
To Fill or not to Fill: The Gas Station Problem
∗

Samir Khuller †‡ Azarakhsh Malekian ‡ Julián Mestre ‡

Abstract

In this paper we study several routing problems that generalize shortest paths and the
Traveling Salesman Problem. We consider a more general model that incorporates the actual
cost in terms of gas prices. We have a vehicle with a given tank capacity. We assume that
at each vertex gas may be purchased at a certain price. The objective is to find the cheapest
route to go from s to t, or the cheapest tour visiting a given set of locations. Surprisingly, the
problem of find the cheapest way to go from s to t can be solved in polynomial time and is not
NP -complete. For most other versions however, the problem is NP -complete and we develop
polynomial time approximation algorithms for these versions.

1 Introduction

Optimization problems related to computing the shortest (or cheapest) tour visiting a set of loca-
tions, or that of computing the shortest path between a pair of locations are pervasive in Computer
Science and Operations Research. Typically, the measures that we optimize are in terms of “dis-
tance” traveled, or time spent (or in some cases, a combination of the two). There are literally
thousands of papers dealing with problems related to shortest-path and tour problems.

In this paper, we consider a more general model that incorporates the actual cost in terms of
gas prices. We have a vehicle with a given tank capacity of U . In fact, we will assume that U is
the distance the vehicle may travel on a full tank of gas (this can easily be obtained by taking the
product of the tank size and the mileage per gas unit of the vehicle). Moreover, we may assume
that we start with some given amount of gas µ (≤ U) in the tank. We assume that at each vertex
v gas may be purchased at a price of c(v). This price is the cost of gas per mile. For example if
gas costs $3.40 per gallon and the vehicle can travel for 17 miles per gallon, then the cost per mile
is 20 cents.

At each gas station we may fill up some amount of gas to “extend” the range of the vehicle by a
certain amount. Moreover, since gas prices vary, the cost depends on where we purchase gas from.

In addition to fluctuating gas prices, there is significant variance in the price of gas between
gas stations in different areas. For example, in the Washington DC area alone, the variance in gas
prices between gas stations in different areas (on the same day) can be by as much as 20%. Due to
different state taxes, gas prices in adjacent states also vary. Finally, one may ask: why do we expect
such information to be available? In fact, there are a collection of web sites [2, 1] that currently list
gas prices in an area specified by zip code. So it is reasonable to assume that information about

∗Research supported by NSF grant CCF-0430650.
†Institute for Advanced Computer Studies. University of Maryland, College Park, MD 20742, USA.
‡Department of Computer Science. University of Maryland, College Park, MD 20742, USA.

Email: {samir,malekian,jmestre}@cs.umd.edu

1

gas prices is available. What we are interested in are algorithms that will let us compute solutions
to some basic problems, given this information.

In this general framework, we are interested in a collection of basic questions.

1. (The gas station problem) Given a start node s and a target node t, how do we go from s to t in
the cheapest possible way if we start at s with µs amount of gas? In addition we consider the
variation in which we are willing to stop to get gas at most ∆ times1. Another generalization
we study is the sequence gas station problem. Here, we want to find the cheapest route that
visits a set of p locations in a specified order (for example by a delivery vehicle).

2. (The fixed-path gas station problem) An interesting special case is when we fix the path along
which we would like to travel, and only want the cheapest solution with this restriction. For
this version we develop a faster algorithm.

3. (The uniform cost tour gas station problem) Given a collection of cities T , and a set of gas
stations S at which we are willing to purchase gas, find the shortest tour that visits T . We
have to ensure that we never run out of gas. Clearly this problem generalizes the Traveling
Salesman Problem. The problem gets more interesting when S 6= T , and we address this
case. This models the situation when a large transportation company has a deal with a
certain gas company, and their vehicles may fill up gas at any station of this company at a
pre-negotiated price. Here we assume that gas prices are the same at each gas station. This
could also model a situation where some gas stations with very high prices are simply dropped
from consideration, and the set S is simply the set of gas stations that we are willing to use.

4. (The tour gas station problem) This is the same as the previous problem, except that the
prices at different stations can vary.

Of all the above problems, only the tour problems are NP -hard. For the first two we develop
polynomial time algorithms, and for the tour problems we develop approximation algorithms.

We now give a short summary of the results in the paper:

1. (The gas station problem) For the basic gas station problem, our algorithm runs in time
O(∆n2 log n) and computes an optimal solution. If we want to visit a sequence of p cities
we can find an optimal solution in time O(∆(np)2 log(np)). In addition, we develop a second
algorithm for the all-pairs version that runs in time O(n3∆2). This method is better than
repeating the fixed-destination algorithm n times when ∆ < log n.

2. (The fixed-path gas station problem) For the fixed-path version with an unbounded number
of stops, we develop a faster algorithm that takes O(n log n) time. See Appendix B.

3. (The uniform cost tour gas station problem) Since this problem is NP -hard, we focus on
polynomial time approximation algorithms. We assume that every city has a gas station
within a distance of αU

2 for some α < 1. This assumption is reasonable since in any case,
every city has to have a gas station within distance U

2 , otherwise there is no way to visit it.
A similar assumption is made in the work on distance constrained vehicle routing problem
[14]. We develop an approximation algorithm with an approximation factor of 3

2(1+α
1−α

). We
also consider a special case, namely when there is only one gas station. This is the same

1This restriction makes sense, because in some situations where the gas prices are decreasing as we approach our

destination, the cheapest solution may involve an arbitrarily large number of stops, since we only fill up enough gas

to make it to a cheaper station further down the path.

