
1 An Environment-Projection Approach to Radiosity for

Mesh-Connected Computers

A. Varshney

J.F. Prins

ABSTRACT
We describe a progressive re�nement radiosity algorithm for highly-parallel mesh-
connected SIMD or MIMD computers. The technique is based on environment-
projection and scales easily to large machines and datasets. Form-factor computations
can be performed using local communication by mapping the single-plane across the
processor mesh. We report on the performance of an implementation on the MasPar
MP-1, and discuss some potential improvements related to load balancing.

1.1 Introduction

In recent years, the radiosity method has gained widespread acceptance in the computa-
tion of view-independent global illumination for (primarily) architectural datasets. One of
its important applications has been to provide realistic lighting for datasets of proposed
buildings generated from architectural drawings. By navigating through one of these vir-
tual buildings, the architectural design can be evaluated for usability, tra�c, and aesthetic
appeal [3]. Any necessary modi�cations, to remove shortcomings or to test new ideas, can
be made and the design re-evaluated. One of the major bottlenecks in this design cycle
is the computation-intensive radiosity process. With the increasing availability of parallel
computers, attempts are being made to parallelize this process to achieve interactive rates
on non-trivial datasets (of the order of thousands of polygons), thereby making the whole
design process a more meaningful one.
In this paper we describe a radiosity algorithm for highly-parallel mesh-connected com-

puters that can provide rapid progressive estimations of global illumination of large
datasets. The organization of the remainder of this paper is as follows. We start with
a brief overview of radiosity that introduces the terminology we will be using. Next we
describe the parallelism available in the computation of radiosity and classify previous
work done in parallel radiosity. Next we describe our approach and its implementation on
a 4K processor MasPar MP-1. We conclude with a discussion of (as-yet unimplemented)
potential improvements of our approach.

1.2 Radiosity Overview

Radiosity Bj for a surface j is de�ned as the total rate at which radiant energy leaves
that surface in terms of energy per unit time and per unit area [15]. In an environment
composed of n di�use surfaces the radiosity of a surface j is given by

Bj = Ej + �j

nX
i=1

BiFji (1:1)

where Ej is the rate of direct energy emission from the surface j per unit time and per
unit area, and �j is the re
ectivity of the surface j. The summation in the equation 1.1
represents the total
ux incident on surface j from all other surfaces in the environment.

j

energy leaving surface i that is incident on surface j.
Considering all n surfaces, this yields a system of n linear equations in the n unknowns

B
1
; ::; Bn shown in Figure 1.1. The Fij are determined from the geometry of the environ-

ment and the Ej, the emittances of the light sources in the environment, are assumed
given.

0
BBBB@

1� �
1
F
11

��
1
F
12

. . . ��
1
F
1n

��
2
F
21

1 � �
2
F
22

. . . ��
2
F
2n

...
...

. . .
...

��nFn1 ��nFn2 . . . 1� �nFnn

1
CCCCA

0
BBBB@

B
1

B
2

...
Bn

1
CCCCA
=

0
BBBB@

E
1

E
2

...
En

1
CCCCA

FIGURE 1.1. The Radiosity System of Equations

The form-factor Fij is equal to the fraction of the base of a unit-radius hemisphere
centered on surface i that is covered by the projection of surface j on that hemisphere.
The projection-surface, whether a hemisphere or its approximation - the hemi-cube [9],
is subdivided into smaller elements, say pixels, for the purposes of sampling the environ-
ment. The delta form-factor �fq for a pixel q on the projection-surface is de�ned as the
contribution of that pixel to the form-factor value. The magnitude of the contribution de-
pends on pixel location. The total form-factor Fij for surface i with respect to the surface
j is the sum of all delta form-factors that are covered by the visible portion of surface j
on the projection-surface.
Since the coe�cient matrix is diagonally dominant1, iterative methods for solving the

system of equations in Figure 1.1, are preferred over direct methods such as the Gaussian
elimination.
In an iterative method, a given variable Bi is updated based on the current approxima-

tion to the solution. This corresponds to a \gathering" of all the energy incident on the
surface i. The method of progressive re�nement [8] is a variant of the Gauss-Seidel itera-
tive method that computes an update to all variables based on the current approximation
to Bi. This corresponds to \shooting" all the energy from surface i. By choosing surfaces
with high emittance �rst, this method provides good approximations for radiosity of all
surfaces at early stages.

