
c
1996 IEEE, Reprinted with permission from Proceedings of theIEEE Visualization 96

Dynamic View-Dependent Simplification for Polygonal Models

Julie C. Xia Amitabh Varshney

State University of New York at Stony Brook

Abstract

We present an algorithm for performing view-dependent simplifi-
cations of a triangulated polygonal model in real-time. The simpli-
fications are dependent on viewing direction, lighting, and visibil-
ity and are performed by taking advantage of image-space, object-
space, and frame-to-frame coherences. A continuous level-of-detail
representation for an object is first constructed off-line. This repre-
sentation is then used at run-time to guide the selection of appropri-
ate triangles for display. The list of displayed triangles is updated
incrementally from one frame to the next. Our approach is more ef-
fective than the current level-of-detail-based rendering approaches
for most scientific visualization applications where there are a lim-
ited number of highly complex objects that stay relatively close to
the viewer.

1 Introduction

The scientific visualization and virtual reality communities have al-
ways faced the problem that their “desirable” visualization dataset
sizes are one or more orders of magnitude larger than what the hard-
ware can display at interactive rates. Recent research on simplifi-
cation of polygonal objects to generate multiresolution hierarchies
has been motivated by attempts to bridge the gap between the de-
sired and the actual hardware performance, through algorithmic and
software techniques.

Research on simplification of general three-dimensional polyg-
onal objects (non-convex, non-terrain, possibly high genus) has
spanned the entire gamut of highly local to global algorithms, with
several approaches in between that have both local and global steps.
Local algorithms work by applying a set of local rules, which pri-
marily work under some definition of a local neighborhood, for
simplifying an object. The local rules are iteratively applied un-
der a set of constraints and the algorithm terminates when it is no
longer possible to apply the local rule without violating some con-
straint. The global algorithms optimize the simplification process
over the whole object, and are not necessarily limited to the small
neighborhood regions on the object. Some of the local approaches
have been – vertex deletion by Schroederet al [21], vertex col-
lapsing by Rossignac and Borrel [20], edge collapsing by Hoppe
et al [17] and Guéziec [11], triangle collapsing by Hamann [12],
and polygon merging by Hinker and Hansen [15]. Some of the
global approaches have been – redistributing vertices over the sur-
face by Turk [22], minimizing global energy functions by Hoppeet
al [17], using simplification envelopes by Varshney [23] and Cohen
et al [4], and wavelets by DeRoseet al [7]. The issue of preser-
vation or simplification of the genus of the object is independent
of whether an algorithm uses local rules, or global rules, or both,
to simplify. Recent work by Heet al [13] provides a method to
perform a controlled simplification of the genus of an object.

Simplification algorithms such as those mentioned above are
iteratively applied to obtain a hierarchy of successively coarser

Contact address: Department of Computer Science, State University of
New York at Stony Brook, Stony Brook, NY 11794-4400, Email: varsh-
ney@cs.sunysb.edu

approximations to the input object. Such multiresolution hierar-
chies have been used in level-of-detail-based rendering schemes to
achieve higher frame update rates while maintaining good visual re-
alism. These hierarchies usually have a number of distinct levels of
detail, usually5 to10, for a given object. At run time, the perceptual
importance of a given object in the scene is used to select its appro-
priate level of representation from the hierarchy [3, 5, 6, 9, 19, 18].
Thus, higher detail representations are used when the object is per-
ceptually more important and lower detail representations are used
when the object is perceptually less significant. Transitions from
one level of detail to the next are typically based on simple image-
space metrics such as the ratio of the image-space area of the object
(usually implemented by using the projected area of the bounding
box of the object) to the distance of the object from the viewer.

Previous work, as outlined above, is well-suited for virtual real-
ity walkthroughs and flythroughs of large and complex structures
with several thousands of objects. Examples of such environments
include architectural buildings, airplane and submarine interiors,
and factory layouts. However, for scientific visualization applica-
tions where the goal often is to visualize one or two highly detailed
objects at close range, most of the previous work is not directly ap-
plicable. For instance, consider a biochemist visualizing the surface
of a molecule or a physician inspecting the iso-surface of a human
head extracted from a volume dataset. It is very likely during such a
visualization session, that the object being visualized will not move
adequately far away from the viewer to allow the rendering algo-
rithm to switch to a lower level of detail. What is desirable in such
a scenario is an algorithm that can allow several different levels of
details to co-exist across different regions of the same object. Such
a scheme needs to satisfy the following two important criteria:

� It should be possible to select the appropriate levels of detail
across different regions of the same object in real time.