2

as having a central depot, and requiring the vehicle to return to the depot after traveling a
maximum distance of U . For this special case, we develop an algorithm with factor O(ln 1

1−α
)

and this improves the bound of 3
2(1−α) given by Li et al. [14] for the distance constrained

vehicle routing problem.

4. (The tour gas station problem) For the tour problem with arbitrary prices, we can use the
following scheme: sort all the gas prices in non-decreasing order c1 ≤ c2 ≤ . . . cn. Now guess
a range of prices [ci . . . cj] one is willing to pay, and let βij =

cj

ci
. Let Sij include all the gas

stations v such that ci ≤ c(v) ≤ cj . We can run the algorithm for the uniform cost tour gas
station problem with set Sij and cities T . This will yield a tour Tourij . We observe that

the cost of the tour Tourij is at most O(
βij

1−α
) times the cost of an optimal solution, since its

possible that we always pay a factor βij more than the optimal solution, at each station where
we fill gas. Taking the best solution over all O(n2) possible choices gives a valid solution to
the tour gas station problem.

1.1 Related Work

The problems of computing shortest paths and the shortest TSP tour are clearly the most relevant
ones here and are widely studied, and discussed in several books [13, 18].

One closely related problem is the Orienteering problem [3, 5, 11, 7]. In this problem the goal
is to compute a path of a fixed length L that visits as many locations as possible, starting from a
specified vertex. For this problem, a factor 3 approximation has been given recently by Bansal et al.
[6]. (In fact, they can fix the starting and ending vertices.) This algorithm is used as subroutine for
developing a bicriteria bound for Deadline TSP. By using the 3 approximation for the Orienteering
problem, we develop an O(log |T |) approximation for the single gas station tour problem. This is
not surprising, since we would like to cover all the locations by finding walks of length at most U .

There has been some recent work by Nagarajan and Ravi [17] on minimum vehicle routing that
is closely related to the single gas station tour problem. In this problem, a designated root vertex
(depot) and a deadline D are given and the goal is to use the minimum number of vehicles from
the root so that each location is met by at least one of the vehicles, and each vehicle traverses
length at most D. (In their definition, vehicles do not have to go back to the root.) They give
a 4-approximation for the case where locations are in a tree and an O(log D) approximation for
graphs with integer weights.

Another closely related piece of work is by Arkin et al. [4] where tree and tour covers of bounded
length are computed. What makes their problem easier is that there is no specified root node, or
a set of gas stations one of which should be included in any bounded length tree or tour. Several
pieces of work deal with vehicle routing problems [15, 16, 10] with multiple vehicles, where the
objective is to bound the total cost of the solution, or to minimize the longest tour. However these
problems are significantly easier to develop approximation algorithms for.

2 The gas station problem

The input to our problem consists of a complete graph G = (V, E) with edge lengths d : E → R+,
gas costs c : V → R+ and a tank capacity U . (Equivalently, if we are not given a complete graph
we can define d(u, v) to be the distance between u and v in G.) Our goal is to go from a source
s to a destination t in the cheapest possible way using at most ∆ stops to fill gas. For ease of
exposition we concentrate on the case where we start from s with an empty tank. The case in
which we start with µs units of gas can be reduced to the former as follows. Add a new node s′

3

such that d(s′, s) = U − µs and c(s′) = 0. The problem of starting from s with µs units of gas and
that of starting from s′ with an empty tank using one additional stop are equivalent.

We would also like to note that our strategy yields a solution where the gas tank will be empty
when one reaches a location where gas can be filled cheaply. In practice, this is not safe and one
might run out of gas (for example if one gets stuck in traffic). For that reason we suggest defining
U to be smaller than the actual tank capacity so that we always have some “reserve” capacity.

In this section we develop an O(∆n2 log n) time algorithm for the gas station problem. In addi-
tion, when ∆ = n we show how to solve the problem in O(n3) time for general graphs, and O(n log n)
time for the case where G is a fixed path.

One interesting generalization of the problem is the sequence gas station problem where we are
given a sequence s1, s2, . . . , sp of vertices that we must visit in the specified order. This variant can
be reduced to the s-t version in an appropriately defined graph (see Appendix A).

2.1 The gas station problem using ∆ stops

We will solve the gas station problem using the following dynamic program (DP) formulation2:

C[u, q, g] =
Minimum cost of going from u to t using q refill stops, starting with g

units of gas. We consider u to be one of the q stops.

The main difficulty in dealing with the problem stems from the fact that, in principle, we need
to consider every value of g ∈ [0, U]. One way to avoid this is to discretize the values g can take.
Unfortunately this only yields a pseudo-polynomial time algorithm. To get around this we need to
take a closer look at the structure of the optimal solution.

Lemma 1. Let s = u1, u2, . . . , ul be the refill stops of an optimal solution using at most ∆ stops.
The following is an optimal strategy for deciding how much gas to fill at each stop: At ul fill just
enough to reach t with an empty tank; for j < l

i) If c(uj) < c(uj+1), then at uj fill up the tank.

ii) If c(uj) ≥ c(uj+1), then at uj fill just enough gas to reach uj+1.