1.3 Parallel Approaches and Classi�cation of Previous Work

The radiosity problem contains many opportunities to employ parallelism in the compu-
tation of its solution.
First, at the level of updating the approximate solution, we may employ a method other

than the sequential Gauss-Seidel method of successive displacements. A simultaneous
displacement method for solving the radiosity system of equations, such as the Jacobi
method, permits all variables' updates to be computed in parallel. In a hybrid method
a set of k out of a total of n variables can be chosen as the variables to be solved for in
the current iteration. Each of these k variables is solved for in parallel using the values of
the previous iteration for all variables. Then in the next iteration, these new values of k

1the participating surfaces are assumed to be planar so that Fii = 0 for all i

To perform an update of the solution using surface i, either in the shooting or in the
gathering approach, all form-factors Fij are needed and may be computed in parallel.
Since form-factor Fij is in turn the sum of those delta form-factors where j is visible, this
computation may also be performed in parallel for all j.
Figure 1.2 summarizes the parallelism available in the problem. The levels of parallelism

are nested. One can go down these levels with increasing availability of processors to
exploit increasing parallelism.

The Radiosity System (Ax = b)

Shooting Approach:

x
1
; . . . ; xn =

Pk
p=1 s(xip ; Fip1; . . . ; Fipn)

Gathering Approach:
xip = g(x

1
; . . . ; xn; Fip1; . . . ; Fipn)

Fr1; Fr2; . . . Frj ; . . . ; Frn

Frj =
P

�fq
j is visible to pixel q

These can be solved
in groups of k
1 � k � n

Each update p, 1 � p � k

can be computed in parallel

The form-factors can be
computed in parallel, for

r = ip; 1 � p � k

The visibility of surface j

w.r.t surface r
can be computed in parallel

Degree of Parallelism

Low

High

?

�
�

�
��

�
�
�
��

@
@
@
@@

�
�

�
��

�
�
�
��

@
@
@
@@

�
�

�
��

�
�
�
��

@
@
@
@@

FIGURE 1.2. Parallelism in Radiosity

The existing work in parallel radiosity can be classi�ed into three non-disjoint groups
based on the level at which parallelism is exploited.

� Level 1 Parallelism: This involves computing several updates in parallel, each using
one row of the form-factor matrix. This group includes [6, 7, 11, 16].

� Level 2 Parallelism: Form-factors within a row are calculated in parallel. This group
includes [4, 13].

� Level 3 Parallelism: Delta form-factors are computed in parallel. Baum and Winget
[4] achieve this by using the parallel rasterization hardware on the Silicon Graphics
workstations.

The level at which radiosity is parallelized in these implementations is based on the
extent to which a particular level of parallelization �ts the underlying architecture.
Another architecture-dependent design decision is the computation of Fij. In a ray-

casting approach, rays are �red through points on the hemi-cube to determine the visible

and reaching a visible surface j contributes �fq to Fij [2, 16]. Alternatively, by �ring a
number of rays from surface i directly to sample points on surface j, the delta form-factors
for successful rays may be added to give Fij [13, 17].
The environment-projection approach involves projection of all surfaces in the environ-

ment onto the hemisphere surface or an approximation of it (the hemi-cube or a single-
plane), and determining the visible surfaces at each pixel. The form-factor Fij is the sum
of all delta form-factors �fq where surface j is visible [2, 4, 6, 7, 11]. The determination
of surface visibility at a particular pixel is done by depth-bu�ering the surfaces whose
projections cover that pixel. The visible surface-id at each pixel is stored in an item-bu�er

for that pixel.
Unlike a ray-casting approach, where the sampling is done from the surface i, the

environment-projection approach samples the environment to the surface i. This guar-
antees that within an error tolerance equal to the resolution of the projection-plane, no
surfaces will be missed in form-factor calculations.
Our objective in this work was to choose an approach for a highly-parallel mesh-

connected SIMD computer. In the ray-casting approach, the critical component is the e�-
ciency of the ray-polygon intersection technique. An exhaustive approach that intersects a
ray with all polygons works very well [13, 14, 21], but is limited to small datasets. Delany
[10] proposes a more e�cient space-subdivision ray-tracing method, but it has high cost
and limited applicability in our setting. Consequently, we investigated an environment-
projection approach. By mapping the projection-surface onto the processor mesh we can
exploit coherence in the projection of a polygon onto the projection-surface. We use a
shooting method as opposed to a gathering method to get progressive approximations for
the entire scene.
Our current implementation parallelizes the radiosity computation at the second and

third levels described in Figure 1.2, but could be extended to obtain concurrency at all
levels.

