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Abstract

We propose a new approach to progressively compress time-dependent geometry.

Our approach exploits correlations in motion vectors to achieve better compression.

We use unsupervised learning techniques to detect good clusters of motion vectors.

For each detected cluster, we build a hierarchy of motion vectors using pairwise

agglomerative clustering, and succinctly encode the hierarchy using entropy encod-

ing. We demonstrate our approach on a client-server system that we have built for

downloading time-dependent geometry.
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1 Introduction

In recent years, there has been a significant growth in e-commerce and enter-

tainment over the Internet. Triangulated 3D geometric models are starting to

appear on the World Wide Web as virtual shopping malls and virtual games

become more common. Currently, most of the geometric data are static, i.e.,

they do not vary with time. However, if one were to look at the 2D world, where

images (static 2D data) were followed by video, one can expect time-dependent

geometry to become a more common form of data on the Internet of the future.

Time-dependent geometry arises in simulations of many naturally occurring

phenomena, e.g., water waves, plant growth, molecular dynamics, cloth anima-

tion, etc. In this paper, we describe how to compress time-dependent geometry

for the purpose of transmission over the World Wide Web.

There has been a great deal of research on compressing static geometry [3,

7, 12, 18, 22, 23], but very little work has been done on compressing time-

dependent 3D geometric data. The work by Lengyel [15] compresses dynamic

meshes by solving for few-parameter deformation models and encoding the

residuals. The prototype system considered in their work uses affine transform

as the deformation model. However, the problem of determining the class of

deformation for a vertex is still open, thus limiting the applicability of their

algorithm. In our approach, we view motion as simple translation. In many

examples of dynamic models (e.g., water, molecular simulation), the object is

non-rigid and fluid. The components that comprise the object (e.g., atoms in

a molecule, particles simulating waves on water) move in a seemingly indepen-

dent manner, yet create concerted effects in the object. In such particle-like

systems [17], it is sufficient to model motion as translation. In this paper, our
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focus is on compressing the motion vectors.

Particles in a dynamic object move in such a way as to create concerted effects

in the object. Atoms in a protein may move with different velocities, but their

concerted movement can create a channel in the center of the protein [13].

These concerted movements typically imply interesting patterns in the trans-

lation vectors and hence low entropy (information content). This observation

suggests that one should be able to achieve good compression by exploiting

these patterns.

Since motion vectors lack connectivity, connectivity-driven compression algo-

rithms cannot be used to compress them. The geometry-driven compression

algorithm by Gandoin and Devillers [10] does not take advantage of motion

correlations. Compression algorithms based on building a minimum Hamilto-

nian path through the motion vectors also do not take advantage of motion

correlations. In this paper, we describe the step we have taken towards exploit-

ing motion correlations for good compression of motion vectors. We use ideas

from unsupervised learning theory to find good clusters of motion vectors. By

encoding vectors within each cluster in its own local coordinate system, we

achieve de-correlation of motion vectors. The main contributions of our paper

are the following:

1. We show that good compression can be achieved by exploiting motion cor-

relations.

2. We show that good clusters can be found using the expectation maximiza-

tion algorithm from unsupervised learning theory.
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3. We demonstrate a progressive compression scheme for motion vectors suit-

able for progressive downloads.

4. We demonstrate a system that supports progressive download of dynamic,

geometric data at varying precisions.

2 Related Work

Compression of static geometry has been an active area of research among

computer graphics researchers since the article by Deering on generalized tri-

angle strips [7]. Most algorithms are connectivity-driven, i.e., they compress

the connectivity of a 3D model first and encode the geometry (vertex coordi-

nates) in terms of the connectivity [3, 12, 18, 22, 23]. Connectivity determines

the order of enumeration of vertices and provides useful hints for coordinate

prediction. Geometry compression is achieved by encoding residuals after co-

ordinate prediction.