Consider a refill stop u 6= s in the optimal solution, and let w be the stop right before u.
Lemma 1 implies that if c(w) > c(u), we reach u with an empty tank, otherwise we reach u with
U − d(w, u) gas. Therefore, in our DP formulation we need to keep track of at most n different
values of gas for u. Let GV (u) be the set of such values, namely

GV (u) = {U − d(w, u) |w ∈ V and c(w) < c(u) and d(w, u) ≤ U} ∪ {0}

The following recurrence allows us to compute C[u, q, g] for any g ∈ GV (u):

C[u, 1, g] =

{

(d(u, t) − g) c(u) if g ≤ d(u, t) ≤ U

∞ otherwise

C[u, q, g] = min
v s.t.

d(u,v)≤U

{

C[v, q − 1, 0] + (d(u, v) − g) c(u) if c(v) ≤ c(u) ∧ g ≤ d(u, v)
C[v, q − 1, U − d(u, v)] + (U − g) c(u) if c(v) > c(u)

The optimal solution can be found as min1≤l≤∆ C[s, l, 0]. The naive way of filling the table
takes O(∆n3) time. However, this can be done more efficiently.

2While fairly elementary, the solution presented in this section is the distilled version of significantly more complex

schemes. In order to fully appreciate it, the reader is encouraged to try to solve the problem before reading on.

4

Theorem 1. There is an O(∆n2 log n) time algorithm for the gas station problem with ∆ stops.

Instead of spending O(n) time computing a single entry of the table, we spend O(log n) amor-
tized time per entry. More precisely, for fixed u ∈ V and 1 < q ≤ ∆ we show how to compute all
entries of the form C[u, q, ∗] in O(n log n) time using entries of the form C[∗, q−1, ∗]. Theorem 1
follows immediately from this.

The DP recursion for C[u, q, g] finds the minimum, over all v such that d(u, v) ≤ U , of terms
that corresponds to the cost of going from u to t through v. Split each of these terms into two parts
based on whether they depend on g or not. Thus we have an independent part, which is either
C[v, q − 1, 0] + d(u, v)c(u) or C[v, q − 1, U − d(u, v)] + Uc(u); and a dependent part, −g c(u).

Our procedure begins by sorting the independent part of every term. Note that the minimum of
these corresponds to the entry for g = 0. As we increase g, the terms decrease uniformly. Thus, to
compute the table entry for g > 0 just subtract g c(u) from the smallest independent part available.
The only caveat is that the term corresponding to a vertex v such that c(v) ≤ c(u) should not
be considered any more once g > d(u, v), we say such a term expires after g > d(u, v). Since the
independent terms are sorted, once the smallest independent term expires we can walk down the
sorted list to find the next vertex which has not yet expired. The procedure is dominated by the
time spent sorting the independent terms which takes O(n log n) time.

Theorem 2. When ∆ = n the problem can be solved in O(n3) time.

We can reduce the problem to a shortest path question on a new graph H. The vertices of H

are pairs (u, g), where u ∈ V and g ∈ GV (u). The edges of H and their weight w(·) are defined by
the DP recurrence: For every u, v ∈ V and g ∈ GV (u) such that d(u, v) ≤ U we have

{

w
(

(u, q), (v, 0)
)

= (d(u, v)−g) c(u) if c(v) ≤ c(u) ∧ g ≤ d(u, v),

w
(

(u, q), (v, U−d(u, v)
)

= (U−g) c(u) if c(v) > c(u).
(1)

Our objective is to find a shortest path from (s, 0) to (t, 0). Note that H has at most n2 vertices
and at most n3 edges. Using Dijkstra’s algorithm [9] the theorem follows.

2.2 Faster algorithm for the all-pairs version

Consider the case in which we wish to solve the problem for all starting nodes i, with µi amount
of gas in the tank initially. Using the method described in the previous section, we get a running
time of O(n3∆ log n) since we run the algorithm for each possible destination. We will show that
for ∆ < log n we can improve this and get a bound of O(n3∆2).

Add new nodes i′ such that d(i′, i) = U − µi and c(i′) = 0. If we start at i with µi units of gas,
it is the same as starting from i′ where gas is free. We fill up the tank to capacity U , and then by
the time we reach i we will have exactly µi units of gas in the tank. (Since gas is free at any node
i′ in any optimal solution we fill up the tank to capacity U). This will use one extra stop.

We define D[i, ℓ, p] as the minimum cost solution to go from i to ℓ (destination), with p stops
to get gas, given that we start with an empty tank at i. Since we start with an empty tank, we
have to fill up gas at the starting point (and this is included as one of the stops). Clearly, we will
also reach ℓ (destination) with an empty tank, assuming that there is no trivial solution, such as
one that arrives at the destination with no fill-ups on the way.

Our goal is to compute D[i′, ℓ,∆ + 1] which is a minimum cost solution to go from i′ to ℓ with
at most ∆ stops in-between. Note that the first fill-up is the one that takes place at node i′, after
that we stop at most ∆ times.