� Different levels of detail in different regions across an object
should merge seamlessly with one another without introduc-
ing any cracks and other discontinuities.

In this paper we present a general scheme that can construct such
seamless and adaptive level-of-detail representations on-the-fly for
polygonal objects. Since these representations are view-dependent,
they take advantage of view-dependent illumination, visibility, and
frame-to-frame coherence to maximize visual realism and minimize
the time taken to construct and draw such objects. An example of
using our approach is shown in Figure 1.

2 Previous Work

Adaptive levels of detail have been used in terrains by Grosset
al [10] by using a wavelet decomposition of the input data samples.
Wavelet space filters are defined that allow changes to the quality
of the surface approximations in locally-defined regions. Thus, the
level of detail around any region can adaptively refine in real-time.
This work provides a very elegant solution for terrains and other
datasets that are defined on a regular grid.

(a) Sphere with 8192 triangles (uniform LOD)

(b) Sphere with 512 triangles (uniform LOD)

(c) Sphere with 537 triangles (adaptive LOD)

Figure 1: Uniform and Adaptive Levels of Detail

Some of the previous work in the area of general surface simpli-
fication has addressed the issue of adaptive approximation of gen-
eral polygonal objects. Turk [22] and Hamann [12] have proposed
curvature-guided adaptive simplification with lesser simplification
in the areas of higher surface curvature. In [23, 4], adaptive surface
approximation is proposed with different amounts of approximation
over different regions of the object. Gu´eziec [11] proposes adaptive
approximation by changing the tolerance volume in different re-
gions of the object. However in all of these cases, once the level
of approximation has been fixed for a given region of the object,
a discrete level of detail corresponding to such an approximation
is statically generated. No methods have been proposed there that
allow free intermixing of different levels of detail across an object
in real time in response to changing viewing directions.

Work on surface simplification using wavelets [7, 8] and pro-
gressive meshes [16] goes a step further. These methods produce
a continuous level-of-detail representation for an object in contrast
to a set of discrete number of levels of detail. In particular, Hoppe
[16] outlines a method for selective refinement – i.e. refinement of
a particular region of the object based upon view frustum, silhou-
ette edges, and projected screen-space area of the faces. Since the
work on progressive meshes by Hoppe [16] is somewhat similar to
our work we overview his method next and discuss how our method
extends it.

Progressive meshes offer an elegant solution for a continuous
resolution representation of polygonal meshes. A polygonal mesh
M̂ = Mk is simplified into successively coarser meshesM i by
applying a sequence of edge collapses. An edge collapse trans-
formation and its dual, the vertex split transformation, is shown in
Figure 2.

Vertex Split

 Edge Collapse

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

Figure 2: Edge Collapse and Vertex Split

Thus, a sequence ofk successive edge collapse transformations
yields a sequence of successively simpler meshes:

M
k collapsek�1

! M
k�1 collapsek�2

! : : :M
1 collapse0! M

0 (1)

We can retrieve the successively higher detail meshes from the
simplest meshM0 by using a sequence of vertex-split transforma-
tions that are dual to the corresponding edge collapse transforma-
tions:

M
0 split0! M

1 split1! : : :M
k�1 splitk�1

! (M̂ = M
k) (2)

Hoppe [16] refers to(M0; fsplit0; split1; : : : ; splitk�1g) as
a progressive meshrepresentation. Progressive meshes present a
novel approach to storing, rendering, and transmitting meshes by
using a continuous-resolution representation. However we feel that
there is some room for improvement in adapting them for perform-
ing selective refinement in an efficient manner. In particular, fol-
lowing issues have not yet been addressed by progressive meshes:

� The sequence of edge collapses is aimed at providing good
approximationsM i to (M̂ = Mk). However, if a sequence
of meshesM i are good approximations tôM under some
distance metric, it does not necessarily mean that they also
provide a “good” sequence of edge collapse transformations
for selective refinement. Let us consider a two-dimensional
analogy of a simple polygon as shown in Figure 3. Assume
that verticesv0; v6; v7; andv8 are “important” vertices (un-
der say some perceptual criteria) and can not be deleted. An
approach that generates approximations based on minimizing
distances to the original polygon will collapse vertices in the
orderv1 ! v2; v2 ! v3; v3 ! v4; v4 ! v5; v5 ! v6 to
get a coarse polygon(v0; v6; v7; v8). Then if selective refine-
ment is desired around vertexv1, verticesv6; v5; v4; v3; v2
will need to be split in that order before one can get to ver-
texv1. An approach that was more oriented towards selective
refinement might have collapsedv1 ! v2; v3 ! v4; v5 !
v6; v2 ! v4; v4 ! v6 for better adaptive results, even though
the successive approximations are not as good as the previous
ones under the distance metric.

� Since the edge collapses are defined in a linear sequence, the
total number of child links to be traversed before reaching the
desired node isO(n).

� No efficient method for incrementally updating the selective
refinements from one frame to the next is given. The reverse
problem of selective refinement – selective simplification too
is not dealt with.

v0

v1

v2

v3

v4

v5

v6

v7v8

Figure 3: Good versus Efficient Selective Simplification

In this paper we provide a solution to the above issues with
the aim of performing real-time adaptive simplifications and refine-
ments. We define a criterion for performing edge collapses that per-
mits adaptive refinement around any vertex. Instead of constructing
a series of sequential edge collapses we construct amerge treeover
the vertices of mesĥM so that one can reach any child vertex in
O(log n) links. We then describe how one can perform incremental
updates within this tree to exploit frame-to-frame coherence, view-
dependent illumination, and visibility computations.

3 Image-Space-Guided Simplification

Level-of-detail-based rendering has thus far emphasized object-
space simplifications with minimal feedback from the image space.
The feedback from the image space has been in the form of very
crude heuristics such as the ratio of the screen-space area of the
bounding box of the object to the distance of the object from the
viewer. As a result, one witnesses coarse image-space artifacts such
as the distracting “popping” effect when the object representation
changes from one level of detail to the next [14]. Attempts such
as alpha-blending between the old and the new levels of detail dur-
ing such transitions serve to minimize the distraction at the cost of
rendering two representations. However alpha blending is not the
solution to this problem since it does not address the real cause –
lack of sufficient image-space feedback to select the appropriate lo-
cal level of detail in the object space; it merely tries to cover-up the
distracting artifacts.

Increasing the feedback from the image space allows one to
make better choices regarding the level of detail selection in the
object-space. We next outline some of the ways in which image-
space feedback can influence the level of detail selection in the
object-space:

� Local Illumination: Increasing detail in a direction per-
pendicular to, and proportional to, theillumination gradient
across the surface is a good heuristic [1]. This allows one to
have more detail in the regions where the illumination changes
sharply and therefore one can represent the highlights and the
shadows well. Since surface normals play an important role in
local illumination, one can take advantage of the coherence in
the surface normals to build a hierarchy over a continuous res-
olution model that allows one to capture the local illumination
effects well.

� Screen-Space Projections:Decision to keep or collapse an
edge should depend upon the length of its screen-space pro-
jection instead of its object-space length. At a first glance this
might seem very hard to accomplish in real-time since this
could mean checking for the projected lengths of all edges at

every frame. However, usually there is a significant coher-
ence in the ratio of the image-space length to the object-space
length of edges across the surface of an object and from one
frame to the next. This makes it possible to take advantage of
a hierarchy built upon the the object-space edge lengths for an
object.

� Visibility Culling: During interactive display of any model
there is usually a significant coherence between the visible
regions from one frame to the next. This is especially true
of the back-facing polygons that account for almost half the
total number of polygons and do not contribute anything to
the visual realism. A hierarchy over a continuous resolution
representation of an object allows one to significantly simplify
the invisible regions of an object, especially the back-facing
ones.