1.4 MasPar MP-1 Overview

Even though the algorithm described in this paper is applicable to all mesh-connected
computers, its implementation was carried out on the MasPar MP-1. This section pro-
vides a brief overview of the MasPar MP-1 before describing the implementation. A more
detailed description of the MasPar MP-1 can be found in [18].
The MasPar MP-1 is a SIMD computer with a scalar execution unit and a data-parallel

unit (DPU) which is an array of processing elements (PEs). Each PE has access to 16KB
of local memory and can perform
oating-point operations at a rate of about 75KFlops.
The PEs are organized in a 2D mesh with toroidal wrap-around on all edges. Each

PE has direct connections to its 8 nearest neighbors and these are used for providing
fast local communication (xnet). Relatively slower global communication is provided by a
separate multistage crossbar network (router). This provides the lower-bandwidth general
communication between arbitrary PEs.
The machine on which the implementation was carried out has 4096 PEs.

1.5 The Algorithm

The polygons in the model are subdivided into patches and spread out equally over the
PE-array. Each patch has a shooting energy which initially equals its emittance. The

the radiosity of the patches has been approximated to within a prede�ned threshold.
Shooting patch selection phase

Since the progressive re�nement approach is used, at each iteration we simultaneously
distribute the energy from the k patches with highest energies. In the current implemen-
tation k = 1, yielding a single shooting patch i that is easily found using a global parallel
reduceMax operation over the shooting energies of all the patches.
Projection phase

During an initialization phase, a matrix that transforms the world-coordinate system to
the patch's projection-surface is computed and stored with every patch. The transforma-
tion matrix stored with a shooting patch is used by all the other patches to compute their
projection in parallel onto the projection-surface of the shooting patch. The projection-
surface in our implementation is a single plane that is able to catch 90% of the light energy
emanating from the energy shooting patch. The idea of approximating a hemi-cube by a
single-plane has been described in [19].
The single-plane is mapped across the processor mesh to maintain an orthogonal and

monotonic correspondence between x and y on the plane and the processor indices such
that the single-plane covers the entire mesh. Thus, neighboring pixels on the single-plane
fall onto either the same processor (if the resolution of the single-plane is greater than
the number of processors available) or onto an immediately neighboring processor. This
mapping was chosen to exploit the coherency expected among the nearby pixels on the
single-plane.
Each transformed patch determines its upper left corner on the single-plane and sends

a description of the patch to the corresponding processor on the mesh using the router
network.
Scan-conversion phase

Patch descriptions are spread-out downwards on the single-plane through the xnet to
give single-processor thick strips. All strips (each corresponding to one patch) are then
spread-out to the right in parallel, again using the xnet. Hence z-bu�ering at a processor
is a matter of �nding the patch description with minimum z value in the processor. The
pixels that fall within the bounding-box but outside of the actual projection are not
considered for z-bu�ering. To conserve space and improve performance, accumulation of
the patch-descriptions is done only during the downward spread. During the horizontal
spread, z-bu�ering is done on the
y as the patch descriptions travel across the processor
mesh.
Form-factor calculation phase

Once the z-bu�ering is done, a surviving description of patch j at a pixel q on the
single-plane must add �fq to Fij. This is accomplished with a send to patch j of �fq
using addition as a combining function. This operation is implemented e�ciently, and
in a way that is independent of the distribution of patches on the single-plane, using a
single sort operation on the mesh followed by parallel-pre�x sum and a send on the router
network.
Radiosity update phase

The shooting energy of patch i now updates the radiosity of each patch j using

Bj = Bj +Bi�jFijAi=Aj (1:2)

where Ai and Aj are the areas of patches i and j respectively. The shooting energy of
patch i is set to zero. After this, the next iteration begins. This continues till the total
shooting energy in the environment drops below a speci�ed threshold.

e�cient fashion. Rather than retaining Fij with each patch j, we may save the delta form-
factors for a particular shooting patch as a single layer across the PE-mesh. Then when
a shooting patch is reused, one can get the form-factors by just adding these delta form-
factors in parallel as described before. The advantage of using this strategy is that it
takes the same amount of memory (of the order of the resolution of the single-plane)
regardless of the dataset size and serves as a useful way to capitalize on the sparsity of
the form-factor matrix and the �niteness of sampling.

