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ABSTRACT

New applications enabled by personal smart devices and the Internet-
of-Things (IoT) require communication in the context of periods of
spatial co-location. Examples of this encounter-based communica-
tion (EbC) include social exchange among individuals who shared
an experience, and interaction among personal and IoT devices that
provide location-based services. Existing EbC systems are limited to
communication among participants that share a direct encounter.

This paper is inspired by two insights: (1) encounters also enable
group communication among devices connected by paths in the
encounter graph that is contextual, spontaneous, secure, and does
not require users to reveal identifying or linkable information; and
(2) addressing communication partners using encounter closures
subject to causal, spatial, and temporal constraints enables powerful
new forms of group communication.

We present the design of enClosure, a service providing group
communication based on encounter closures for mobile and IoT
applications, and a prototype implementation for Android and the
Microsoft Embedded Social Cloud platform. Using real-world traces,
we show that enClosure provides a privacy-preserving, secure plat-
form for a wide range of group communication applications ranging
from connecting attendees of a large event and virtual guest books
to disseminating health risk warnings, lost-and-found, and tracing
missing persons.
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bile computing systems and tools.

KEYWORDS

mobile computing, privacy, group communication, encounter-based
communication, Internet-of-Things (IoT)

ACM Reference Format:

Lillian Tsai, Roberta De Viti, Matthew Lentz, Stefan Saroiu, Bobby Bhat-
tacharjee, and Peter Druschel. 2019. enClosure: Group Communication via
Encounter Closures. In The 17th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’19), June 17-21, 2019, Seoul,

“This research was performed at MPI-SWS on a Fulbright grant.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MobiSys 19, June 17-21, 2019, Seoul, Republic of Korea

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6661-8/19/06.

https://doi.org/10.1145/3307334.3326101

Republic of Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3307334.3326101

1 INTRODUCTION

Personal smart devices and stationary IoT devices enable many
context-aware applications and services. For instance, people may
interact—via their smart devices—with nearby people and resources,
or follow up with others they have encountered, directly or indi-
rectly, in the past. Users may wish to follow up with other attendees
after a meeting; share commentary about an event they attended or
a place they visited; identify people with shared interests in their
proximity; confirm that they have met at a given place and time; and
use local resources or control their present physical environment.

Prior work has shown that encounter-based communication (EbC)
[5, 15, 27, 29, 31] can meet these communication needs while pro-
viding strong properties: (i) EbC enables communication during
and after an encounter without the need to pair devices or exchange
contact details; (ii) EbC is privacy-preserving because it does not
require users to disclose their identity, whereabouts, or communi-
cation to a third party; (iii) EbC enables communication partners to
authenticate as devices encountered at a given time and place; (iv)
EbC ensures message confidentiality and integrity. With EbC, any
pair of devices within range of Bluetooth forms a secure encounter,
consisting of a shared secret Eg, a unique public identifier E;;, and
the time and location of the encounter. Using an untrusted Cloud-
based key-value store, devices may communicate securely with any
party they have previously encountered, using E;; as the key and
encrypting messages with Eg.

Previous EbC systems have been limited to communication
among devices that have directly encountered each other. Our work
in this paper is based on two key insights. First, secure encounters
can also enable communication among parties connected by paths
in the graph of encounters, while retaining the same strong prop-
erties as direct EbC. Second, addressing communication partners
using closures of the encounter graph subject to causal, spatial, and
temporal constraints enables powerful new forms of group commu-
nication. We explore the properties, opportunities and challenges
associated with group communication via encounter closures, and
present and evaluate enClosure, a library service for Android and
Microsoft Embedded Social.

enClosure enables rich, powerful, contextually meaningful com-
munication among devices and users who have never directly met.
For instance, enClosure enables communication among users who
occupied the same large space at the same time but never met; users
who visited the same place at different times; users who crossed
each others’ trajectories at different times; and users connected by
causal chains of encounters that may imply a flow of information
or spread of disease.
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As we will show, enClosure facilitates communication among
users who shared an experience like a large event or journey; com-
munication among users and stationary devices in their wider vicin-
ity; virtual guest book and context-based recommendation services;
lost-and-found services; targeted dissemination of health risk warn-
ings; and even aid in the investigation of missing person cases.
Users can retain the opportunity to participate in these forms of
communication in a privacy-preserving manner, i.e., without dis-
closing their identity, whereabouts, or linkable information, merely
by running the enClosure service in the background.

enClosure differs fundamentally from existing forms of group
communication. Unlike in conventional address-based group com-
munication, users need not exchange individual addresses or agree
on a group address. Unlike in publish-subscribe services, users need
not agree on a topic ontology or reveal their interests. Unlike in
Web-based location services like Foursquare, Facebook Places, or
Google Latitude, users need not disclose their identities, where-
abouts, social connections, and communication to a third party.
With enClosure, users address intended receivers via encounter
closures with causal, temporal, and spatial constraints. This form
of addressing gives enClosure unique expressive power to name
communication partners, without requiring users to reveal upfront
their interests, contact details, or other linkable information.

In the remainder of this paper, we discuss related work and ap-
plications of enClosure; present the design of enClosure and an
analysis of its security properties; evaluate our prototype imple-
mentation; and conclude with a discussion of remaining challenges.

2 RELATED WORK

Encounter-based communication We first review prior work
on encounter-based communication. Unlike enClosure, the prior
work is limited to communication among devices that have directly
encountered each other.

SMILE [29] and SmokeScreen [15] form encounters by negoti-
ating a key among all devices within radio range at a given time.
MeetUp [31] supports pairwise secure encounters, but it is not
privacy-preserving: devices are trackable because encounters are
authenticated using certificates that link a public key to a user
profile picture. SMILE, SmokeScreen, and MeetUp provide encoun-
ters only in the context of specific applications, while enClosure
provides a general-purpose communication platform supporting
encounter-based group communication.

SDDR [27] forms secure encounters among devices within range
of Bluetooth. The encounter protocol we use in enClosure builds
on SDDR, but uses Bluetooth only for device discovery and instead
performs a Diffie-Hellman (DH) key exchange via the Cloud. This
protocol has the same security properties as SDDR, but forms en-
counters more quickly and with lower energy consumption. SDDR
does not support group communication on the encounter graph,
which is the focus of enClosure.

EnCore [5] provides a platform for mobile social apps based
on EbC. Users can designate sets of direct encounters as part of
a social event, negotiate group keys, and communicate within an
event. enClosure instead provides a general platform for context-
aware group communication among users connected by chains of
encounters subject to spatial, temporal, and causality constraints.

MobiClique [32] combines social networks and Bluetooth en-
counters to form ad hoc social networks. Previously co-located
users can share content, be notified of nearby users with matching
profiles, exchange friend invitations in an OSN, or post messages to
interest groups. However, MobiClique encounters are linkable and
not privacy-preserving; users advertise their presence and profile
to nearby devices.