� Silhouette boundaries: Silhouettes play a very important
role in perception of detail. Screen-space projected lengths of
silhouette edges (i.e., edges of whose adjacent triangles is vis-
ible and the other is invisible), can be used to very precisely
quantify the amount of smoothness of the silhouette bound-
aries. Again, a hierarchy built upon a continuous-resolution
representation of a object allows one to do this efficiently.

4 Construction of Merge Tree

We would like to create a hierarchy that provides us a continuous-
resolution representation of an object and allows us to perform real-
time adaptive simplifications over the surface of an object based
upon the image-space feedback mechanisms mentioned in Sec-
tion 3. Towards this end we implement amerge treeover the
vertices of the original model. In our current implementation, the
merge tree stores the edge collapses in a hierarchical manner. How-
ever, as we discuss in Section 7 the concept of a merge tree is a
very general one and it can be used with other local simplification
approaches as well. Note that the merge tree construction is done as
an off-line preprocessing step before the interactive visualization.

4.1 Basic Approach

In Figure 2, the vertexc is merged with the vertexp as a result
of collapsing the edge(pc). Conversely, during a vertex split the
vertex c is created from the vertexp. We shall henceforth refer
to c as the child vertex of the parent vertexp. The merge tree is
constructed upwards from the high-detail meshM̂ to a low-detail
meshM0 by storing these parent-child relationships in a hierarchi-
cal manner over the surface of an object.

At each levell of the tree we determine parent-child relationships
amongst as many vertices at levell as possible. In other words, we
try to determine all vertices that can be safely merged based on
criterion defined in Section 4.3. The vertices that are determined to
be the children remain at levell and all the other vertices at level
l are promoted to levell + 1. Note that the vertices promoted to
level l + 1 are a proper superset of the parents of the children left
behind at levell. This is because there are vertices at levell that are
neither parents nor children. We discuss this in greater detail in the
context ofregions of influencelater in this section. We apply the
above procedure recursively at every level until either (a) we are
left with a user-specified minimum number of vertices, or (b) we
cannot establish any parent-child relationships amongst the vertices
at a given level. Case (b) can arise because in determining a parent-
child relationship we are essentially collapsing an edge and not all
edge collapses are considered legal. For a detailed discussion on
legality of edge collapses the interested reader can refer to [17].

Since in an edge collapse only one vertex merges with another,
our merge tree is currently implemented as a binary tree. In Fig-
ure 4, the three highest detail levels for a sphere are shown colored
by the corresponding vertices in red, green, and yellow. The re-
maining levels are shown colored in blue.

Figure 4: Three Levels in a Merge Tree for a Sphere

To construct a balanced merge tree we note that the effects of
an edge collapse are local. Let us define theregion of influenceof
an edge(v0; v1) to be the union of triangles that are adjacent to
eitherv0 or v1 or both. The region of influence of an edge is the
set of triangles that can change as an edge is gradually collapsed to
a vertex, for example, in a morphing. Thus, in Figure 2 as vertex
c merges to vertexp, (or p splits toc), the changes to the mesh are
all limited to within the region of influence of edge(pc) enclosed
by n0; n1; : : : n6. Note that all the triangles in region of influence
will change if verticesp andc are merged to form an intermediate
vertex, say(p + c)=2.

To create a reasonably balanced merge tree we try to collapse as
many edges as possible at each level such that there are no com-
mon triangles in their respective regions of influence. Since this
step involves only local checks, we can accomplish this step in time
linear in the number of triangles at this level. If we assume that
the average degree (i.e. the number of neighboring triangles) of
a vertex is6, we can expect the number of triangles in an edge’s
region of influence to be10. After the collapse this number of tri-
angles reduces to8. Thus the number of triangles can be expected
to reduce roughly by a factor of4=5 from a higher-detail level to a
lower-detail level. Thus the total time to build the tree is given by
n+ 4n

5
+ 16n

25
+ : : : = O(n).

To decide in what order to collapse the edges, we sort the edges
by their edge lengths and collapse the shortest edges first. Collaps-
ing an edge causes the neighboring edges to change their lengths.
However as mentioned above, since changes are local we can main-
tain the sorted edge lengths in a heap for efficient updates.