Progressive compression schemes create a sequence of meshes of increasing

detail and attempt to encode the refinement from one mesh to its succes-

sor in the sequence using few bits [2, 4, 6, 10, 14, 16, 21]. Naturally, these

schemes have their origins in surface simplification algorithms. The various

schemes differ in their compression rates, quality of intermediate meshes, and

the fineness of the granularity allowed in each refinement step. Some schemes

achieve good compression rates by sacrificing the quality of the intermediate

meshes [6, 10] while some others sacrifice the granularity allowed by each re-

finement [6, 16, 21]. The algorithm by [2] allows fine grained refinements and
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produces good quality intermediate meshes, while maintaining good compres-

sion ratios, compressing the connectivity of nearly manifold meshes to 3.7 bits

per vertex on average. The best single-rate algorithm compresses connectivity

information to around 2 bits per vertex [23].

Work by Lengyel [15] on compressing time-dependent geometry classifies ver-

tices of a mesh into clusters — a vertex is classified based on the class of

deformation its neighborhood undergoes over time and the parameters of the

deformation. Vertices that belong to the same cluster are encoded in local

coordinates. The deformation model and the model parameters of a cluster

are used to predict the position at a given time of a vertex that belongs to the

cluster, and the residual is encoded.

Alexa et al. [1] represent time-dependent geometry based on principal com-

ponents analysis. They use the singular value decomposition (SVD) technique

to find principal components of the animation sequence which has tempo-

ral and spatial coherence across the key frames. They can achieve 1:10 to

1:100 compression ratio with hardly any visual degradation. Since the order

of base objects computed by SVD naturally determines the progressive ani-

mation compression, their work also suggests a level-of-detail formulation for

time-dependent geometry. Shamir and Pascucci [19] have presented a multi-

resolution approach for time-dependent meshes. Their approach analyzes the

input sequence of meshes and separates the low-frequency global affine trans-

formations in the temporal domain from the high frequency local vertex de-

formations. This idea of separable approximations in frequency domain allows

their approach to efficiently reconstruct higher detail representations from

coarse representations in both space and time.
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3 Clustering Motion Vectors

As mentioned earlier, particles in a dynamic object move to create concerted

effects in the object, i.e., their motion vectors exhibit correlations. In Figure 1,

we show two orthogonal views of motion vectors of atoms in a molecular sim-

ulation, where each motion vector is plotted as a point. These motion vectors

were obtained from biological experiments on the opening of a channel in an E.

Coli bacterium. In this example, the vectors form a five-sided structure resem-

bling a badminton shuttlecock. Detecting the five faces enables one to align

them along their principal directions, which has the effect of de-correlating

them, thus lowering their entropy and improving their compressibility.

Our algorithm for compressing motion vectors is as follows. First, we detect

clusters using finite mixture models (Sections 3.1 and 3.2). Then, we transform

each motion vector to a normalized coordinate using the principal components

of its cluster. Finally, we encode the normalized motion vectors hierarchically

(Section 4).

3.1 Finite Mixture Models

Clustering or unsupervised learning is a well-known problem in statistical pat-

tern recognition [8]. Finite mixtures offer a formal, probabilistic model-based

approach to cluster statistical observations. Observations are assumed to have

been produced by one of a set of R alternative random sources, where each

source is a probability density function and the ith source has probability pi

of being picked. Gaussian mixtures, which are widely used in pattern recog-

nition, computer vision, signal and image analysis, and machine learning, are
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examples of finite mixtures. In a Gaussian mixture, each random source ci is

assumed to be a Gaussian distribution with mean µi and covariance Σi.

We use Gaussian mixture models to cluster motion vectors (i.e., our observa-

tions). Identifying which source produced each of the observations leads to a

clustering of the observations. Consider a density function p(x|Θ) that is gov-

erned by a set of parameters Θ (e.g., in a Gaussian mixture, Θ would be the

probabilities (pi), means (µi) and covariances (Σi) of the Gaussian sources).

Assume that we have a set of N observations drawn from the distribution p,

i.e., X = {x1, ...,xN}, where the observations are independently and identi-

cally distributed with distribution p. The probability of observing the data set

is

p(X|Θ) =
N∏

i=1

p(xi|Θ) = L(Θ|X ) (1)

The function L(Θ|X ) is called the likelihood of the parameters given the

data. The standard algorithm for fitting finite mixture models to a set of

observations is the Expectation-Maximization (EM) algorithm. It finds the Θ

that maximizes L, provided it does not converge to a local maxima due to

improper initialization.