Proximity-based communication Delay-tolerant networking [20]
uses periods of co-location/connectivity of mobile devices to oppor-
tunistically forward data. EbC and enClosure instead use encounters
to form communication endpoints, which can be used subsequently
for authentication, encryption, and naming of communication over
separate, untrusted communication channels, potentially long after
the physical encounters have ended.

AirDrop [1], Android Beam [2], Sharelt [3], or FilesGo [4] are de-
signed for singular, ad hoc interactions among presently co-located
devices. Unless users remember to exchange contact information,
further communication becomes impossible once the devices are
out of range. McNamara et al. [30] address opportunistic media
transfer among co-located devices. To accommodate long transfer
times, the system predicts periods of co-location (e.g., during a joint
public transit ride) based on devices’ encounter histories. However,
devices are linkable across encounters and disclose shared files.

ViewMap [25] allows authorities to identify information rele-
vant to an accident among videos recorded by car dashcams, while
preserving users’ privacy. Users exchange their videos’ fingerprints
with nearby vehicles using short-range radio as proof-of-presence,
and anonymously upload trajectories and received fingerprints. The
system then builds a spatial map that allows it to solicit relevant
videos. This application could be built easily on top of enClosure.

Proximity-based social networking Services like Foursquare,
Facebook Places, and Google Latitude require users to check in with
their current location. The service matches locations and notifies
users of nearby people and resources. These services require users
to reveal their identity and whereabouts to a third party.

Proximity-based profile matching E-SmallTalker [35] and D-
Card [12] provide profile matching via Bloom filters among co-
located devices. These devices can be owned by strangers (E-Small-
Talker) or friends (D-Card). However, users disclose personal infor-
mation with nearby users; security and privacy is not a focus of
the work. Serendipity [19] facilitates interactions among co-located
users through a centralized server, using Bluetooth and a Cloud
service that stores user profiles. Users reveal their whereabouts and
their preferences to the service performing the matching. FindU [28]
offers interest matching among co-located devices and uses secure
multi-party computation (SMC) to ensure that only the profile of
the best matching nearby user is revealed. Dong et al. [18] and Distl
etal. [17] also address privacy-preserving profile matching. Privacy-
preserving attribute matching can be built on top of enClosure, but
remains as future work.

Internet-of-Things The security and privacy of IoT devices is
an active area of research [34]. enClosure provides spontaneous,
untrackable, and authenticable group communication among smart
and IoT devices connected in the encounter graph.
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Figure 1: enClosure Overview: Users discover others, form
encounters, and may communicate via encounter closures.

3 ENCLOSURE APPLICATIONS

Figure 1 presents an overview of enClosure. As in direct EbC, com-
munication proceeds in phases. Devices initially discover others
using short-range broadcast, and establish encounters associated
with a specific location and time. During or after these encoun-
ters, devices connected in the encounter graph can communicate
using an untrusted Cloud service, such as a third party key-value
store. This simple, three-phase model has broad reach, and enables
many new forms of contextual group communication that go far
beyond direct EbC while retaining the same spontaneity, security,
and privacy properties.

In the following, we sketch example scenarios and applications
that can be supported by enClosure; in later sections, we discuss
how exactly enClosure forwards these messages.

Communication among event attendees Attendees of a meet-
ing or event may wish to trade tickets or swap seats, coordinate to
purchase group tickets, offer and accept help, or identify individuals
with a shared interest. Moreover, users may wish to communicate
after the event has ended, e.g., to follow up with other attendees of
a meeting, exchange photos or commentary about a shared journey,
or contact a person they had missed at the event. enClosure enables
such communication even among users who never encountered
each other directly, as likely happens at large events.

Communication with nearby resources Users may wish to
communicate with stationary resources in their vicinity. For in-
stance, a user may receive up-to-date information about current
conditions from an information beacon near a place she has visited,
or retrieve information previously deposited at an edge storage de-
vice. Likewise, stationary devices can collect traffic statistics about
passersby, possibly grouped by attributes that users are willing to

share, and send messages containing relevant material or requests
for participation in a survey. enClosure enables this communication
even if a user was never close enough to a device to form a direct
encounter.

Evidence of physical proximity A chain of encounters that oc-
curred within a given region and period provides evidence of (past)
physical proximity. For instance, event organizers can rely on this
chain to distribute materials or coupons to attendees via encoun-
ters; similarly, receiving a message or friend request via a chain of
encounters can serve as evidence that the sender and the receiver
attended the same event. enClosure provides this evidence even for
pairs of devices or users that never formed a direct encounter.

The above applications can be supported also by direct EbC,
but only among devices that have had a direct encounter. As a
result, the range of Bluetooth radio places an an arbitrary limit on
the scope of possible communication. enClosure generalizes and
extends support for these applications by extending the scope of
communication to devices that never formed a direct encounter,
e.g., because the diameter of the event or location exceeds the range
of Bluetooth. Next, we describe new patterns of communication
that enable applications not possible with direct EbC.

Virtual guest book Users can post an (anonymous) message to
individuals who visit a given location at different times in the style
of a virtual guest book. The messages can be seen by users who
visit the site in the future and, if so desired, those who had visited
in the past. Guest book locations could be tourist sites, restaurants,
hotels, or even real estate on the market, and can be used to convey
simple greetings, observations, or suggestions. Note that unless a
sender and receiver visit the site at the same time, they cannot have
a direct encounter. enClosure can deliver messages among devices
connected by a path in the encounter graph via a stationary device
at the location.

Health risk warning A health authority may want to warn indi-
viduals who could have contracted a disease, directly or indirectly,
from a given sick patient. Consider the trajectory of the patient’s
device while she was contagious. The authority can send a message
addressed to everyone reachable from any of the patient’s encoun-
ters along the trajectory via a causal chain of encounters. Unlike a
public broadcast, the authority can use this method to specifically
target the set of individuals at risk, regardless of their subsequent
travel patterns and location.

In a related scenario, given a specific area of contamination,
the authority can warn anyone that might have visited that area
during a certain period of time. Here, the message is forwarded via
encounters that occurred within the specified area and time period.
If the contagion can be passed on to others through proximity, then
the message can also be addressed to all encounters that causally
followed. The health risk application highlights the epidemic-style
communication that enClosure naturally enables.

Lost and found Suppose Alice lost an item; she would like to send
a message to individuals who might have found it. Consider Alice’s
trajectory since the last time or place she recalls having the item.
Starting from the encounters her device had along this trajectory,
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Figure 2: enClosure’s high-level architecture, including com-
ponents running locally on the users’ devices (bottom) along
with the Cloud services (top).

Alice can send a message to users who have been near any given
point on her trajectory at any time during or after Alice was there.

Call for information/witnesses Authorities often wish to solicit
information or witnesses related to an accident, crime, or missing
person case. enClosure can be used to reach out to potential wit-
nesses and to devices (e.g., security, dashboard, recreational cam-
eras) that may have captured relevant information. Such calls can
be targeted to persons/devices that were at or near the time and
location of an accident, or near the trajectory of a person of interest.