We will now show how to compute D[i, ℓ, p]. There are two options:

5

Refill stop

Start with

empty tank
Reach with

Cost of gas

empty tank

i2

i = i1

i3

i4

k = i5

Figure 1: Example to show Cost(i, k, q) for q = 4.

• If the gas price at the first stop after i (e.g. k) is cheaper than c(i) then we will reach that
station with an empty tank after filling d(i, k) units of gas at i (as long as d(i, k) ≤ U):

D[i, ℓ, p] = D[k, ℓ, p − 1] + d(i, k)c(i)

• If the first place where the cost of gas decreases from the previous stop is the q + 1st stop and
the price is in increasing order in the first q stops then

D[i, ℓ, p] = Cost(i, k, q) + D[k, ℓ, p − q]

We define Cost(i, k, q) as the minimum cost way of going from i to k with at most q stops
to get gas, such that we start at i with an empty tank (and get gas at i, which counts as a
stop) and finally reach k with an empty tank. In addition, the price of gas in intermediate
stations is in increasing order except for the last stop.

We define D[ℓ, ℓ, p] = 0 and for i 6= ℓ we have D[i, ℓ, 1] = c(i)d(i, ℓ) if d(i, ℓ) ≤ U), otherwise
D[i, ℓ, 1] = ∞. In general:

D[i, ℓ, p] = min

{

min
1≤k≤n

1<q≤p

Cost(i, k, q) + D[k, ℓ, p − q], min
1≤k≤n

s.t.d(i,k)≤U

D[k, ℓ, p − 1] + d(i, k)c(i)

}

If we are able to compute Cost(i, k, q) efficiently, then D[i, ℓ, p] can be computed. There are
n2∆ states in the dynamic program, and each one can be computed in time O(n∆). This yields a
running time of O(n3∆2). We will see that the time required to compute Cost(i, k, q) is O(n3∆)
for all relevant choices of i, k, q.

Suppose that in going from i to k we stop at i1 = i, . . . , iq, iq+1 = k (see Fig. 1). Note that
c(i1) ≤ c(i2) ≤ . . . ≤ c(iq), however c(iq) > c(iq+1). In fact, at i1 we will get U amount of gas.
When we reach ij for 1 < j < q, we will get d(ij−1, ij) units of gas (the amount that we consumed
since the previous fill-up) at a cost of c(ij) per unit of gas. The amount of gas we will get at iq
is just enough to reach k with an empty tank. Now we can see that the total cost is equal to
Uc(i1)+d(i1, i2)c(i2)+ . . .+d(iq−2, iq−1)c(iq−1)+(d(iq−1, iq)+d(iq, k)−U)c(iq). Note that the last
term is not negative, since we could not reach k from iq−1 even with a full tank at iq−1, without
stopping to get a small amount of gas.

We compute Cost(i, k, q) as follows. First note that if d(i, k) ≤ U then the answer is d(i, k)c(i).
Otherwise we build a directed graph G′ = (V ∪ VD, E ∪ ED), where V is the set of vertices, and
VD = {i′|i ∈ V }.

6

We define E: add a directed edge from i ∈ V to j for each vertex j ∈ V \ {i} such that
d(i, j) ≤ U and c(i) ≤ c(j). The weight of this edge is d(i, j)c(j).

We define ED as follows: add a directed edge from each j ∈ V to k′ for each vertex k′ ∈ VD\{j′}
such that U < d(j, k) ≤ 2U . The weight of this edge is

min
{

(d(j, z) + d(z, k) − U)c(z) | c(j), c(k) < c(z) and d(j, z), d(z, k) ≤ U
}

Now we can express Cost(i, k, q) as Sp(i, k′, q) + Uc(i) where Sp(i, k′, q) is the shortest path
from i to k′ in the graph G′ using at most q edges.

To see why it is true, we can see that for any given order of stops between i and k (where the
gas price is in increasing order in consecutive stops), the minimum cost is equal to the weight of
the path in G′ that starts from i, goes to the second stop in the given order (e.g., i2) and then
traverses the vertices of V in the same order and from the second last stop goes to k′. It is also
possible that q = 2 and the path goes directly from i = i1 to k in this case, and i2 is the choice for
z that achieves the minimum cost for the edge (i, k′).

For any given path P in G′ between i and k′, if the weight of the path is WP we can find
a feasible plan for filling the tank at the stations so that the cost is equal to WP + Uc(i). It is
enough to fill up the tank at the stations that are in the path, except the last one in which the
tank is filled to only the required level to reach k. We can conclude that Cost(i, k, q) is equal to
Sp(i, k′, q) + Uc(i).

The running time for finding the shortest path between all pairs of nodes with different number
of stops (at most ∆) can be computed in O(n3∆) by dynamic programming [12]. If we precompute
Cost(i, k, q) the running time for computing D[i′, ℓ,∆ + 1] is O(n3∆2) assuming we start at i with
µi amount of gas. So in general the running time is O(n3∆2).

3 The uniform cost tour gas station problem

In this section we study a variant of the gas station problem where we must visit a set of cities T

in arbitrary order. We consider the case where gas costs the same at every gas station, but some
cities may not have a gas station.