The output of a model fitting algorithm such as EM is a set of R source

parameters (pi, µi, and Σi), which can be plugged in to Bayes’ rule to compute

the conditional probability of source cj given observation xi. We assign each

observation to the source that has the greatest conditional probability given

the observation.
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3.2 Expectation-Maximization Algorithm

As mentioned before, Expectation-Maximization (EM) [9], also known as ”Fuzzy

k-means”, is a popular algorithm to find a good estimate of the parameters

of a mixture model. The estimate returned by EM is the one that maximizes

the likelihood (See Equation (1)) of the parameters given the data.

EM is an iterative algorithm. The tth iteration begins with an estimate Θt of

the parameters of the model, and ends with an improved estimate Θt+1. In

each iteration, EM computes the extent to which a data point xi belongs to

the cluster associated with source cj, which is given by wij = P (cj|xi, Θ
t).

aij = P (xi|cj, Θ
t) = (2π ‖ Σj ‖)− 1

2 e−
1
2
(xi−µj)

T Σ−1
j (xi−µj)

wij = P (cj|xi, Θ
t) = aijpj/Σ

R
k=1aikpk (Bayes′ Rule)

In the new model Θt+1, the mean µj of the jth source is the weighted mean of

all data values, where the weights are {w1j, w2j, ...wNj}. Similarly, we compute

new estimates for source probabilities pj and source Gaussian covariances Σj

as follows:

pj ← ΣN
i=1wij

N
,

µj ← 1

ΣN
i=1wij

N∑

i=1

wijxi,

Σj ← 1

ΣN
i=1wij

N∑

i=1

wij(xi − µj)(xi − µj)
T

As mentioned before, EM needs proper initialization so that it does not con-

verge to a local maxima. We provide the clustering results of a simple k-means

process as the initial values of the EM algorithm. In Figure 2, we show the
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k-means-generated clusters of the motion vectors shown in Figure 1. We run

EM until the change in each pj between successive iterations is less than a

user-specified threshold. In Figure 3, we show the EM-generated clusters of

the motion vectors shown in Figure 1.

4 Progressive Compression of Motion Vectors

Recall that the goal of our work is the compression of time-dependent geome-

try for the purpose of transmission. Therefore, as mentioned in Section 1, we

compress motion vectors in a progressive manner, which enables their trans-

mission from coarse to fine detail. The various steps of our algorithm are

shown in Figure 4. The EM algorithm, described in the previous section, is

the first step of our algorithm. It outputs the most likelihood estimate of

the probabilities, means, and covariances of the R random sources. As men-

tioned earlier, we use these model parameters to assign each observation to

a source (or cluster) , i.e., we assign an observation to the source that has

the largest conditional probability given the observation (argmax
j

wij, using

notation from Section 3.2). These assignments determine the clustering. Each

cluster identified by EM is called an EM-cluster. In this section, we describe

the subsequent steps.

Approach Overview Our strategy for compressing motion vectors is to find

a good clustering using EM. We then perform Principal Component Analysis

(PCA) on each EM-cluster to normalize the motion vectors in the EM-cluster

and improve their compressibility. For each EM-cluster, we then build a hierar-

chy of clusters using the normalized motion vectors by pairwise agglomerative

clustering. Each EM-cluster is at the root node of one such hierarchy. We then
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simplify this hierarchy to remove redundant information. A careful traversal

of this hierarchy is needed to reconstruct the coarse to fine progressive trans-

mission of detail.

4.1 Principal Component Analysis

For each EM-cluster, we perform Principal Component Analysis (PCA) to

compute the mean and principal directions of the cluster. PCA is a process

of analyzing the distribution of a cloud of points. Specifically, PCA gives us

the orientation, location, and the scaling of the best-fitting ellipsoid to a set

of points. An easy way to do this is by using the singular value decomposition

(SVD) of the covariance matrix [11]. For a set of points xi (i = 1, . . . , N), we

can compute their mean (µx) and the covariance matrix (M) as follows:

µx =
1

N

N∑

i=1

xi

M=
1

N − 1

N∑

i=1

(xi − µx) · (xi − µx)
T

A singular value decomposition of the covariance matrix (M) will result in:

M = VTDV,

where the matrix D is diagonal and V is a rotation matrix, such that VT =

V−1. We transform the motion vectors of a cluster into a new coordinate frame

whose axes are aligned with the principal directions of the cluster and whose

origin is the mean of the cluster. The axes for each cluster of motion vectors

in Figure 1 are depicted in Figure 5. This normalization step de-correlates

the motion vectors, thereby lowering their information content and increasing

10



their compressibility. The resulting normalized motion vectors are used in the

later stages of the algorithm.