1.6 Results

The results of our implementation for the Sitterson 365 o�ce model with 3959 patches
are summarized graphically in Fig 1.3 up to a 95% convergence of the solution. We de�ne
convergence C in iteration i as: Ci = 1� si

s1
where si is the energy of the shooting patch

in the ith iteration. The single-plane used had a side-to-height ratio of 3, allowing 91:7%
of the shooting-patch's energy to be shot out per iteration. The patches for this model
were derived from the initial polygons by slicing them to a global grid of 15 � 15 in2

along each face. The resultant patches were then output in the form of triangles or convex
quadrilaterals.

400

800

1200

1600

2000

2400

2800

3200
6

Shooting
Patch
Energy

1 2 4 8 16 32 64 128 256
-

Iterations (log scale)

c
c
c
c
c
c
c
c
c
c
c
@
@
@@
c
ccaaa

A

@
@
@
@
@
@
@
@
@
Q
Q
Q
Q
QQ
b
b
bbXXX

B

\
\
\
\
\
\
\
\
\
\\HHHHHHaaaa```̀

C

A: 64 x 64 resolution
B: 128 x 128 resolution
C: 256 x 256 resolution

FIGURE 1.3. Convergence for di�erent Single-Plane resolutions

The times for each iteration varied depending upon the resolution of the single-plane
being used. The average times per iteration for di�erent single-plane resolutions for the
Sitterson 365 o�ce model with 3959 patches are summarized in Table 1.1.

TABLE 1.1. Average Iteration Times

Single-Plane Resolution Time (seconds)

64� 64 0.24

128� 128 0.45

256� 256 2.15

to decrease faster than it does with a coarser resolution. The reason is that with a �ner
resolution single-plane, the distribution of the energy is more accurate and this leads to
a faster convergence. Thus, if the resolution is coarse enough, the small patches that are
in front of other patches would be covering whole pixels on the single-plane whereas they
should have been covering only fractions of these. Thus, these patches get a higher share
of energy than is due to them. Similarly, there would be some other patches that would
be receiving lesser energy than their actual share. This energy imbalance is corrected as
the resolution becomes �ner.

1.6.1 Load-balancing

One of the important issues in any parallel implementation is that of load-balance. In our
implementation, load-balance is an issue in the scan-conversion phase. This is because
each processor on the mesh performs z-bu�ering for some contiguous region of pixels on
the single-plane, and the projection of patches onto this plane may not be homogeneously
distributed. Consequently some processor may z-bu�er a larger number of patches than
others and thereby increase the time to complete the scan-conversion phase. This can be
particularly true in simple implementations on a SIMD machine where synchronization
may come at every local communication operation.
To assess the extent of load-imbalance with our data set, we measured the maximum

item-bu�er depth (that is, the maximum number of patches in any item-bu�er) across all
processors at two points in the scan-conversion phase:
(a) After the patch description is sent to the upper left corner of the bounding box of its
projection on the single-plane but before the downward spread begins.
(b) After the downward spread is done but before the horizontal spread begins.
With 3959 patches and 4096 item-bu�ers in the single-plane, a perfectly distributed

projection would yield approximately one patch per item-bu�er at point (a) in the scan-
conversion phase. Figure 1.4 shows the distribution of actual maximum item-bu�er depths
in the two stages above over all iterations and for di�erent resolutions of the single-plane.

5 10 15 20 25 30
Max Item−Buffer Depth

0 5 10 15 20 25 30
Max Item−Buffer Depth

0 35 40 45
0

10

20

30

40

0

10

20

30

40

Number

of

Iterations

Number

of

Iterations

(a) Before Downward Spread (b) Before Horizontal spread

256 x 256
128 x 128
64 x 64

256 x 256
128 x 128
64 x 64

FIGURE 1.4. Load-balance during Scan-Conversion

TABLE 1.2. Average Item-Bu�er Depths

Single Plane Resolution Stage (a) Ave Max Depth Stage (b) Ave Max Depth

64� 64 10.6 20.4

128� 128 6.5 11.3

256� 256 4.4 10.6

The average over all iterations of maximum item-bu�er depths for the two stages are
shown in Table 1.2. From these values it is clear that there is substantial room for per-
formance improvement through load balancing.