For example, if a child Charlie goes missing, authorities may have
a recent version of his device’s encounter database (either because
the device was found, or because the device regularly uploads
its database into the Cloud, encrypted with escrowed keys). Law
enforcement can send a message to individuals who may have seen
Charlie or made other relevant observations. Consider Charlie’s
trajectory since his last known whereabouts. Starting from the
encounters Charlie’s device had along this trajectory, enClosure
forwards the message to any device that has been in the vicinity of
a given point on Charlie’s trajectory! within some period around
the time Charlie passed that point.

enClosure can support these and other applications, sponta-
neously and securely, without requiring users to reveal their identi-
ties, whereabouts, or communication, and without requiring them
to consent to tracking their devices. Participating users merely have
to run the enClosure service on their smart devices, which we show
to be power-efficient in Section 8.

A common requirement of these enClosure-enabled applications
is that communication partners are selected based on the spatial,
temporal, or causal relationship of their encounters. This is a drastic
departure from existing platforms where communication is formed
around names, roles, or interests; this distinction is key to enClo-
sure’s strong privacy and security guarantees.

4 DESIGN PRELIMINARIES

We now describe enClosure’s high-level architecture and the secure
encounter formation protocol enClosure uses.

Figure 2 shows the high-level architecture of enClosure. enClo-
sure client devices run the encounter service continuously in the
background. The service forms secure encounters with nearby de-
vices and adds them to the encounter database. The service relies
on Bluetooth Low Energy (BLE) to discover nearby devices and
relies on a Cloud key-value store to form and maintain encounters.
Moreover, it periodically uploads the device’s encounter database
to the forwarding agent over a secure TLS channel.

Apps running on client devices who wish to use enClosure link to
the enClosure library. The library provides a messaging API, which
allows apps to poll for incoming messages and to send messages.
In order to encrypt, authenticate, and address messages, the library
consults the encounter database. It retrieves incoming messages
from and places outgoing messages into the key-value store.

The key-value store holds encrypted messages in transit, as well
as Diffie-Hellman parameters advertised by enClosure devices. Our
prototype relies on the Microsoft Embedded Social (ES) platform as
the key-value store.

The forwarding agent forwards messages according to the con-
straints in messages’ headers and devices’ encounter databases. As
part of the forwarding, the agent retrieves, re-encrypts, and inserts
messages from and to the key-value store. The agent executes in
a trusted execution environment (Intel SGX in our prototype). Se-
cure TLS channels are used for all communication between devices,
forwarding agent, and key-value store.

4.1 Forming secure encounters

We briefly describe the protocol used by enClosure to form secure
encounters among devices in BLE range. Devices continuously form
encounters without user interaction; therefore, energy consumption
is a focus of the protocol design.

The protocol is based on the BLE version [5] of the SDDR pro-
tocol [27]. Note that the particular choice of secure encounter for-
mation protocol is not central to enClosure’s contribution, namely
group communication over encounter closures. Unlike the origi-
nal SDDR implementation, our implementation uses BLE only to
discover devices and exchange nonces. The Diffie-Hellman (DH)
key exchange to compute the shared secret is performed via the
key-value store for scalability and energy efficiency. In the origi-
nal SDDR implementation, DH parameters are exchanged via BLE,
requiring multiple advertisements because the parameters exceed
the maximal size of a BLE advertisement. In contrast, enClosure ad-
vertises only a nonce, which fits within a single BLE advertisement.
The exchange of DH parameters is done via the key-value store.
Thus, our implementation can form an encounter even when two
devices have received only a single advertisement from each other.

BLE supports periodic and energy-efficient broadcast of small
amounts of data in the form of advertisements, which can be com-
pletely offloaded to the BLE controller. To discover nearby devices,
the controller can be instructed to scan for advertisements from
nearby devices. In addition to offloading advertisements, recent BLE
controllers also support batched scanning, whereby advertisements

ISubject to connectivity in the encounter graph, as discussed in Sec. 5



from nearby devices are stored in a buffer that the CPU can process
later on. Our implementation uses both mechanisms to reduce the
frequency at which the CPU wakes up, as each wake-up consumes
significant energy.

Device discovery and advertisement Time is divided into epochs.

In epoch i, a device d maintains a private key S; = a and public

key P(ii = g% mod p. Device d’s BLE controller advertises a nonce?

nfi = h(P"'i), where h(-) is a secure hash function. At the same time,
the device’s BLE controller scans for advertisements from nearby
devices using batch scanning while the device is sleeping.

Processing advertisements Devices periodically wake up to pro-
cess advertisements received during the past batch period (e.g., the
past 2 minutes). A device adds the advertisements to its encounter
database, along with a timestamp, as unconfirmed encounters. More-
over, a mobile device records its current location in order to extend
its trajectory, i.e., a sequence of the device’s geographic coordinates.
(A stationary device simply stores its coordinate once.)

Epoch change While processing every nth batch of advertise-
ments, a device additionally performs an epoch change (e.g., n =
[15/2] for 15-minute epochs). The device d generates a new DH
public/private key pair Pcl‘;rl and S;“, and instructs the BLE con-
troller to advertise the new nonce and choose a new MAC address.

Device d puts Pt’;rl into the key-value store with ns’l as the key.

Confirming encounters Upon request by an application, or dur-
ing an epoch change when there is a good Internet connection, a
device performs a DH key exchange via the Cloud key-value store
for some or all unconfirmed encounters. For every nonce n received
over BLE, a device can look up the associated DH public key by
querying for n in the key-value store. If and only if the hash of the
retrieved DH public key matches the nonce received in the adver-
tisement, the device completes the DH key exchange by computing
the encounter secret Eg from the associated DH public key and its
own DH private key at the time of the encounter. It produces the
corresponding encounter ID E;; = h(Es).

Besides E;; and Es, a device stores a timestamp corresponding
to the beginning and the end of each encounter in its database. By
joining an encounter’s period with the device’s trajectory, we can
determine the trajectory covered by each encounter.

Linkability Devices change their advertised nonce and MAC ad-
dress every epoch. Ignoring radio fingerprinting attacks [9, 23],
which require specialized equipment, a device reveals no informa-
tion to nearby radio listeners that could be used to re-identify the
device across epochs. However, two devices that have a confirmed
encounter can selectively recognize each others’ advertisements,
and thus avoid forming a new encounter in each epoch. Towards
this end, during an epoch change, a device writes its new nonce
into the key-value store under the ids of all existing encounters:
for each existing encounter E that d has with a nearby device, d
inserts Enc(n;) E, into the key-value store using E;; as the key,
where Enc(-)g, encrypts its argument with shared secret Es, and

2Not a nonce in the usual sense, as it is broadcast throughout an epoch and received
by any listener during that epoch.

Es and E;; are the shared secret and id associated with E. (In case
a device has poor or intermittent connectivity, it can choose to
defer the Cloud communication.) This allows encounter peers to
recognize d’s advertisements in the new epoch: when processing
a received advertisement not seen before, a device first checks if
the advertised nonce matches one in the key-value store under the
E;4 of an existing encounter; if so, it associates the nonce with the
encounter in its database and does not form a new encounter.