4.2 Pairwise Agglomerative Clustering

Since the goal of our compression is to progressively encode motion vectors,

we use the normalized motion vectors in each EM-cluster to build a hierarchy

of clusters by pairwise agglomerative clustering. The cluster at the root of such

a hierarchy is an EM-cluster. At deeper levels of the hierarchy, the clusters

become progressively smaller, until at the lowest level, a cluster contains a

single normalized motion vector. Such a hierarchy is called a cluster tree, and

is depicted in Figure 6.

As the name implies, pairwise agglomerative clustering builds the hierarchy in

a bottom-up fashion. Initially, each normalized motion vector that belongs to

an EM-cluster is in its own cluster. In each step, the two closest clusters are

merged to create a new cluster. The process is repeated until a single cluster

is left. Each node of the cluster tree represents a cluster. Each non-leaf node

has two children, which represent the two clusters whose merge created the

non-leaf node’s cluster. Each node stores a representative point of the cluster

(mean) and the dimensions of the bounding box of the cluster (bbox). The

mean of a leaf node is the normalized motion vector stored at the leaf, and the

mean of a non-leaf node is the arithmetic mean of the means of its children.

The bounding box of a leaf-node (colored green) is a box of zero edge length.

The bounding box of a non-leaf node (colored blue) is defined as the smallest

box that is centered at its mean and large enough to contain the bounding

boxes of its child clusters.
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Notation We introduce the following notation for ease of exposition. Pct de-

notes any node in a cluster tree. Lt(Pct) and Rt(Pct) denote its left and right

children respectively. Rct denotes the root node of a cluster tree. Using the

above notation, the mean and bbox for a non-leaf node are computed using

the following formulae:

Pct → mean = (Rt(Pct) → mean + Lt(Pct) → mean)/2

Pct → bbox[i] =

|Lt(Pct) → mean[i]−Rt(Pct) → mean[i]|

+ max(Lt(Pct) → bbox[i], Rt(Pct) → bbox[i])

Each node stores an identifier (id), which is the value of a monotonically

increasing counter at the time of creation of the node. If a cluster is created

in the ith iteration of pairwise agglomerative clustering, it is given a larger

id value than a cluster created in the (i− 1)th iteration. Thus, the root node

has the largest value of id. Each node also stores a list of particle identifiers

(particle id list), which contains the identifiers of particles whose normalized

motion vectors belong to the node’s cluster. Thus, each leaf-node in the cluster

tree stores only a single particle identifier which is the identifier of the particle

whose normalized motion vector is stored at the leaf-node. The particle id list

of a non-leaf node is obtained by appending the particle id list of its right

child to the particle id list of its left child. The particle id list of a root node

contains identifiers of all particles whose normalized motion vectors belong to

the same EM-cluster.

The bbox field at a node helps in deciding which nodes to transmit when
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a user requests motion vectors to a specified accuracy. Only nodes whose

bounding boxes are larger than the specified accuracy need to be transmitted.

Having decided which nodes to transmit, the id field values in those nodes

provide a coarse to fine detail ordering of those nodes, consistent with pairwise

agglomerative clustering. Nodes need to be transmitted in descending order

of id values to obtain a coarse to fine progression. The mean field at a node

is the normalized motion vector for all particles in the node’s list of particles

(particle id list).

4.3 Delta Tree

The cluster tree provides a progressive transmission scheme, however the hier-

archy can be further simplified. Let us focus on the mean field for the moment.

Consider a non-leaf node Pct. Since Pct → mean is the arithmetic mean of

Lt(Pct) → mean and Rt(Pct) → mean, it is sufficient to store (and transmit)

Pct → mean and its delta difference from one of the child mean values (e.g.,

Rt(Pct) → mean− Pct → mean), using which the client is able to reconstruct

all three values. By applying this simplification in a recursive manner, we con-

struct a simplified tree, called the delta tree, which has the same number of

nodes and connectivity as the cluster tree. Thus, each node Pdt in the delta

tree has a counterpart Pct in the cluster tree. Pdt stores a delta difference
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vector field (delta) which is defined as follows:

Pdt → delta =





Rt(Pct) → mean− Pct → mean

(if Pct is a non-leaf)

−→
0

(if Pct is a leaf)

Since the leaf nodes in the delta tree have the zero vector as the delta difference

vector, they can be deleted with no loss of information. Given the mean value

of the root node of the cluster tree, and the delta tree, one can reconstruct

all the mean values in the original cluster tree. Figure 7 depicts the delta tree

corresponding to the cluster tree in Figure 6.