4.2 Storing Subtree Attribute Ranges

To allow real-time refinement and simplification we can store at ev-
ery parent node (i.e. a node that splits off a child vertex) of the
merge tree, a range of scalar and vector attributes of the children
in the subtree below it. Then image-space feedback can be used
to determine if this range of scalar and vector attributes merits a re-
finement of this node or not. We explain this process of incremental
refinement and simplification in greater details in Section 5.1.

In our current implementation every merge tree nodev stores
only the Euclidean distances to its child and parent that determine
whenv’s child will merge intov and whenv will merge into its

parent. These distances are built up during the merge tree creation
stage. However, we plan to extend this to store the surface normal
and color ranges also, so that the incremental simplification and
refinement stages can take advantage of the coherences across these
vector attributes.

4.3 Merge Tree Dependencies

By using techniques outlined in Section 5.1, one can determine
which subset of vertices is sufficient to reconstruct an adaptive
level-of-detail for a given object. However, it is not simple to de-
fine a triangulation over these vertices and guarantee that the tri-
angulation will not “fold back” on itself or otherwise represent a
non-manifold surface (even when the original was not so). Figure 5
shows an example of how an undesirable folding in the adaptive
mesh can arise even though all the edge collapses that were deter-
mined statically were correct.A shows the initial state of the mesh.
While constructing the merge tree, we first collapsed vertexv2 to
v1 to get meshB and then collapsed vertexv3 to v4 to get mesh
C. Now suppose at run-time we determined that we needed to dis-
play verticesv1; v2, andv4 and could possibly collapse vertexv3 to
v4. However, if we collapsev3 to v4 directly, as in mesh D, we get
a mesh fold where there should have been none. Checks for such
conditions are too expensive to be performed at run-time.

A B

CD

v1
v3 v1(v2) v3

v1(v2)

v4(v3)

v4 v4

v4(v3)

v2
v1

v2

Figure 5: Mesh Folding Problem

To solve the above problem we introduce the notion of depen-
dencies amongst the nodes of a merge tree. Thus, the collapse of an
edgee is permitted only when all the vertices defining theboundary
of the region of influence of the edgee exist and are adjacent to the
edgee. As an example, consider Figure 2. Vertexc can merge with
vertexp only when the verticesn0; n1; : : : ; nk exist and are adja-
cent top andc. From this we determine the following edge collapse
dependencies, restricting the level difference between adjacent ver-
tices:

1. c can collapse top, only whenn0, n1, . . . ,nk are present as
neighbors ofp andc for display.

2. n0; n1; : : : ; nk can not merge with other vertices, unlessc
first merges withp.

Similarly, to make a safe split fromp to p andc, we determine
the following vertex split dependency:

1. p can split toc andp, only whenn0; n1; : : : ; nk are present
as neighbors ofp for display.

2. n0; n1; : : : ; nk can not split, unlessp first splits top andc.

The above dependencies are followed during each vertex-split or
edge collapse during real-time simplification. These dependencies
are easily identified and stored in the merge tree during its creation.
Considering Figure 5 again, we can now see that collapse of vertex
v3 to v4 depends upon the adjacency of vertexv1 to v3. If vertex
v2 is present thenv1 will not be adjacent tov3 and thereforev3 will
not collapse tov4. Although having dependenciesmight sometimes
give lesser simplification than otherwise, it does have the advantage
of eliminating the expensive floating-point run-time checks entirely.
The basic idea behind merge tree dependencies has a strong resem-
blance to creatingbalanced subdivisionsof quad-trees as presented
by Baumet al in [2] where only a gradual change is permitted from
regions of high simplifications to low simplifications. Details of
how these merge tree dependencies are used during run-time are
given in Section 5.1.

5 Real-Time Triangulation

Once the merge tree with dependencies has been constructed off-
line it is easy to construct an adaptive level-of-detail mesh repre-
sentation during run-time. Real-time adaptive mesh reconstruction
involves two phases – determination of vertices that will be needed
for reconstruction and determination of the triangulation amongst
them. We shall refer to the vertices selected for display at a given
frame asdisplay verticesand triangles for display asdisplay trian-
gles. The phases for determination of display vertices and triangles
are discussed next.