5 ENCLOSURE MESSAGING

We now describe how messages are forwarded in enClosure. We
begin with direct messaging across a single encounter for illustra-
tive purposes, even though it is not our focus. The sender names
the message’s destination using a location and time at which an
encounter occurred. The library finds a matching encounter with id
E;4 in the database. It adds a message authentication code (MAC)
keyed with Eg, encrypts the message with Eg, and inserts the en-
crypted message into the key-value store using E;; as the key.

Devices periodically poll the key-value store for incoming mes-
sages via any of their encounters. To avoid unwanted communica-
tion, users can install filters so that they see only messages received
via encounters they had at particular times and places or with
particular forwarding constraints.

Direct messaging, as described above, requires that sender and
receiver share an encounter. enClosure messaging lifts this restric-
tion and enables communication among devices that are connected
indirectly via a path in the encounter graph. enClosure messaging
takes advantage of the encounter graph structure to address mes-
sages to encounter closures subject to time, space, causality, and
path length constraints. As we shall see later in this section, enClo-
sure messages are always forwarded in two physical hops for each
receiver via the forwarding agent; however, the communication
partners may be connected via longer paths in the encounter graph.
Next, we describe the messaging protocol and its properties.

Message header enClosure messages are forwarded according
to a constraint provided by the sender in the message’s header.
The header contains the following information: the maximal path
length h (where h = 1 for direct messages), the maximal fan-out f,
the expiration time tg, and the forwarding constraint.

h is the maximal distance in the encounter graph over which
sender and receiver can be connected for the message to be de-
livered. f is the maximal fan-out in the spanning tree connecting
senders and receivers in the encounter graph. The combination of
h and f is meant to provide a backstop for the number of message
deliveries that a single group message can generate; it is not meant
to specify the set of receivers. After the expiration time tg, a mes-
sage is no longer forwarded or buffered. The forwarding constraint
is described next. All encounters in a tree connecting senders and
receivers must meet this constraint.

Forwarding constraint A message’s forwarding constraint is a
combination of one or more of the following types of constraints:

Space-time intersection Defined by a space-time region R =
(laty, laty, lony, lony, eley, eles, t1, t2) and a minimal intersec-
tion period 7. R is a hypercube defined by latitude range
[lat1, latz],longitude range [lony, lonz], elevation range [ele;,
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elez], and period of time [t1,#2]. Let Tg = Lg 4,, ..., LE 1, be
the trajectory of an encounter E, where Lg ;, denotes the
longitude, latitude, and elevation of encounter E at time ;.
If an encounter E’s trajectory Tg intersects R for at least 7
seconds, then the message is forwarded via E (Figure 3 a).

Space-time intersection can be used, for instance, to forward a
message to every one who attended a stationary event or visited a
location with a virtual guest book. If the event is large or there are
many devices in a tight space, not all devices will necessarily form
a direct encounter and they will therefore need forwarding across
encounter closures in order to communicate.

Trajectory intersection Defined by a space-time trajectory
T, a scalar distance A, and a minimal intersection period 7.
An encounter E’s trajectory Tg must be within A of T for at
least 7 seconds in order for the message to be forwarded via
encounter E (Figure 3 b).

Trajectory intersection can be used, for instance, to send a mes-
sage to all passengers on a particular vehicle (e.g., all those aboard a
cruise ship), where T defines the vehicle’s paths and A accounts for
the diameter of the vehicle plus any slack required due to limited lo-
calization accuracy. The constraint can also be used to reach out to
people who were sufficiently close to a missing person’s trajectory
that they may have relevant information.

Trajectory projection Defined by a space-time trajectory T
and a scalar distance A. A message is forwarded via en-
counter E if E’s trajectory is within A of a location on T’s
path at any time during or after T crossed that location. More
precisely, if there exists a point L1 ;, on T’s trajectory and a
point L ;, on E’s trajectory, such that the spatial distance
between the two points is within A and #; < f, then the
message is forwarded via E (Figure 3 c).

Trajectory projection can be used to send a message to devices
that were near a location on a device d’s trajectory during or af-
ter d passed that location. It can be used, for instance, to contact
individuals who may have seen or found an item lost by another
individual.

Causality Defined by the transitive closure of the “encountered-
before” relation. The message is forwarded via encounter E

if it was received via an encounter E; that began before Ej
ended.

Causality can be used to forward a message via those encounters
that may be causally dependent on the encounter via which the
message was received; for instance, those who may have contracted
a virus or learned a particular piece of information that may have
arrived via an earlier encounter.

Powerful multicast semantics can be achieved by combining one
of space-time intersection, trajectory intersection, or trajectory pro-
jection with the optional causality constraint. Table 1 summarizes
the forwarding constraints and parameters used by each application
discussed in Section 3. This shows that the diverse requirements of
different, powerful communication patterns can be achieved with
a combination of the forwarding constraints defined above and a
suitable choice of values for a few parameters. Recall that h and
f provide a backstop for message duplication and should over-
approximate the width and depth of the tree connecting sender and
intended receivers in the encounter graph. E.g., for a virtual guest
book, we expect a deep but relatively narrow tree, while we expect
a wide, shallow tree for a stationary event setting. In health-risk
scenarios, we expect the tree to be both deep and wide; such a
message would in any case require authorization by an authority.

Message forwarding Conceptually, enClosure messages could be
forwarded physically hop-by-hop via receiver devices. However,
forwarding messages via client devices has high energy and net-
work costs, because every message copy has to be encrypted and
sent by one client, then received and decrypted by another client
device. It may also cause long delays when devices are unavailable
for extended periods, and requires trusting receiver devices.

enClosure instead relies on a forwarding agent, which reduces
energy consumption of client devices and achieves scalable message
forwarding. The agent fetches one encrypted message copy from
the sending device in one physical hop. It determines the receivers
by including devices connected to the sender via encounters subject
to the forwarding constraint. Finally, in a second physical hop, the
agent encrypts and inserts a copy of the message individually into
the key-value store for each receiver.

Upon receiving an enClosure message from a sender, the agent
iteratively computes the set of receiver devices by consulting the en-
counter graph assembled from clients’ individual encounter databases.
The agent effectively performs a breadth-first search of the en-
counter graph, starting from the sending device, considering only
encounters that meet the message’s forwarding constraint, and
respecting the message’s fan-out and path length limits. The agent
requires that the trajectories of an encounter as recorded by each
encounter peer both match a message’s forwarding constraint. This
check yields robustness to incorrectly recorded encounter trajecto-
ries. It then encrypts a message copy for each receiver and inserts
the copies into the key-value store.