As shown in Figure 7, each node of the delta tree stores three other fields. The

id field of a delta tree node is the same as the id field value of its counterpart

node in the cluster tree. The bbox size field in a delta tree node is the length

of the diagonal of the bounding box of the counterpart node in the cluster

tree. As before, based on a user-specified accuracy threshold, the value of the

bbox size field is used to determine if a node is to be transmitted. Having

selected the delta tree nodes to be transmitted, the id field gives an ordering

of them to provide coarse to fine progressive transmission.

Recall that the particle id list field in a cluster tree node stores all particles

whose normalized motion vectors belong to that node’s cluster. Thus, the

particle id list field in the root node of the cluster tree has all identifiers of
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all particles whose motion vectors belong to the same EM-cluster. The order

of particle identifiers in the list is determined by the structure of the tree

since each non-leaf node simply concatenates the particle id list of its right

child to that of its left child. We reduce the amount of storage required for

particle id list by reassigning particle identifiers in the following manner. Let

pi be the particle identifier in the ith position of particle id list of a root cluster

tree node. We assign to particle identifier pi the new identifier i. To make this

reassignment work in the presence of multiple EM-clusters, we add an offset

determined by the EM-cluster to all the new identifiers of that EM-cluster. The

advantage of this reassignment is that all particles that fall within a cluster

will have contiguous particle identifiers irrespective of the level of the cluster

in the cluster tree. Thus, in place of storing a list at each node, we can store

two numbers, i.e., the smallest reassigned particle identifier (pidsmall) and the

number of particles in the list (pidcount) .

A further reduction in storage is possible by the following observation. Let

Rct be the root node of a cluster tree. Let left subtree size be the number of

elements in Lt(Rct) → particle id list. Note that this number is also equal to

the number of leaf nodes in the subtree rooted at Lt(Rct). Then, the following

formulae hold:

Lt(Rct) → pidsmall = Rct → pidsmall

Rt(Rct) → pidsmall = Rct → pidsmall + left subtree size

Lt(Rct) → pidcount = left subtree size

Rt(Rct) → pidcount = Rct → pidcount − left subtree size

Thus, if we knew pidsmall and pidcount for Rct, then from the single number

left subtree size, we can obtain pidsmall and pidcount values for both its chil-

dren. Applying this idea recursively, we see that at each node Pct, we need

15



to store only a single number, namely the number of leaf nodes in the sub-

tree rooted at Lt(Pct). Given the values of pidsmall and pidcount for the root

node of a cluster tree, and the left subtree size values at each node, we can

reconstruct all particle lists. This simplification is reflected in the delta tree

as well. The field left subtree size in a delta tree node Pdt is the value of

left subtree size in its counterpart node Pct in the cluster tree.

The advantage of the delta tree is that it is significantly more lightweight than

its corresponding cluster tree. Yet, given mean, pidsmall, and pidcount of the

root node of a cluster tree, we can reconstruct the original cluster tree from

the delta tree. Recall that our algorithm constructs as many delta trees as the

number of EM-clusters.

4.4 Linearization

Now, we describe the algorithm for selecting and ordering nodes of a single

delta tree for transmission. We initialize a max-heap with the root node of

the delta tree. In each iteration, we extract the element in the heap with the

maximum value of id. If this delta tree node has a bbox size value greater than

a user-specified threshold accuracy, we append this node to the output buffer

and insert its children (if they exist) to the heap. If, on the other hand, the

bbox size value is smaller or equal to the user-specified accuracy, we append

the node to the output buffer, but do not insert its children to the heap. This

algorithm ensures that delta tree nodes are transmitted in a coarse to fine

progression of detail.
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4.4.1 Interpretation of Transmitted Data

Recall that in order to reconstruct the normalized motion vectors of a sin-

gle EM-cluster, we need its delta tree, Rct → mean, Rct → pidsmall, and

Rct → pidcount, where Rct is the root node of the corresponding cluster tree.