1.6.2 Form-factor Reuse

We have outlined a method to store form-factors in our approach in Section 1.5. Whether
storing the form-factors for later reuse is worthwhile or not is an interesting question
for all radiosity implementations. This is especially so for parallel implementations where
per-processor memory limitations can restrict the sizes of problems that can be e�ciently
attempted.We investigated the number of form-factors being reused in our sample dataset.
The results appear in Table 1.3. As can be seen from the table, most form-factors are not
reused till a very late stage in the iteration process. By then the convergence is almost
complete and advantages if any to be gained from storing the form-factors are minimal
for a convergence as high as 95%.

TABLE 1.3. Form-Factor Reuse

Iteration No of form-factors reused Convergence %

13 2 53.03

32 3 76.57

59 3 88.76

101 3 94.40

177 6 97.20

392 39 98.61

1105 216 99.30

2462 810 99.65

1.7 Discussion

In this paper we have presented an environment-projection radiosity approach for mesh-
connected SIMD and MIMD computers and an initial implementation. The approach
builds on �ne-grain parallelism available in the radiosity calculation, and hence is well-
suited to highly-parallel architectures like the MasPar MP-1 as well as larger-grain parallel
machines like the Intel Touchstone. We are encouraged by the results of the implementa-
tion but see substantial room for improvement. Some possible approaches follow.
Although we have not implemented the available parallelism at the top level of the

classi�cation scheme in section 1.3 such an addition would �t into our approach rather well.
In particular, several projection-planes, corresponding to several shooting patches, can be
mapped onto the processor mesh simultaneously. Patches can be projected onto each of
the single-planes and z-bu�ering for several single-planes carried out simultaneously. In
fact, we believe this would improve load-balance in the z-bu�ering phase because the

Another way to improve load-balance is to spread the item-bu�ers of a high-resolution
single-plane more uniformly across the mesh by using a \cut-and-stack" mapping rather
than a hierarchical mapping of the single-plane onto the mesh. Under the cut-and-stack
mapping neighboring pixels of the single-plane are always in neighboring processors (and
hence more spread-out). Toroidal topology of the processor mesh facilitates the imple-
mentation of this mapping.
Perhaps the best way to achieve load-balance is to dynamically adapt the mapping of

the single-plane onto the processor mesh based on a sampling of the transformed patches
or on the basis of the initial routing of top-left corners of the transformed patches. The
size of the pixels on the single-plane could be altered to equalize the number of patches
that project on them. If we constrain the mapping to remain orthogonal and monotonic
using the techniques in [5], the e�cient z-bu�ering technique can still be used. Thus, the
single-plane would be divided �ner in the regions where a large number of patches have
their edges projected. This should yield better sampling than the modi�ed single-plane
method [19], and better load balancing of the computation.
In the area of application of this work, the real-time navigation and modi�cation of ar-

chitectural datasets, there is an opportunity to reduce the patches that must be considered
in a radiosity calculation using visibility-cell techniques [1, 12, 20]. A large dataset, say
a building, is subdivided into a number of visible cells (that would correspond to rooms)
that have minimal interactions across the boundaries. Radiosity computations could then
proceed in parallel across each cell, periodically transferring energies across the inter-cell
portals (doors and windows for instance). This would not only parallelize the radiosity
computations (at the top level of parallelization according to Section 1.3), but would also
help in reducing the size of the system of equations to solve within any cell.

Acknowledgements:

We would like to acknowledge the constructive ideas, suggestions, and encouragement
from Professor Frederick P. Brooks, Jr. at various stages of this work. We would also
like to acknowledge the support and cooperation of the University of North Carolina at
Chapel Hill Walkthrough Team. In particular, we would like to thank John Alspaugh for
his model Sitterson 365 o�ce.
This work has been supported in part by the following grants: DARPA Contract

DAEA18-90-C, NSF Grant #CCR-8609588, ONR Grants #N00014-86-K-0680 and
#N00014-90-K-0004. Acquisition of MasPar MP-1 was supported by grants from ONR,
NIH Contract #CA47982 and the State of North Carolina.

[1] J. M. Airey. Increasing Update Rates in the Building Walkthrough System with Au-

tomatic Model-Space Subdivision and Potentially Visible Set Calculation. PhD the-
sis, Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, USA, 1990.

[2] J. M. Airey and M. Ouh-Young. Two Adaptive Techniques Let Progressive Radiosity
Outperform the Traditional Radiosity Algorithm. Technical Report TR89-020, De-
partment of Computer Science, University of North Carolina at Chapel Hill, Chapel
Hill, USA, 1989.