After a message is forwarded, the agent stores a copy until the
message’s expiration time is reached. While a message is buffered,
its forwarding constraints are checked against any new encounters
and forwarded in the case of a match. Buffering is done on a best-
effort basis: if space is lacking, the message body will be discarded.
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Table 1: enClosure applications: forwarding constraints and parameters

Message replies The sender of an enClosure group message may
wish to enable replies from recipients, either privately to the sender
or to the group. To facilitate replies, the sender includes in the
message a key-value store key k and either a public crypto key
for private replies or a shared group crypto key for group replies.
Recipients encrypt their replies with the appropriate key and insert
them into the key-value store using k, from where they can be
fetched and decrypted by the sender or all recipients, as appropriate.

6 SECURITY PROPERTIES

We now define the threat model underlying enClosure’s security
properties, describe the properties, and examine the security limi-
tations of our chosen threat model and system design.

6.1 Threat model

We assume that users and devices do not share the content of their
encounter database with any party. Moreover, it is assumed users
take appropriate measures to wipe the database along with other
private data from a lost or stolen phone. Likewise, we assume that a
device does not forward or otherwise share the BLE advertisements
it receives with third parties, or advertise information over BLE
on behalf of a third party. This assumption is reasonable for the
proposed enClosure applications, which provide little or no incen-
tive to collude to form additional encounters. Nevertheless, such
applications may well exist, and we discuss ways to strengthen this
threat model in Section 6.3.

The threat model also assumes that the operator of the forward-
ing agent is trusted to execute the agent often enough to ensure
timely delivery of messages. Similarly, the operator of the key-value
store is trusted to store encrypted messages and other data on a
best-effort basis until they are deleted, and respond to requests of-
ten enough to ensure a timely delivery of messages and encounter
formation. We assume that a correct client device records its en-
counter trajectories accurately, sends its encounter database to the
forwarding agent, and sends messages via the forwarding agent.

The cryptographic primitives used are trusted, as is the execution
environment in which the forwarding agent executes. Side-channel
attacks against the forwarding agent, the enClosure client, or the
encrypted communication are out of scope. The key-value store
operator is trusted not to record client devices’ IP addresses and
mine this information for traffic patterns.

6.2 Messaging Properties

Subject to the threat model described above, enClosure has the
following properties: The first two properties apply to direct mes-
saging among devices that share a direct encounter, while the re-
maining properties hold for messaging among devices that do not
share a direct encounter.

PO (confidentiality): A sender can be sure that a message forwarded
via encounter E can be decrypted only by the device that shares E.
That device was encountered at the time and location recorded in the
sender’s database.

P1 (authenticity): A receiver can be sure that a message received via
encounter E originates from the device that shares E. That device was
encountered at the time and location in the receiver’s database.

P2 (safety): A message sent by a correct device is received only by
devices that have at least one encounter that satisfies the message’s
forwarding constraint.

Justification: Assume that the property does not hold. Let C be the
chain of encounters along which the message was forwarded. We
know that the sender is a correct device. It follows that somewhere
along C, the message was forwarded to a device that does not meet
the constraints. But neither a correct device nor the forwarding
agent can do this within our threat model.

P3 (completeness): An enClosure message will eventually reach all
correct devices that are connected to the sender by a chain of encounters
that satisfy the message’s forwarding constraint, if the message’s
expiration time is sufficiently late.

P4 (confidentiality): An enClosure message sent by a correct sender
with forwarding constraint ¢ can be decrypted only by devices that
have at least one encounter that meets c.

P4 (authenticity): An enClosure message with forwarding constraint ¢
received by a correct device originates from a device that has at least
one encounter that satisfies c.

These strong properties hold despite the presence of devices that
have recorded incorrect encounter trajectories. They result from the
fact that (i) incorrect or malicious devices cannot forge encounters
with correct devices; (ii) the forwarding agent does not forward
messages via encounters that do not meet the constraints; and (iii)
the agent forwards a message only if an encounter’s trajectory as
recorded by either peer both match the message’s constraint. Thus
enClosure can provide powerful group communications semantics



with strong properties, without requiring users and devices to ex-
change identities, consent to tracking, disclose their whereabouts
or the contents of their communication.

It is important to note that enClosure identifies communication
partners indirectly via closures of the encounter graph subject to
times, locations, and causality, which gives it expressive power
different from other forms of group communication. The notions
of confidentiality and authenticity accordingly refer to partners
connected by chains of encounters. The fact that communication
partners in enClosure are not named by their identity is precisely
what allows users to stay anonymous and untrackable unless they
explicitly reveal themselves. If an application requires assurances
that it is talking to a specific device or user, other forms of commu-
nication are appropriate.

6.3 Limitations and extensions

Next, we discuss limitations and possible extensions of enClosure.

Encounter graph density In general, the efficacy of enClosure
messaging is subject to sufficient density in the graph of encounters.
For instance, a multicast to all devices that reach a particular loca-
tion within the next hour depends on the uninterrupted presence
of devices within radio range of the location to ensure that the
message can be forwarded. This condition is trivially met if there is
a stationary device within radio range of the location, but otherwise
depends on the movement of devices. A dense deployment of sta-
tionary enClosure devices (which would result, e.g., from support
for the enClosure protocol by WiFi base stations) would largely
remove this limitation.

Cryptographically secure forwarding agent The enClosure
prototype forwarding agent relies on a Trusted Execution Envi-
ronment (TEE) (Intel SGX) to ensure the agent’s integrity and the
confidentiality of users’ encounter histories. While state-of-the-
art, SGX has known issues regarding side channels and requires
trust in the chip vendor’s implementation and key management. In-
stead of relying on a TEE, it may be possible to design an oblivious
agent that operates on encrypted encounter histories and messages.
The agent could use proxy re-encryption [8, 11, 22, 24] to forward
messages without access to message cleartext. A cryptographically
secure agent remains the subject of future work.

Reducing trust in client devices In enClosure’s current threat
model, we assume clients do not share received nonces or advertise
each others’ nonces. We believe the design can be extended to make
such collusion unproductive. We briefly sketch preliminary ideas;
a full exploration and design remains as future work.

First, we can organize a device’s encounter history as a hash
chain and use its top-level hash at the start of an epoch as the nonce
advertised during the epoch. The hash chain covers a device’s long-
term public key, its trajectory, the nonces it received, and the DH
parameters it uses in each epoch.

Second, when devices upload their encounter histories to the
forwarding agent, the agent (i) verifies the hash chain and rejects
uploads that are not a linear extension of the existing history; and,
(ii) checks each received advertisement for consistency with the
history of the advertising peer and rejects encounters that are not

consistent. These checks commit each device, identified by its long-
term public key, to a linear history and ensures encounters are
consistent with the histories of both peers.

Third, if a device’s public key is tied to a physical trust anchor
such as a Trusted Platform Module (TPM), then the history is tied
to a physical device. A user can be allowed to use a small number
of physical devices and periodically upgrade/replace devices, but
must commit to these devices/upgrades in the history, where they
can be checked for plausibility. If a physical trust anchor is not
available, the agent can still check each (virtual) device’s trajectory
for physical plausibility (e.g., speed, acceleration) and consistency
with other devices’ trajectories (e.g., advertisements it should have
received along its trajectory).

