction. Our data
strongly suggests that bots seed for at most one day (none of our
42K+ seeders lasted more than one day). If there is also a bandwidth
limitation along with a time limit, then an easy way to reduce the
seeder set is to simply repeatedly download the configuration file.

Hajime is also vulnerable to attacks specific to its code base
and choice of DHT. There are previously published attacks on
Kademlia [11, 15], which show that a single attacker with 100 Mbps
of bandwidth can disrupt 75% of all lookups on a Kademlia DHT.
Other attacks, such as the publish attack [11], can be both very
successful against Hajime and easily mounted. The publish attack
notes that a node holding a key (for the configuration file, in our
case) returns, at most, the latest 300 announcements it receives for
that key. An attacker could simply flood the network with fake
“publish” messages, and thus disrupt the seeder-location process.

8 CONCLUSION
Hajime is a new, large IoT botnet that is distinguished by its use of
a existing DHT for command-and-control. In this paper, we have
analyzed the spread and operation of Hajime using two different
methods. Our first method employs “DNS backscatter”: we observe
that a specific form of unsuccessful Hajime attacks (that exploit the
so-called TR-064 vulnerability) can result in a DNS query for an
invalid top-level domain. This query cannot be resolved by any
regular DNS resolver, and is routed to the DNS roots. Using packet

captures from a DNS root server, we uncover millions of bots and
attacks since Hajime’s use of TR-064. Our unique vantage point
enables us to track the spread of the bot globally, and gain insight
into its macroscopic behavior at a scale that is not easily replicable
using existing methods such as honeypots.

Simultaneously, we present a second set of experiments that
focus on Hajime’s use of the DHT. We identify Hajime bots on the
DHT using two methods, and provide a detailed analysis of their
lifetime and command and control behavior. Finally, we present an
analysis of vulnerabilities in Hajime itself due to its reliance on a
DHT. Our two measurement methods complement, enabling both
a global view of the bot’s spread, and a closer view of individual
bot’s lifetime and behavior.
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