[3] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards Image Realism with In-
teractive Update Rates in Complex Virtual Building Environments. In Computer

Graphics{Special Issue on 1990 Symposium on Interactive 3D Graphics, volume 24,
no. 2, pages 41{50. ACM SIGGRAPH, 1990.

[4] D. R. Baum and J. M. Winget. Real Time Radiosity Through Parallel Processing and
Hardware Acceleration. In Computer Graphics{Special Issue on 1990 Symposium on

Interactive 3D Graphics, volume 24, no. 2, pages 67{76. ACM SIGGRAPH, 1990.

[5] E. Biagioni and J. Prins. Scan-Directed Load-Balancing for Mesh-Connected Highly-
Parallel Computers. In Unstructured Scienti�c Computation on Scalable Multipro-

cessors. MIT-Press, 1991.

[6] A. Chalmers and D. J. Paddon. Parallel Processing of Progressive Re�nement Ra-
diosity Methods. In Second Eurographics Workshop on Rendering, Barcelona, Spain,
May 1991.

[7] S. E. Chen. A Progressive Radiosity Method and its Implementation in a Distributed
Processing Environment. Master's thesis, Program of Computer Graphics, Cornell
University, Ithaca, USA, Jan 1989.

[8] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A Progressive Re-
�nement Approach to Fast Radiosity Image Generation. In Computer Graphics:

Proceedings of SIGGRAPH'88, volume 22, no. 4, pages 75{84. ACM SIGGRAPH,
1988.

[9] M. F. Cohen and D. P. Greenberg. The Hemi-Cube: A Radiosity Solution for Com-
plex Environments. In Computer Graphics: Proceedings of SIGGRAPH'85, volume
19, no. 3, pages 31{40. ACM SIGGRAPH, 1985.

[10] H.C. Delany. Ray Tracing On A Connection Machine. In 1988 International Con-

ference on Supercomputing, pages 659{667, St. Malo, France, July 1988.

[11] M. Feda and W. Purgathofer. Progressive Re�nement Radiosity on a Transputer
Network. In Second Eurographics Workshop on Rendering, Barcelona, Spain, May
1991.

[12] T.A. Funkhouser, C.H. S�equin, and S. J. Teller. Management of Large Amounts of
Data in Interactive Building Walkthroughs. In Computer Graphics{Special Issue on

1992 Symposium on Interactive 3D Graphics, pages 11{20. ACM SIGGRAPH, 1992.

Laboratory, Connection Machine Facility, Washington, D.C., USA, Aug 1991.

[14] H. R. Good. Personal Communication, 1991.

[15] C. M. Goral, K. E. Torrance, and D. P. Greenberg. Modeling the Interaction of Light
Between Di�use Surfaces. In Computer Graphics: Proceedings of SIGGRAPH'84,
volume 18, no. 3, pages 213{222. ACM SIGGRAPH, 1984.

[16] P. Guitton, J. Roman, and C. Schlick. Two Parallel Approaches for a Progressive
Radiosity. In Second Eurographics Workshop on Rendering, Barcelona, Spain, May
1991.

[17] P. Hanrahan, D. Salzman, and L. Aupperle. A Rapid Hierarchical Radiosity Al-
gorithm. In Computer Graphics: Proceedings of SIGGRAPH'91, volume 25, no. 4,
pages 197{206. ACM SIGGRAPH, 1991.

[18] MasPar Computer Corporation, Sunnyvale, California, USA. MasPar MP-1 Stan-

dard Programming Manuals.

[19] R. J. Recker, D. W. George, and D. P. Greenberg. Acceleration Techniques for Pro-
gressive Re�nement Radiosity. In Computer Graphics{Special Issue on 1990 Sympo-

sium on Interactive 3D Graphics, volume 24, no. 2, pages 59{66. ACM SIGGRAPH,
1990.

[20] S. J. Teller and C. H. S�equin. Visibility Preprocessing for Interactive Walkthroughs.
In Computer Graphics: Proceedings of SIGGRAPH'91, volume 25, no. 4, pages 61{69.
ACM SIGGRAPH, 1991.

[21] A. Varshney. Parallel Radiosity Techniques for Mesh-Connected SIMD Computers.
Technical Report TR91-028, Department of Computer Science, University of North
Carolina at Chapel Hill, Chapel Hill, USA, July 1991.