7 ENCLOSURE PROTOTYPE

Our enClosure prototype supports client devices running Android
8.0 or above, and requires no privileges beyond those of a regular
app. The encounter formation service and messaging library consist
of 11K LoC of Java, as well as 5.5K LoC of C++ for the modified
SDDR implementation. The encounter database is stored in the
existing platform SQLite database.

The forwarding agent runs inside an Intel SGX Enclave and
consists of 2741 LoC of C++, not including the Intel SGX SDK and
SGX-compatible libraries for OpenSSL and SQLite. Running the
forwarding agent inside an SGX enclave helps to reduce trust in the
operator of the forwarding service. It enables clients to verify that
the agent is running the expected software via remote attestation,
and prevents a curious operator from learning devices’ encounter
databases, the contents of messages, and other sensitive information
like traffic patterns.

Our simple prototype forwarding agent is currently single-threaded
and subject to the size limitation of available SGX implementations.
Future implementations of SGX will allow for enclaves with much
more memory, which can help greatly in combination with a multi-
threaded implementation of the agent. In principle, the forwarding
service can be scaled also to many devices by sharding the en-
counter database, and to higher message throughput by replicating
the shards. The general techniques to achieve such scaling are well
known; actually scaling our prototype forwarding agent remains
as future work.

Forwarding agents and devices communicate with the Microsoft
Embedded Social (ES) platform, which we use as a key-value store
with notifications in our prototype, via secure connections. The
prototype relies on two ES abstractions: topics and notifications.
Topics are used as a key-value store for messages, DH parameters,
and other information related to encounters. enClosure clients rely
on ES’s in-app notifications to efficiently poll for incoming messages
and other information on a large number of topics (corresponding
to encounters). ES is designed to scale to hundreds of millions of
users and billions of topics, and provides a robust backend for our
prototype.

8 EVALUATION

We begin with an evaluation of the encounter formation protocol.
We quantify cost using micro-benchmarks that measure the en-
ergy consumption of running our enClosure prototype as it records



encounters and communicates with Embedded Social. Next, we
briefly evaluate the throughput of our SGX-based forwarding agent.
Finally, we explore the utility of enClosure by evaluating various
application scenarios. Our results are derived from trace-driven sim-
ulations over a real-world dataset, specifically the SNAP Gowalla
dataset [13], and described in Section 8.2.

8.1 Cost of running enClosure

There are two principal components to the (local) cost of running
enClosure: the energy consumed by Bluetooth scanning to detect
devices and exchange nonces, and forming encounters via ES. We
address these in turn.

For these experiments, we use seven Sony Xperia XZ1 devices
running Android 8.0 with a Qualcomm Snapdragon 820, 64-bit
processor, a 2700mAh Battery, and 4GB RAM in all our experiments.
We also use up to 100 Raspberry Pi (3 Model B) devices for our high-
device-density experiments. We use the Monsoon Mobile Device
Power Monitor (Ver 1.15) to sample power consumption at a rate
of 5kHz using a soldered resistance tap at the battery terminal.

Bluetooth Overhead Devices must continuously scan for other
devices using Bluetooth as a precursor to forming encounters. Recall
that we use Bluetooth Low Energy (BLE) in our prototype. Suppose
devices advertise over BLE every 100ms, and the CPU processes
BLE input every two minutes. Just finding BLE peers in this scenario
(including the base cost of the phone remaining suspended, but not
the cost of forming encounters) consumes, on average, 27.46mW of
power. This level of power consumption could be sustained over
two weeks using the Sony Xperia XZ1’s 10400mWh battery, thus
confirming that BLE does not impose undue overhead.

As a stress test, we also measured the robustness of Bluetooth
discovery and advertising when the number of devices (suddenly)
increases, as may be the case when the user attends an event or
walks into a populated venue. There are several potential concerns:
Bluetooth may not perform well in crowded venues, and detecting
and processing many devices may consume too much power.

We emulated this scenario using multiple BLE devices. Since we
had only seven phones running the enClosure stack, we used 100
Raspberry Pi devices, each advertising every 100ms on all channels
(simulating enClosure devices), along with the enClosure capable
devices. We conducted the experiment in a 180 seat classroom (10m
X 25m); pairwise distances among devices ranged from 0.6m to
17.5m. We positioned the phones running the full enClosure stack
at the front of the lecture hall, approximately 3m from the nearest
advertiser and 20m from the furthest. The lecture hall also contained
multiple active WiFi base-stations that share the BLE spectrum.

The high-level takeaway from our experiment is the following:
using our default parameters (two minute batch scanning — two
weeks of battery life), every device is detected in every scan. This
is an extremely encouraging result: it shows that BLE can easily
scale to (at least) 100 devices with nominal energy consumption,
and that our available hardware resources were not close to scaling
limits.

Forming Encounters Once devices have been locally detected
using BLE, enClosure can form encounters by conveying the nonces
to the ES cloud service and performing the protocol described in

BLE? WiFi? Encounters AvgPower Mean Battery

(Y/N)  (Y/N) (#) (mW) Life (hr)
N N - 19.99 % 0.03 520.26
Y N - 27.46 + 0.28 378.73
Y Y s 32.40 £ 0.80 321.06
Y Y 6 (real) 40.11 + 0.41 259.29
Y Y 6 (sim) 40.64 + 0.89 255.90
Y Y 10 (sim) 4147 + 1.08 250.78
Y Y 16 (sim) 41.97 £ 0.73 247.82
Y Y 32 (sim) 4181+ 1.14 248.74
Y Y 64 (sim) 41.87 £ 0.32 248.37

Table 2: Power consumption and battery life of ES-based encounter
formation while varying the number of encounters formed per 15-
min epoch with a 2-min batch interval

Batch Interval Avg Power Mean Battery

(min) (mW) Life (hr)
0.5 48.21 £ 0.44 215.70
1 42.94 + 0.55 242.22
2 41.47 + 1.08 250.78
8 40.68 + 0.53 255.67
16 3722+ 1.73 279.42

Table 3: Power consumption and extrapolated battery life when
forming 10 ES-based encounters per 15-min epoch varying the
batch interval

Section 4.1. In this section, we quantify the overhead of this compo-
nent of enClosure. The enClosure overhead can be decomposed into
two parts: the fixed overhead of running the enClosure app, which
periodically reports to ES, and the overhead of local BLE scanning.
Running the enClosure app in the background, and reporting to ES
once every epoch’ (15 minutes in our experiments) increases the
average power consumption as shown in Table 2. However, not all
of this increase is directly attributable to enClosure: our inspection
of the underlying power consumption shows that many Android
services—in particular, permanent services such as anti-virus scan-
ners that run by default—piggyback onto enClosure wakeups due
to Android’s timer coalescing [21]. Indeed, simply waking up the
phone for a null wakeup (which relinquishes the CPU as soon as
the app is scheduled) every 15 minutes, without running enClosure,
consumes on average 34.58mW of power.