More formally, the input to our problem consists of an undirected graph G = (V, E) with edge
lengths d : E → R+, a set of cities T ⊆ V , a set of gas stations S ⊆ V , and tank capacity U for
our vehicle. The objective is to find a minimum length tour that visits all cities in T , and possibly
some gas stations in S. We are allowed to visit a location multiple times if necessary. We require
any segment of the tour of length U to contain at least one gas station, this ensures we never run
out of gas. We call this the uniform cost tour gas station problem. We assume that we start with
an empty tank at a gas-station.

The problem is NP -hard as it generalizes the well-known traveling salesman problem: just set
the tank capacity to the largest distance between any two cities and let T = S. In fact, there is
a closer connection between the two problems: If every city has a gas station, i.e., T ⊆ S, we can
reduce the gas station problem to TSP. Consider a TSP instance on T under metric ℓ : T ×T → R+,
where ℓ(x, y) is the minimum cost of going between cities x and y starting with an empty tank
(this can be computed by standard techniques). Since the cost of gas is the same everywhere, a
TSP tour can be turned into a driving plan that visits all cities with the same cost and vice-versa.
Let OPT denote an optimal solution, and c(OPT) its cost.

As mentioned earlier, we can use the algorithm for the uniform cost case to derive an approx-
imation algorithm for the general case by paying a factor β in the approximation ratio. Here β

7

is the ratio of the maximum price that an optimal solution pays for buying a unit of gas, to the
minimum price it pays for buying a unit of gas (in practice this ranges from 1 to 1.2).

Unfortunately this reduction to TSP breaks down when cities are not guaranteed to have a gas
station. Consider going from x to y, where x does not have a gas station. The distance between x

and y will depend on how much gas we have at x, which in turn depends on which city was visited
before x and what route we took to get there.

An interesting case of the tour gas station problem is that of an instance with a single gas
station. This is also known as the distance constrained vehicle routing problem and was studied by
Li et al. [14] who gave a 3

2(1−α) approximation algorithm, where the distance from the gas station

to the most distant city is αU
2 , for some α < 1. We improve this by providing an O(log 1

1−α
)

approximation algorithm (see Appendix C). Without making any assumptions on α we show that
a greedy algorithm that finds bounded length tours visiting the most cities at a time is a O(log |T |)-
factor approximation (see Appendix D).

For the general case we make the assumption that every city has a gas station at distance at
most αU

2 . This assumption is reasonable, because if a city has no gas station within distance U
2 ,

there is no way to visit it. We show a 3(1+α)
2(1−α) approximation for this problem. Note that when

α = 0, this gives the same bound as the Christofides method for TSP.

3.1 The tour gas station problem

We assume that every city x has a gas station g(x) at distance at most αU
2 . We will define the

distance from x to g(x) as dx.
Recall that it is assumed that the price of the gas is the same at all the gas stations. We define

a new distance function for the distance between each pair of cities. The distance ℓ is defined as
follows: For each pair of cities x and y, ℓ(x, y) is the length of the shortest traversal to go from x to
y starting with U −dx amount of gas and reaching y with dy amount of gas. If d(x, y) ≤ U −dx−dy

then we can go directly from x to y, and ℓ(x, y) = d(x, y). Otherwise, we can compute this as
follows. Create a graph whose vertex set is S, the set of gas stations. To this graph add x and y.
We now add edges from x to all gas stations within distance U −dx from x. Similarly we add edges
from y to all gas stations within distance U − dy to y. Between all pairs of gas stations, we add
an edge if the distance between the pair of gas stations is at most U . All edges have length equal
to the distance between their end points. The length of the shortest path in this graph from x to
y will be ℓ(x, y). Note that the shortest path (in general) will start at x and then go through a
series of gas stations before reaching y. This path yields a valid plan to drive from x to y without
running out of gas, once we reach x with U − dx units of gas. When we reach y, we have enough
gas to go to gy. Also note that ℓ(x, y) = ℓ(y, x) since the path is essentially “reversible”.

In Fig. 2 we illustrate the definition of function ℓ(x, y). We assume here that all distances are
Euclidean. Note that from x, we can only go to B and not A since we start from x with U − dx

units of gas. From B, we cannot go to D since the distance between B and D is more than U , even
though the path through D to y would be shorter. From C we go to E since going through F will
give a longer path, since from F we cannot go to y directly.

Note that the function ℓ may not satisfy triangle inequality. To see this, suppose we have three
cities x, y, z. Let d(x, y) = d(y, z) = U

2 . Let dx = dy = dz = U
4 and d(x, z) = U . We first observe

that ℓ(x, y) = ℓ(y, z) = U
2 . However, if we compute ℓ(x, z), we cannot go from x to z directly since

we only have 3
4U units of gas when we start at x and need to reach z with U

4 units of gas. So we
have to visit gy along the way, and thus ℓ(x, z) = 3

2U .
The algorithm is as follows:

8

F
C

A

B

D

E

dy

y

U − dx

gx

x
dx

gy

U − dy

Figure 2: Function ℓ(x, y). The path shown is the shortest valid path from x to y.

• Create a new graph G′, with a vertex for each city. For each pair of cities x, y compute ℓ(x, y)
as shown earlier.

• Find the minimum spanning tree in G′. Also find a minimum weight perfect matching M ′ on
the odd degree vertices in the MST. Combine the MST and M ′ to find an Euler tour T .