5.1 Determination of display vertices

We next describe how we take into account the screen-space pro-
jections in determining which regions of an object to simplify more
and which ones less. The heuristics for determining lighting, visi-
bility culling, and silhouette boundaries are similar. As mentioned
earlier, every merge tree nodev stores a Euclidean distance for
splitting a vertex to its child as well as the distance at which it will
merge to its parent. The former is called thedownswitch distance
and the latter is called theupswitch distance. If the maximum pos-
sible screen-space projection of the downswitch distance at the ver-
tex v in the object space is greater than some pre-set thresholdT ,
we permit refinement atv and recursively check the children ofv.
However, if the maximum possible screen-space projection of the
upswitch distance atv in the object space is less than the threshold
T , it means that this region occupies very little screen space and
can be simplified, so we markv asinactivefor display. We follow
this procedure and select all those vertices for display that either
(a) are leaf nodes and none of their parents have been marked as
inactive, or (b) have their immediate child marked as inactive. This
determines the initial list of vertices selected for display.

We then follow the merge dependencies from the initial list
of display vertices to select the final set of display vertices in
the following manner. If a vertexv is in the initial list of dis-
play vertices and for it to be created (via a vertex split), the
verticesvd0 ; vd1 ; : : : ; vdk had to be present, we add the vertices
vd0 ; vd1 ; : : : ; vdk to the list of display vertices and recursively con-
sider their dependencies. We continue this process until no new
vertices are added.

When determining the vertices for display in framei + 1 we
start from the vertex list for display used in framei. We have found
a substantial frame-to-frame coherence and the vertex display list
does not change substantially from one frame to the next. There are
minor local changes in the display list on account of vertices either
refining or merging with other vertices. These are easily captured
by either traversing the merge tree up or down from the current

vertex position. The scalar and vector attribute ranges stored in
merge tree nodes can be used to guide refinements if the difference
in the display vertex lists from one frame to the next becomes non-
local for any reason. We compute the list of display vertices for first
frame by initializing the list of display vertices for frame0 to be all
the vertices in the model and then proceeding as above.

5.2 Determination of display triangles

If the display triangles for framei are known, determination of the
display triangles for framei+ 1 proceeds in an interleaved fashion
with the determination of display vertices for framei+1 from frame
i. Every time a display vertex of framei merges in framei+ 1 we
simply delete and add appropriate triangles to the list of display
triangles as shown in Figure 6. The case where a display vertex in
framei splits for framei+ 1 is handled analogously. Incremental
determination of display triangles in this manner is possible because
of the dependency conditions mentioned in Section 4.3. The list of
display triangles for the first frame is obtained by initializing the list
for frame0 to be all the triangles in the model and then following
the above procedure.

n1n0

n2

n3n4

n5

n6

n0

n2

n3n4

n5

n6

c

p p

n1

- -

-
-

- +
+ + Edge Collapse

Figure 6: Display Triangle Determination

6 Results and Discussion

We have tried our implementation on several large triangulated
models and have achieved encouraging results. These are summa-
rized in Table 1 The images of sphere, crambin, and bunny models
that were produced for the above times are shown in Figures 1, 7
and 8 respectively. All of the above timings are in milliseconds on
a Silicon Graphics Indigo2 Impact with a 250 MHz R4400 proces-
sor and 128MB RAM. It is easy to see that the time to traverse the
merge tree and construct the list of triangles to be displayed from
frame to frame is fairly small. This is because of our incremen-
tal computations that exploit image-space, object-space, and frame-
to-frame coherences. The above times hold as the user moves the
model, or the lights around. The triangulation of the model changes
dynamically to track the highlights as well as the screen-space pro-
jections of the faces.

As can be seen from the merge tree depths, the trees are not per-
fectly balanced. However, they are still within a small factor of the
optimal depths. This factor is the price that has to be paid to in-
corporate dependencies and avoid the expensive run-time floating-
point checks for ensuring good triangulations. For each dataset,
we continued the merge tree construction till8 or fewer vertices
were left. As expected, the factor by which the number of vertices
decreases from one level to the next tapers off as we reach lower-
detail levels since there are now fewer alternatives left to counter
the remaining dependency constraints. As an example, for sphere,
only 64 vertices were present at level30 and it took another12
levels to bring down the number to8. If the tree depth becomes a
concern one can stop sooner, trading-off the tree traversal time for
the display time.