Table 2 shows the cost of forming encounters while varying the
number of devices encountered. The top of the table contains power
consumption numbers for cases where we do not form encounters,
with different radios turned on and off. Since we only had seven de-
vices to run enClosure, we simulate performing key exchanges and
linking with more than six other devices by creating and inserting
multiple (simulated) BLE advertisements into the advertisement set
received by the enClosure library. These advertisements, marked
as “sim” in the result, are then processed as any other. We have
repeated these experiments for different epoch intervals (7.5 to 30
minutes), without significant change in the power consumption.

The results show that increasing the number of encounters
formed has little impact on the average power consumed; indeed,
the dominant factor is the frequency of CPU wakeups, evaluated
in Table 3. Table 3 shows an expected negative linear correlation
between the batch interval (wakeup period) and the average power
consumption.

3Recall that devices change their BLE identifiers every epoch.



Forwarding Agent Throughput We perform a throughput eval-
uation of the enClosure forwarding agent running within a SGX
compartment on a server with 4 Intel(R) Core(TM) i5-6600 CPUs
(3.30GHz) and 32GB of RAM.

Our experiment repeatedly chooses a user to send a message,
which is processed and forwarded (sequentially) via the forward-
ing agent; the agent searches the encounter graph for encounters
matching the message’s forwarding constraint, encrypts the mes-
sage with the appropriate Eg for each encounter, and posts the
message to the appropriate E;; channels via network calls to Em-
bedded Social. Our forwarding agent has a message send rate of 950
messages per second over a graph derived from encounters of 52
users over a 12-day period from the Haggle encounter dataset [16].

The goal of our SGX prototype was not ultimate performance, but
to demonstrate the feasibility of secure forwarding using hardware
enclaves. As such, we do not believe the reported forwarding rate
to be a limit but merely a lower bound. Common techniques, such
as sharding the encounter database and parallelizing across shards,
would likely provide near linear speedup.

8.2 Utility of enClosure Applications

In this section, we seek to quantify the potential benefit of enClosure
applications. There are no large-scale deployments of encounter
systems from which we could gather encounter data. Instead, we
simulate enClosure applications over a synthesized encounter graph
derived from the SNAP Gowalla dataset [13]. This dataset records
user locations for 6.4 million public check-ins for 107k users of the
Gowalla social network, and was collected between Feb. 2009 and
Oct. 2010. While the dataset contains data from users worldwide,
there is notable user concentration in Western Europe, and in larger
cities in the United States.

Synthesizing encounters The Gowalla dataset only contains (lo-
cation, timestamp) pairs in the form of user check-ins. We synthe-
size encounters over this base dataset by adding a duration to each
check-in, and then declaring an encounter between two users if two
durations overlap, and the users are within 50 meters of each other.
Each duration is sampled, uniformly at random, from an exponen-
tial distribution with a mean of one hour (the duration is truncated
if the sampled value overlaps with the user’s next recorded check-
in). We chose this distribution because meetings, meals, and other
social events tend to last about an hour, and since users in the trace
checked in explicitly, it is likely they attended a deliberate event.
This synthesis results in 1.69M encounters between 65.9K users.
Unfortunately, this dataset is rather sparse, and in practice, we
expect even a modest enClosure deployment to generate many
orders of magnitude more encounters. However, even over this
sparse dataset, we show that messaging via encounter closures
provides benefits; we expect such benefits to multiply over denser
encounter datasets. In our simulated application scenarios, we often
pick initial users or locations in and around Austin, Texas due to
the (relatively) high number of encounters in the dataset in Austin.

Sending messages to event participants A simple and natural
application for encounter systems is to send messages to attendees
of a physical event. However, direct encounters cannot capture
participants for large events, where the geographic distance is larger
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Figure 4: The CDF of reachable participants in the encounter
graph by different users, while varying the maximal encounter path
length from 1 to 5.
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Figure 5: The number of visitors reachable by adding a message to
the virtual guest book at a given time. In the ‘Direct’ case, the mes-
sage will only reach the users currently in the area. For the ‘enClo-
sure’ cases, messaging via encounter paths is used to allow others
who visited the virtual guest book in the past (or will in the future)
to see the message. The time window is denoted in parentheses.

than radio range. We simulate such a scenario using the Gowalla
data from a 2km circle centered on the Austin Convention Center
in downtown Austin, Texas from 6PM to 11PM on March 14, 2010.
This event takes place during the 2010 South by Southwest (SXSW)
music festival held at the Convention Center from March 12-21. The
dataset contains 1108 total check-ins in the specified space-time
region, which provides an upper-bound on the number of users
who could be reached by enClosure. Figure 4 plots reachability
of direct encounters compared to enClosure. Each curve is the
CDF (over all users) of fraction of users that can be reached for
increasing encounter path lengths. The 1-hop line corresponds to
direct encounters, and shows that the vast majority of users (90%)
would reach only 20% of all participants with direct encounters.
Even the most connected users do not reach 40% of total participants
directly. In contrast, even a single extra encounter hop allows more
than half the users to reach over 70% of all participants. Encounter
paths of length 3 allow more than 90% of users to reach close to
90% of all participants.

Virtual Guest Book Communication among devices that en-
counter the same location at different times fundamentally requires
enClosure, since the devices cannot have a direct encounter. This
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Figure 6: The number of users notified of the health-risk warning
over time, while varying a constraint on the path length from the
seed user.

is true of an application such as a “virtual” guest book, where users
at a certain location can sign the book and add a message that is
viewable by future or past visitors. Moreover, connectivity in the
encounter graph requires the continuous presence of devices at the
location, which may be the case at busy venues but may not be true
in general. A solution to this problem is to install a stationary device
that forms encounters with all nearby users. Using enClosure, we
can enable this “virtual” guest book with any commodity device
running only the enClosure service.

In evaluating such a setup, we simulate the existence of the
stationary device by the main entrance to the Austin Convention
Center on March 14th (during the aforementioned SXSW festival).
This device establishes encounters with all visitors that enter the
convention center, and allow them to add entries to the guest book.
As shown in Figure 5, enClosure’s group message forwarding allows
a visitor to leave a note at the Convention Center that will propagate
to those who visited at different points in the day satisfying the
space-time constraints of the guest book. For example, with direct
messaging (1 hop), a user can only leave a note for other visitors
present at the same time as themselves (a little over 100 people
at peak hours); however, with enClosure’s forwarding, the user’s
note will reach 300+ more visitors in an eight hour time window. A
visitor could also leave messages for much longer periods.

Potential Infection Warning Perhaps the most powerful at-
tribute of enClosure is to be able to address users over a large
geographic area in a targeted manner based on their previous en-
counters. A novel and very useful application for such a primitive
is for sending potential health-risk or infection warnings. Before
we discuss this scenario in detail, it is important to clarify that we
are not proposing that Bluetooth encounters necessarily map on to
the spread of infectious diseases. However, current practice is to
issue alerts over large areas (often large cities with millions of in-
habitants) coupled with manual re-tracing of victims’ whereabouts
(e.g., [6, 14, 33]). enClosure can augment the efforts of healthcare
professionals by providing a tool to anonymously identify potential
patients and affected areas.