• Start traversing the Eulerian tour. Add trips to the close gas stations whenever they are
needed. (Details on this follow.)

It can be shown that the total weight of the MST is less than the optimal solution cost. Suppose
x1, . . . , xn is the order in which the optimal solution visits the cities. One can see that the cost of
going from xi to xi+1 in the optimal solution is at least ℓ(xi, xi+1). Since the collection of edges
(xi, xi+1) forms a spanning tree, we can be conclude that the weight of the MST ≤ c(OPT). Next

we show that the cost of M ′ is at most c(OPT)
2 . Suppose the odd degree vertices are in the optimal

solution in the order o1, . . . , ok. We can see that ℓ(oi, oi+1) is at most equal to the distance we
travel in the optimal solution to go from oi to oi+1. So the cost of minimum weighted matching

on the odd degree vertices is at most c(OPT)
2 . So the total cost of the Eulerian tour T is at most

3c(OPT)
2 .
Now we need to transform the Eulerian tour into a feasible plan. First, every edge (x, y) in

T is replaced with the actual plan to drive from x to y that we found when computing l(x, y).
If d(x, y) ≤ U − dx − dy the plan is simply to go straight from x to y, we call these direct edges.
Otherwise the plan must involve stopping along the way in one or more gas stations, we call these
indirect edges. Notice that the cost of this plan is exactly that of the Eulerian tour. Unfortunately,
as we will see below this plan need not be feasible.

Define a strand, to be a sequence of consecutive cities in the tour connected by direct edges.
If a city is connected with two indirect edges, then it forms a strand by itself. Suppose the ith

strand has cities x1
i , . . . , x

k
i . To this we add x0

i (xk+1
i), the last (first) gas station in the indirect

edge connecting x1
i (xk

i) with the rest of the tour. Each strand now starts and ends with a gas
station. We can view the tour as a decomposition into strands as shown in Fig. 3. Note that if
the distance between x0

i and xk+1
i is more than U the overall plan is not feasible. To fix we add

for every city a refill trip to its closest gas station and then greedily try to remove them, while

9

indirect edge

refill trip

direct edge

city

gas stationx2
i x3

i x4
i xk

i xk+1
ix0

i

. . .

x1
i

Figure 3: Figure to decomposition of solution into strands.

maintaining feasibility, until we get a minimal set of refill trips. Let us bound the extra cost these
trips incur.

Lemma 2. Let Li be the length of the ith strand. Then the total distance traveled on the refill trips
of cities in the strand is at most 2α

1−α
Li.

Proof. Assume there are qi refill trips in this strand. Label the cities with refill trips to their nearest

gas stations x
j1
i , . . . , x

jqi

i . Also label x0
i as x

j0
i and xk

i as x
jqi+1

i . The cost of each refill trip is at most

αU . So the total cost of the refill trips is at most αUqi. Also note that |T (x
jp

i , x
jp+2

i)| ≥ (1 − α)U

(otherwise the refill trip at x
jp+1

i can be dropped). This gives us:

2Li >
∑

0≤p≤qi−1

|T (x
jp

i , x
jp+2

i)| ≥ qi(1 − α)U =⇒ qi ≤
2Li

(1 − α)U

So the ratio of the cost of the refill trips to the cost of the strand is at most 2α
1−α

.

The cost of the solution is the total length of the strands (which is the length of the tour) plus
the total cost of the periodic refill trips. (Note that without loss of generality we can assume that
our tour always starts from a gas station. For the case with only direct edges, there is exactly one
strand, starting and ending at the first city with the gas station).

In other words, the total cost of the solution is:

ℓ(T) +
∑

i

αUqi ≤

(

1 +
2α

1 − α

)

ℓ(T) ≤

(

1 + α

1 − α

)

3

2
c(OPT).

Theorem 3. There is a solution of cost at most 3 (1+α)
2 (1−α)c(OPT) for the tour gas station problem.

4 Conclusions

Current problems of interest are to explore improvements in the approximation factors for the
special cases of Euclidean metrics, and planar graphs. In addition we would also like to develop
faster algorithms for the single source and destination case, perhaps at the cost of sacrificing
optimality of the solution.

References

[1] http://www.aaa.com/.

[2] http://www.gasbuddy.com/.

10

[3] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained geometric network
optimization. In Proceedings of the fourteenth annual symposium on Computational geometry
(SCG ’98), pages 307–316, 1998.

[4] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max vehicle
routing problems. Journal of Algorithms, 59(1):1–18, 2006.

[5] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for minimum-
weight k-trees and prize-collecting salesmen. SIAM Journal on Computing, 28(1):254–262,
1998. Preliminary version appeared in STOC 1995.

[6] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for deadline-TSP
and vehicle routing with time-windows. In Proceedings of the 36th annual ACM symposium
on Theory of computing (STOC’04), pages 166–174, 2004.

[7] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation
algorithms for orienteering and discounted-reward TSP. In Proceedings of the 44rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS’03), page 46, 2003.

[8] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie-Mellon University,
1976.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. M.I.T.
Press and McGraw-Hill, 2001.

[10] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for some routing
problems. SIAM Journal on Computing, 7(2):178–193, 1978.

[11] B. L. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics, 34:
307–318, 1987.

[12] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publications, 2001.