Uniform Resolution Adaptive Resolution
Dataset Number Display Number of Number of Tree Display Total

of Tris Time (msec) Display Tris Tree Levels Traversal (msec) Time (msec) Time (msec)
Sphere 8192 36 537 42 6 3 9
Bunny 69451 420 3615 65 90 20 110

Crambin 109955 530 7433 61 56 49 105
Phone 165963 1020 4351 63 29 36 65

Table 1: Adaptive Level of Detail Generation Times

An interesting aspect of allowing dependencies in the merge tree
is that one can now influence the characteristics of the run-time
triangulation based upon static edge-collapse decisions during pre-
processing. As an example, we have implemented avoidance of
slivery (long and thin) triangles in the run-time triangulation. As
Guéziec [11], we quantify the quality of a triangle with areaa and
lengths of the three sidesl0; l1; andl2 based on the following for-
mula:

Quality =
4
p
3a

l2
0
+ l2

1
+ l2

2

(3)

Using Equation 3 the quality of a degenerate triangle evaluates to
0 and that of an equilateral triangle to1. We classify all edge col-
lapses that result in slivery triangles to be invalid, trading-off quan-
tity (amount of simplification) for quality.

7 Conclusions and Future Work

We have outlined a simple approach to maintaindynamically adap-
tive level of detail triangulations. Crucial to this approach is the no-
tion of merge trees that are computed statically and are used during
run-time to take advantage of the incremental changes in the trian-
gulation. In our current implementation we are using the method
of edge collapses. However the idea behind merge trees is pretty
general and can be used in conjunction with other local heuristics
for simplification such as vertex deletion and vertex collapsing. We
plan to study some of these other heuristics in the future and com-
pare them with our current implementation that uses edge collapses.

At present we do not store surface normal or color ranges at the
nodes of the merge tree. Storing and using these should improve
the quality of the visualizations produced using merge trees even
more. Also of some interest will be techniques that create better
balanced merge trees while still incorporating dependencies. We
plan to investigate these issues further.

Of course, our approach also makes dynamically-specified man-
ual simplifications possible, where the user can interactively specify
the amounts of approximation desired at various regions of the ob-
ject. Using this, certain parts of the object can be rendered at lower
or higher details than otherwise. However, in this paper we have
only considered automatic object simplifications during interactive
display.

Acknowledgements

We would like to acknowledge several useful discussions with Arie
Kaufman and Greg Turk. We would like to thank Greg Turk and
Marc Levoy for generously sharing their models of the phone and
the bunny. We deeply appreciate the thorough review and detailed
and insightful comments by the anonymous referees. This work
has been supported in part by the National Science Foundation CA-
REER award CCR-9502239.

References

[1] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards im-
age realism with interactive update rates in complex virtual
building environments. In Rich Riesenfeld and Carlo Sequin,
editors,Computer Graphics (1990 Symposium on Interactive
3D Graphics), volume 24, No. 2, pages 41–50, March 1990.

[2] D. R. Baum, Mann S., Smith K. P., and Winget J. M. Mak-
ing radiosity usable: Automatic preprocessing and meshing
techniques for the generation of accurate radiosity solutions.
Computer Graphics: Proceedings of SIGGRAPH’91, 25, No.
4:51–60, 1991.

[3] J. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547–554,
1976.

[4] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks, Jr., and W. V. Wright. Simplifi-
cation envelopes.Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, 1996. (to appear).

[5] M. Cosman and R. Schumacker. System strategies to optimize
CIG image content. InProceedings of the Image II Confer-
ence, Scottsdale, Arizona, June 10–12 1981.

[6] F. C. Crow. A more flexible image generation environment. In
Computer Graphics: Proceedings of SIGGRAPH’82, volume
16, No. 3, pages 9–18. ACM SIGGRAPH, 1982.