We simulate such a scenario using the Gowalla data by desig-
nating a single user in Austin, TX on March 14, 2010 as the “seed
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Figure 7: The farthest distance traveled by the health-risk warn-
ing over time, while varying a constraint on the path length from
the seed user.

user”. Any users that may have come in contact with this seed user
should be notified: this corresponds to notifications sent to those
with direct encounters with the seed. Additionally, since these users
with direct encounters may themselves have been infected, it is
important to spread the notification to all of their future encounters
(and so on). Finally, we want to limit these notifications to a certain
time frame from when the user could have been infected to when
the infection would subside; in our case, we conservatively assume
this time frame to be one week. In enClosure, we can express these
notification parameters by constructing a single message with two
constraints: 1) causal forwarding (i.e., sent to encounters that took
place after receiving the message), and 2) a time constraint of one
week since receiving the message.

We simulate the forwarding of such a notification message and
plot the results in Figures 6 and 7. We treat the time of diagnosis
as time 0 in these plots and focus in on the surrounding two-week
window. In each of these plots, we vary the path length constraint.
Figure 6 shows the number of users notified over time, starting
initially with 1 (the seed user). Figure 7 shows the farthest distance
the notification traveled over time. As shown, we can see that the
seed user had only 4 (direct) encounters before their diagnosis at
day 0, and never even left Austin, TX (having traveled only 10km
at most). However, contagious diseases spread “virally”, which is
demonstrated by the growth in terms of number of users notified
over time and increasing path lengths.

In this experiment, we picked the seed user specifically to demon-
strate the “reach” of a single user even within our extremely sparse
dataset (9399 users with encounters globally over the two week
period in consideration). While this seed user was highly connected,
they were not unique, and there were several other users with sim-
ilar order of connectivity. Thus, even over our sparse dataset, this
experiment is, we believe, sufficient to demonstrate the utility of
the basic system. Indeed, blanket warnings to cover the “reach” of
our seed user would have to include most of the contiguous United
States, Western Europe, Japan, and other parts of the world. enClo-
sure, however, can enable rapid and targeted communication with
affected users and identification of affected areas.



9 CHALLENGES

We have described enClosure and its properties, applications, and
basic techniques for group messaging across encounter closures as
provided by enClosure. enClosure enables powerful group commu-
nication by leveraging temporal, spatial, and causal relationships
between encounters. There are several interesting open questions,
which we briefly discuss in this section.

Denial of Service enClosure messages are MACed and encrypted
with the secret encounter key to protect their integrity and con-
fidentiality. However, a communication channel, such as a Cloud
key-value store, must ensure that an attacker is unable to delete,
corrupt, or reorder other users’ encrypted messages, or exhaust
resources in the key-value store to deny service to others. Appro-
priate measures must also be in place to protect the key-value store
from simple flooding DoS attacks. The enClosure prototype relies
on a key-value store with a large key space, in which each key is
owned by the device that created it, where the rate of key genera-
tions, puts, and gets is appropriately limited, and non-owners of a
key can only perform non-destructive get operations on the key.

Unwanted communication Like any social communication plat-
form, enClosure must deal with unwanted and inappropriate com-
munication. In enClosure, this problem is more limited than in
other communication systems like the general Internet since cor-
respondents must be connected in the encounter graph. On the
other hand, users may find unwanted communication particularly
disturbing if they know it originates from an anonymous stranger
who may be (or may have been) physically close.

A suitable mechanism for dealing with unwanted and inappropri-
ate communication depends on the specific enClosure application
built on top of enClosure. In general, appropriate mechanisms may
include context-dependent whitelist and blacklist-based filters for
unwanted communication; mechanisms to report and remove inap-
propriate or illegal content; as well as mechanisms to block repeat
offenders. A technical challenge is to effectively block offending
users without requiring all users to reveal a long-term identifier,
which would enable the system to link users’ actions.

Selecting communication partners enClosure is normally bun-
dled with an app that uses enClosure for communication. Therefore,
actions like selecting forwarding constraints are not directly ex-
posed to users. Depending on the nature of an app, however, a user
may have to select communication partners indirectly based on
encounters. We see three broad ways in which this selection can
be presented to users. First, in a spatial view, users browse their
current location or past trajectory on a map, and choose a region
on the map or a segment of their trajectory to select encounters.
Second, in a temporal view, the users browse their calendar and
choose an event or period to select encounters. Finally, in a con-
tact view, the users choose one or more people from among their
contacts to select the encounters that the users had in presence of
these contacts. Combinations or subsets of these views are possible,
depending on the app. For instance, a lost and found app might
allow users to specify the time and/or place they last had the item.

Encounter database security enClosure stores a personal de-
vice’s trajectory, which is sensitive, private information. Moreover,
if an attacker were to gain access to the encounter databases of sev-
eral users, she could determine the times and places where the users
previously met by matching encounter ids across the databases. For
this reason, the encounter database should be stored in encrypted
form. To further reduce threats from malware, the database could
be isolated from the rest of the system using a technology like ARM
TrustZone [7]. Sensitive users may wish to limit their exposure in
case of a breach by storing encounters only for a limited time, given
that the utility of past encounters likely diminishes over time. Users
concerned about being coerced to reveal their encounter database
could additionally use a form of deniable encryption [10, 26] to
conceal the true extent of their encounter database.

Encounter graph mining The encounter graph lends enClo-
sure its powerful communication semantics and strong properties,
and also contains additional rich information. Mining this graph
presents an opportunity, for instance, to establish evidence of pres-
ence or independent identity, to study geographic traffic patterns
and social dynamics, and for forensics. At the same time, allow-
ing such access presents a risk to citizens’ privacy. The graph as a
whole, although materialized in the forwarding agent, is not directly
accessible by any single party. Nevertheless, an attacker could try
to mine the graph from different vantage points by sending enClo-
sure messages with different forwarding constraints and observe
where they are received, similar to the way traceroute can be used
to explore the physical Internet. Understanding how to prevent
such mining for illicit purposes and enabling controlled access for
legitimate purposes is a fascinating subject for future work.

10 CONCLUSION

In this paper, we describe and evaluate enClosure, a novel type of
group communication via encounter closures. enClosure allows
messages to be addressed using spatial, temporal, and causality
constraints that capture a wide variety of application scenarios.

We discuss how to build enClosure on top of existing secure,
privacy-preserving encounter formation between co-located users.
We evaluate the feasibility of continuous encounter formation, and
show that enClosure can easily be supported using current mo-
bile hardware. Finally, using trace-based simulations, we model
real-world application scenarios that benefit from enClosure’s mes-
saging via encounter closures. Even though our simulations are
based on a sparse dataset, our results show that enClosure is pow-
erful, and we expect its utility to grow as encounter systems are
deployed.
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