[13] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The Traveling Salesman
Problem : A Guided Tour of Combinatorial Optimization. John Wiley & Sons, 1985.

[14] C.-L. Li, D. Simchi-Levi, and M. Desrochers. On the distance constrained vehicle routing
problem. Operations Research, 40(4):790–799, 1992.

[15] A. R. K. M. Haimovich. Bounds and heuristics for capacitated routing problems. Mathematics
of Operations Research, 10(4):527–542, 1985.

[16] L. S. M. Haimovich, A.G. Rinnoooy Kan. Analysis of heuristics for vehicle routing problems.
Vehicle Routing: Methods and Studies, pages 47–61, 1988.

[17] V. Nagarajan and R. Ravi. Minimum vehicle routing with a common deadline. In Proceedings of
the 9th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX’06), pages 212–223, 2006.

[18] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover Publications, Inc.,
1998.

11

A The sequence gas station problem

Suppose instead of a given source and destination, we are asked to find the cheapest way to start
from a given location, visit some a set of locations in a given order during the trip and then reach
the final destination. We define the problem in a formal way as follows:

Given an edge weighted graph G = (V, E) and a list of vertices s0, . . . , sp, we wish to find the
cheapest way to start from s0, visit s1, . . . , sp−1 in this order and then reach sp.

Note that we cannot reduce this problem to p separate source-destination subproblems and
combine the solutions directly. To see why, consider the case where the gas price is very high at
some station si and on the way from si−1 to si there is a very cheap gas station near si. If we want
to use the solution for the separate subproblems and then combine them, we will reach si with an
empty tank so we have to fill the tank at si since we are out of gas; but the optimal solution is to
reach si with some gas in the tank to make it possible to reach next station after si without filling
the tank at si. between some node sj and sj+1 is not an optimal way that would be chosen in the

To solve this problem, we will make a new graph as follows: Make p − 1 new copies of the
current graph G and call them G1, . . . , Gp−1. G will become G0. Call vi in Gj as vi,j . Now connect
Gi and Gi+1 by merging si+1,i and si+1,i+1 into one node. The solution to the original problem is
to find the cheapest way to go from s1,0 to sp,p−1 in the new graph. we can see that any path in
this graph that goes from s1,0 to sp,p−1 will pass through si+1,i ∀i 0 ≤ i ≤ p − 1.

B Fixed-path

Number the nodes along the path from 1 to n, so that we start at 1 and want to reach n. Without
loss of generality assume we start with an empty tank. We present a fast, yet simple, exact algorithm
for the case where the number stops is unbounded.

Theorem 4. There is an O(n log n) time algorithm for the fixed-path gas station problem with an
unbounded number of stops.

The first step consists in finding, for each gas station i, its previous and next station. Define
prev(i) as the station j ≤ i with the cheapest gas among those that satisfy d(j, i) ≤ U . Similarly
let next(i) be the station j > i with the cheapest gas such that d(i, j) ≤ U . Any eventual tie is
broken by favoring the station closest to n.

To compute these two values we keep a priority queue on the stations that lie on a moving
window of length U . Starting at 1, we slide the window toward n inserting and removing stations
as we go along. Right after inserting into (removing from) the queue some station i, asking for the
minimum in the queue gives us prev(i) (next(i)). The whole procedure takes O(n log n) time.

Station i is said to be a break point if prev(i) = i. Identifying such stations is important because
we can break our problem into smaller subproblems (to go from one break point to the next) and
then paste these solutions to get a global optimal solution.

Lemma 3. Let i be a break point. There is an optimal solution that reaches i with an empty tank.

Proof. Let j < i be the last station we stopped to get gas before reaching i. Since i is a break point,
we have c(i) ≤ c(j). Therefore at j we fill just enough gas to reach i with an empty tank.

Now consider the subproblem of going from i to k starting and ending with an empty tank, such
that there is no break point in (i, k). The following algorithm solves our subproblem optimally.

12

drive-to-next(i, k)

1 Let x be i.

2 If d(x, k) ≤ U then just fill enough gas to go k.

3 Otherwise, fill up and drive to next(x). Let x be next(x), go to step 2.

The key observation is that for every station x considered by the algorithm, if d(x, k) > U then
c(x) ≤ c(next(x)). Since all stations in a range of U after x offer gas at cost at least c(x), an
optimal solution fills up at x and drives up to the next cheapest station, i.e., next(x).

Remark: even though drive-to-next solves our special subproblem optimally, the strategy
does not work in general. To see why consider an instance where c(i) > c(i + 1) and d(1, n) = U .
While the optimum stops on every station, drive-to-next will tell us to go straight from 1 to n.

C Single Gas Station

In this version, there is a single gas station and our vehicle starts there. It must return to the gas
station before it runs out of gas after traveling a distance of at most U from the previous fill-up. Fix
constants (ρ1, ρ2, . . . , ρl). Our algorithm first visits cities at distance ρ1

U
2 from the gas station (we

refer to these cities as C0). Beyond ρ1
U
2 we work in iterations. In the ith iteration we visit cities

(Ci) that lie at distance
(

U
2 ρi,

U
2 ρi+1

]

from the gas station. If we make 1−ρi

1−ρi+1
= γ a constant, after

⌈

logγ
1−ρ1

1−α

⌉

iterations we will have visited all cities. We will argue that in each iteration we travel

O(c(OPT)) distance, which gives us the desired result. The ρi values will be chosen to minimize
the constants involved to get the following theorem.