[7] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution
analysis for surface of arbitrary topological type. Report 93-
10-05, Department of Computer Science, University of Wash-
ington, Seattle, WA,1993.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle. Multiresolution analysis of arbitrary meshes.
In Proceedings of SIGGRAPH 95 (Los Angeles, California,
August 6–11, 1995), Computer Graphics Proceedings, An-
nual Conference Series, pages 173–182. ACM SIGGRAPH,
August 1995.

[9] T. A. Funkhouser and C. H. S´equin. Adaptive display algo-
rithm for interactive frame rates during visualization of com-
plex virtual environments. InProceedings of SIGGRAPH 93
(Anaheim, California, August 1–6, 1993), Computer Graph-
ics Proceedings, Annual Conference Series, pages 247–254.
ACM SIGGRAPH, August 1993.

[10] M. H. Gross, R. Gatti, and O. Staadt. Fast multiresolution
surface meshing. In G. M. Nielson and D. Silver, editors,
IEEE Visualization ’95 Proceedings, pages 135–142, 1995.

[11] A. Guéziec. Surface simplification with variable tolerance. In
Proceedings of the Second International Symposium on Med-
ical Robotics and Computer Assisted Surgery, MRCAS ’95,
1995.

Original molecular surface (109955 triangles)

Dynamic adaptive simplification (7433 triangles)

Figure 7: Dynamic Adaptive Simplification for Crambin Surface

Original bunny model (69451 triangles)

Dynamic adaptive simplification (3615 triangles)

Figure 8: Dynamic Adaptive Simplification for Bunny Model

[12] B. Hamann. A data reduction scheme for triangulated sur-
faces.Computer Aided Geometric Design, 11:197–214, 1994.

[13] T. He, L. Hong, A. Varshney, and S. Wang. Controlled topol-
ogy simplification. IEEE Transactions on Visualization and
Computer Graphics, 1996. (to appear).

[14] James Helman. Graphics techniques for walkthrough ap-
plications. In Interactive Walkthrough of Large Geometric
Databases, Course Notes 32, SIGGRAPH ’95, pages B1–B25,
1995.

[15] P. Hinker and C. Hansen. Geometric optimization. In Gre-
gory M. Nielson and Dan Bergeron, editors,Proceedings Vi-
sualization ’93, pages 189–195, October 1993.

[16] H. Hoppe. Progressive meshes.Computer Graphics Proceed-
ings, Annual Conference Series, ACM SIGGRAPH, 1996. (to
appear).

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Mesh optimization. InProceedings of SIG-
GRAPH 93 (Anaheim, California, August 1–6, 1993), Com-
puter Graphics Proceedings,Annual Conference Series, pages
19–26. ACM SIGGRAPH, August 1993.

[18] P. W. C. Maciel and P. Shirley. Visual navigation of large envi-
ronments using textured clusters. InProceedings of the 1995
Symposium on Interactive 3D Computer Graphics, pages 95–
102, 1995.

[19] J. Rohlf and J. Helman. IRIS performer: A high performance
multiprocessing toolkit for real–Time 3D graphics. In An-
drew Glassner, editor,Proceedings of SIGGRAPH ’94 (Or-
lando, Florida, July 24–29, 1994), Computer Graphics Pro-
ceedings, Annual Conference Series, pages 381–395. ACM
SIGGRAPH, July 1994.

[20] J. Rossignac and P. Borrel. Multi-resolution 3D approxima-
tions for rendering. InModeling in Computer Graphics, pages
455–465. Springer-Verlag, June–July 1993.

[21] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decima-
tion of triangle meshes. InComputer Graphics: Proceedings
SIGGRAPH ’92, volume 26, No. 2, pages 65–70. ACM SIG-
GRAPH, 1992.

[22] G. Turk. Re-tiling polygonal surfaces. InComputer Graphics:
Proceedings SIGGRAPH ’92, volume 26, No. 2, pages 55–64.
ACM SIGGRAPH, 1992.

[23] A. Varshney. Hierarchical geometric approximations. Ph.D.
Thesis TR-050-1994, Department of Computer Science, Uni-
versity of North Carolina, Chapel Hill, NC27599-3175, 1994.