Initially, when information from no delta tree node is available, Rct → mean

is a representative for a cluster of normalized motion vectors, namely, the

normalized motion vectors that belong to the EM-cluster. All particles whose

normalized motion vectors belong to the EM-cluster use this representative as

a coarse approximation of their motion. These particles have reassigned parti-

cle identifiers in the range [Rct → pidsmall, Rct → pidsmall +Rct → pidcount−1].

Notation R(i, j) denotes the set of particles whose reassigned particle iden-

tifiers falls in the range [i, i + j − 1]. C(i, j) denotes the cluster of normalized

motion vectors of particles in R(i, j). REP (i, j) denotes the representative

normalized motion vector for the cluster C(i, j). Using this notation, we can

say the following:

REP (Rct → pidsmall, Rct → pidcount) = Rct → mean

In general, after information from the first n nodes (P 0
dt, P

1
dt, · · · , P n−1

dt ) of a

linearized delta tree has been received, the normalized motion vectors within

its EM-cluster fall into n + 1 clusters {C(i0, j0), C(i1, j1), · · · C(in, jn)}. Each

cluster C(ik, jk) has a corresponding representative REP (ik, jk) and set of

particles R(ik, jk). When information from the (n + 1)th delta tree node P n
dt

is received, one of the n + 1 clusters, say C(ik, jk), is split into two smaller

clusters and its corresponding set of particles R(ik, jk) is subdivided into two

subsets. This process is repeated until all delta nodes are processed. Thus, the
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information in a delta tree node encodes a split operation. In column 1 of Ta-

ble 1, we give the formulae for the clusters formed by splitting cluster C(ik, jk)

using the delta node P n
dt. In column 2, we give the formulae for computing the

corresponding cluster representatives.

Although the information in each node of the linearized delta tree contains

information on how to perform a cluster split, it does not tell us which of

the existing clusters to split. This information is present in the parent-child

relationships of the delta tree, but is lost during linearization. Therefore, along

with delta and left subtree size values for each delta tree node, we also need

to send pidsmall. The cluster C(ik, jk) for which ik equals pidsmall is the one

that has to be split. pidsmall can be generated for each delta tree node during

linearization by applying the following formulae recursively:

Rdt → pidsmall = Rct → pidsmall (Root Node)

Lt(Pdt) → pidsmall = Pdt → pidsmall

Rt(Pdt) → pidsmall =

Pdt → pidsmall + Pdt → left subtree size

The id and bbox size fields are used for the selection and ordering of nodes

for transmission. They are not transmitted to the client.

4.5 Interleaving and Encoding

We have described how motion vectors within a single EM-cluster are nor-

malized, hierarchically clustered, and the delta tree extracted and linearized.
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However, when multiple EM-clusters are present, we interleave the informa-

tion from the delta tree nodes of the different delta trees before transmission.

Thus the root nodes of the different delta trees have their information sent

first, before information from any other nodes are sent. Huffman encoding is

done on this interleaved array.

4.6 Retrieving Motion Vectors

Rct → mean is a coarse approximation to the normalized motion vector for

all particles in an EM-cluster. As more delta nodes are received, the approxi-

mation becomes more accurate. The original motion vectors can be computed

from the normalized motion vectors of an EM-cluster by a coordinate transfor-

mation using the Gaussian mean and principal directions of the EM-cluster.

5 Handling Multiple Frames

In the discussion so far, we have concentrated on the progressive compression

of motion vectors, without mentioning how they are obtained. In general,

motion vectors can be computed as the difference in particle positions in the

ith and (i + k)th frames. When k = 1, the resulting motion vectors represent

particle motion in fine detail. As k is increased, the resulting motion vectors

are coarse approximations of particle motion. In our approach, we build a

hierarchy of coarse to fine approximations by constraining k to be of the form

2l for some non-negative integer l. Each value of l defines an approximation

level as shown in Figure 8. At a given level l, motion vectors are computed

between frames m ∗ 2l and (m+1) ∗ 2l only, for m ≥ 0. Our approach allows a
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user to mix motion vectors from different approximation levels, allowing fine

detailed motion in the region of interest and coarse approximations elsewhere,

as illustrated by the blue bars in Figure 8.