Theorem 5. There is a 6.362 ln 1
1−α

− 1.534 factor approximation for the uniform cost tour gas
station problem with a single station, for α ≥ 0.5.

Notice that that for α ≥ 0.5 the above approximation ratio is ≥ 1.
First we consider the cities C0 at distance ρ1

U
2 or less from the gas station. Find a TSP tour

on the gas station and C0 and chop it into segments of length (1−ρ1)U . The distance from the gas
station to any location is at most ρ1

U
2 and so the segments can be traversed with loops of length

at most U . In fact we can start chopping the TSP tour at the gas station and make the first and
the last segment be of length (1 − ρ1

2)U . The total length of these tours will be:

cost(C0) ≤

⌈

cost(TSP) − ρ1U

(1 − ρ1)U

⌉

U ≤
cost(TSP)

(1 − ρ1)
≤

3

2(1 − ρ1)
· OPT

The second inequality holds if we assume ρ1 ≥ .5. The third comes from using Christofides
algorithm [8] to find the TSP tour and the fact that OPT is a valid TSP tour.

Notice that it does not work well when cities are far away from the gas station (α ≈ 1). In our
scheme those far away cities will be visited in a different fashion. In the ith iteration we visit cities
Ci at distance (ρi

U
2 , ρi+1

U
2] by finding a collection of paths of length at most (1−ρi+1)U spanning

Ci and then turning these segments into loops.
Suppose we knew that in the optimal solution there are ki loops that span some city in Ci—this

quantity can be guessed. First we run Kruskal’s algorithm but stop once the number of components
becomes ki, let Ri be the resulting forest. Each tree is doubled to form a loop and then chopped

13

into segments of length (1− ρi+1)U . Let k′
i be the number of such segments. The cost of the these

loops is therefore,
cost(Ci) ≤ 2 cost(Ri) + k′

i ρi+1U

Lemma 4. The number of segments k′
i is at most (2γ + 1)ki.

Proof. The edges in Ri form a minimum weight forest with ki components, we can relate this to
the cost of OPT. Consider turning each loop in OPT into a path by keeping the stretch between
the first and the last city in Ci. The set P of such paths is a forest with ki components, therefore
cost(Ri) ≤ cost(P) ≤ (1 − ρi)Uki

Using this we can bound the number of segments we get after doubling and chopping Ri:

k′
i ≤

⌊

2 cost(Ri)

(1 − ρi+1)U

⌋

+ ki ≤

⌊

2 (1 − ρi)Uki

(1 − ρi+1)U

⌋

+ ki ≤ (2 γ + 1) ki

We now bound the cost of visiting the cities in Ci.

cost(Ci) ≤ 2 cost(Ri) + k′
i ρi+1U

≤ 2 cost(OPT) − 2kiρiU + (2 γ + 1) ki ρi+1U

≤ 2 cost(OPT) + (2 γ − 1) (cost(OPT) − kiρiU) − 2kiρiU + (2 γ + 1) ki ρi+1U

≤ (2 γ + 1) cost(OPT) + (2 γ + 1) ki (ρi+1 − ρi)U

Let k be the number of loops in the optimal solution whose length is greater than ρ1U , notice
that loops spanning cities beyond ρ1

U
2 must be at least this long, therefore k ≥ ki for all i. Adding

up over all iterations we get:

l
∑

i=1

cost(Ci) ≤ (2 γ + 1) (l cost(OPT) + k(ρl − ρ1)U)

≤ (2 γ + 1)

(

l +
1 − ρ1

ρ1

)

cost(OPT)

After l =
⌈

logγ
1−ρ1

1−α

⌉

iterations we will have visited all cities at a cost of:

[

3

2(1 − ρ1)
+ (2γ + 1)

(

logγ

1 − ρ1

1 − α
+ 1 +

1

ρ1
− 1

)]

cost(OPT)

We can use numerical optimization to minimize the approximation ratio in the expression from
above. The values ρ1 = 0.7771 and γ = 3.1811 gives us Theorem 5.

D A Greedy Algorithm

In this case we do not make any assumption on the maximum distance from a city to its closest
gas station. We will use the Point-to-Point Orienteering path as the basis of the greedy scheme. In
the Point-to-Point Orienteering problem, each vertex in the graph has a prize. The goal is to find
a path P of maximum length d (predefined) between two given vertices s and t so that the total
prize of P is maximized. A 3-approximation algorithm for this problem is described in [6]. The
greedy algorithm works as follows: At the beginning the prize of all the cities are initialized to 1.

14

As the algorithm proceeds whenever we visit a city in a tour, we reset its prize to 0. The greedy
algorithm will repeatedly choose the Point-to-Point Orienteering path that begins and ends at s

with maximum length U , until the prize of all the vertices are reset to zero. Using an argument
similar to that in set-cover it can be shown that both the total cost and the number of cycles given
by this approach is at most O(log |T |) times the optimum cost.

Theorem 6. The greedy method gives an O(log |T |) approximation guarantee for both the total cost
and the number of the cycles in the single gas station problem.

15