6 Progressive Transmission of Time-Dependent Geometry

We now describe a system that we have built for the progressive download of

time-dependent geometry. In Figure 9, we show the user interface at the client.

The vertical bar can be used to control how motion vectors are to approximate

the motion. The intervals along this bar indicate how motion vectors are to

be computed. The frames that are the end points of an interval are used to

compute the motion vectors for that interval. For example, in Figure 9, motion

is approximated using three sets of motion vectors. Frames 0 and 2 are used

to compute the first set, frames 2 and 3 to compute the second, and frames

3 and 4 to compute the third. By clicking on the bottom end (i.e., the red

square) of an interval on this bar, a user can control the length of the interval,

which controls the approximation level (Section 5).

The horizontal bar in Figure 9 is a slider, using which a user can specify

a threshold accuracy for the current interval (or the current set of motion

vectors), which is denoted by a black arrowhead at its bottom end (the interval

[0, 2] in Figure 9). The threshold accuracy is used to determine which delta

tree nodes are to be sent to the client.

A typical user interaction consists of the following steps. First, the vertical

bar is used to specify how motion is to be approximated across frames. Then,

for each interval, the horizontal slider is used to specify a threshold accuracy.
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Finally, time-dependent geometry can be viewed using the specified param-

eters. The specified parameters can be modified at any time to dynamically

adjust the display of the time-dependent geometry.

7 Results

In this section, we present the results of running our algorithm on data ob-

tained from a molecular dynamics simulation. The simulation consists of the

opening of a channel in an Escherichia coli (E. Coli) bacterium molecule [20].

The data consists of five frames (Frames 0−4), and each frame consists of the

3D coordinates of 10585 atoms (Figure 10).

With each of the x−, y−, z− coordinates quantized to 16 bits, our algorithm

compresses the 10585 motion vectors between frames 0 and 1 to 35.82 bits per

atom. The algorithm by Gandoin et al. [10] compresses the same data to 40.48

bits per atom. Our algorithm achieves superior compression rates because

atoms exhibit correlations in their motion. We expect similar improvements

to hold for motion vectors between other pairs of frames too, since atoms move

in a correlated fashion between every successive pair of frames. Our results

are superior for other quantization levels too, as seen in Table 2.

Since we use a vector quantization scheme for each frame independently, errors

can accumulate. This is a known problem in vector quantization techniques.

To address the problem of error accumulation, we encode frame i with respect

to a decompressed frame i − 1. In other words, the motion vectors between

frame i − 1 and frame i are the difference between the real data at frame i

and the decompressed data at frame i− 1 [5]. This is shown in Table 3.
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The encoding as a whole took 248 seconds per frame on a Pentium IV 1.5GHz

processor as follows: 4.5 seconds for initial k-means, 236.5 seconds for the

EM Algorithm, and 7 seconds for PCA, Pairwise Agglomerative Clustering,

Simplification, and Linearization. The decoding time, however, was never more

than 30 milliseconds. Decoding just involves reversing quantization and simple

transformations that include a rotation of the principal axes, a scaling for de-

normalization, and a translation from the cluster’s origin.

The primary goal of our encoding scheme is increasing the compressibility

by lowering the entropy of motion vectors. To do this, we need the results

of clustering to be as accurate as possible. Our experiments show that the

EM algorithm results in better clustering, especially around the boundaries of

two (or more) clusters. For example, for the motion vectors between frames 0

and 1, the EM algorithm results in much better clusters (shown in Figure 3)

compared to the results of a simple k-means approach shown in Figure 2. This

encouraged us to use the EM algorithm notwithstanding a 20-fold increase

in encoding time. Usually the decoding time is more critical in most web-

based downloading applications. Hence our system with a real-time decoding

performance is well-suited for such applications. However, if the encoding time

is critical one can just skip the EM and use simple k-means-generated clusters

in the later stages of our algorithm.

8 Conclusion

In this paper, we have described an algorithm to compress time-dependent

geometry by treating motion as simple translation. We have proposed a scheme

that takes advantage of correlations in motion by detecting interesting clusters
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using Expectation-Maximization. Currently, our algorithm requires the user

to specify the number of clusters. In future work, we plan to automatically

determine the best number of clusters. We also plan to extend our work to

compress 3D geometric models.
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Top View Side View

Fig. 1. Orthogonal views of motion vectors between frames 0 & 1

of a molecular dynamics simulating the opening and closing of the

mechanosensitive ion-channel in the E. Coli bacterium’s cell membrane
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Figure 1
Authors: Thomas Baby, Youngmin

Kim, Amitabh Varshney
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Top View Side View

Fig. 2. Orthogonal views of motion vectors from Figure 1 color-coded by

their k-means clusters
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Figure 2
Authors: Thomas Baby, Youngmin

Kim, Amitabh Varshney
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Top View Side View

Fig. 3. Orthogonal views of motion vectors from Figure 1 color-coded by

their EM clusters
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Figure 3
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Kim, Amitabh Varshney
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Fig. 4. Overview of our algorithm
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Figure 4
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Top View Side View

Fig. 5. Local frames of each cluster centered at their respective means

and aligned with their respective principal direction
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Figure 5
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Fig. 6. Cluster Tree
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Figure 6
Authors: Thomas Baby, Youngmin

Kim, Amitabh Varshney
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Fig. 7. Delta Tree corresponding to the cluster tree in Figure 6. Note

that the green nodes in the cluster tree have no counterpart nodes in

the delta tree.
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Figure 7
Authors: Thomas Baby, Youngmin

Kim, Amitabh Varshney
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Fig. 8. Hierarchy of approximations to particle motion. The blue bars

indicate coarse motion approximations between frames [0, 2] and [6, 8],

and fine motion approximation between frames [2, 6].
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Figure 8
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Fig. 9. Interface to our system.
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Figure 9
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Kim, Amitabh Varshney
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Fig. 10. Frames from the molecular dynamics simulation data (Top Row

= Frames 0 & 1, Middle Row = Frame 2, Bottom Row = Frames 3 &

4).
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Figure 10
Authors: Thomas Baby, Youngmin

Kim, Amitabh Varshney
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Figure Captions

Figure 1. Orthogonal views of motion vectors between frames 0 &

1 of a molecular dynamics simulating the opening and closing of

the mechanosensitive ion-channel in the E. Coli bacterium’s cell

membrane.

Figure 2. Orthogonal views of motion vectors from Figure 1 color-

coded by their k-means clusters.

Figure 3. Orthogonal views of motion vectors from Figure 1 color-

coded by their EM clusters.

Figure 4. Overview of our algorithm.

Figure 5. Local frames of each cluster centered at their respective

means and aligned with their respective principal direction.

Figure 6. Cluster Tree.

Figure 7. Delta Tree corresponding to the cluster tree in Figure 4.

Note that the green nodes in the cluster tree have no counterpart

nodes in the delta tree.

Figure 8. Hierarchy of approximations to particle motion. The blue

bars indicate coarse motion approximations between frames [0, 2]

and [6, 8], and fine motion approximation between frames [2, 6].

Figure 9. Interface to our system.

Figure 10. Frames from the molecular dynamics simulation data (Top
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Row = Frames 0 & 1, Middle Row = Frame 2, Bottom Row =

Frames 3 & 4).

47



C(i, j) REP (i, j)

C(ik, Pn
dt → left subtree size) REP (ik, jk)− Pn

dt → delta

C(ik + Pn
dt → left subtree size, jk − Pn

dt → left subtree size) REP (ik, jk) + Pn
dt → delta

Table 1

Formulae for a cluster split
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Model (#Particles) Quantization Gandoin Our Algo.

(bits/particle) (bits/particle)

Molecular Dynamics 12-bit 22.48 19.25

Simulation (10585) 16-bit 40.48 35.82

Table 2

Compression results on molecular dynamics simulation data in number of bits per

particle.
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Errors without Incremental Encoding Errors with Incremental Encoding

Frame 1 0.0996 0.0996

Frame 2 0.1544 0.1123

Frame 3 0.1819 0.1160

Frame 4 0.1854 0.0869

Table 3

Error Accumulation without and with incremental frame encoding. Each entry

shows the root-mean-squared error between the actual and the reconstructed atom

positions. The atom positions across all the frames have been normalized to lie in

a unit cube.
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