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Abstract

Electrostatic interactions play a central role in biological processes. Development
of fast computational methods to solve the underlying Poisson-Boltzmann equation
(PBE) is vital for biomolecular modeling and simulation package. In this paper, we
propose new methods for efficiently computing the electrostatic potentials for large
molecules by using the geometry of the molecular shapes to guide the computation.
The accuracy and stability of the solution to the PBE is quite sensitive to the
boundary layer between the solvent and the solute which defines the molecular
surface. In this paper, we present a new interface-layer-focused PBE solver. First,
we analytically construct the molecular surface of the molecule and compute a
distance field from the surface. We then construct nested iso-surface layers outwards
and inwards from the surface using the distance field. We have developed a volume
simplification algorithm to adaptively adjust the density of the irregular grid based
on the importance to the PBE solution. We have generalized the finite difference
methods using Taylor series expansion on the irregular grids. Our algorithm achieves
about three times speedup in the iterative solution process of PBE, with more
accurate results on an analytical solvable testing case, compared with the popular
optimized DelPhi program.
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1 Introduction

Electrostatic interactions are of central importance for many biological processes
(Leach, 2001; Tainer et al., 1985). Experiments have shown that electrosta-
tics influence nearly all biochemical reactions, such as macromolecular fold-
ing and conformational stability. Electrostatics also determine the structural
and functional properties of biological samples, such as their shapes, bind-
ing energies, and association rates. Molecular modeling packages (Humphrey
et al., 1996) have invested significant effort in correctly and efficiently mod-
eling the electrostatics to simulate the static structure and binding energy,
in addition to modeling user-defined conformations (Kreylos et al., 2003) or
trajectories (Leach, 2001). The successful modeling of electrostatics has great
practical, as well as, theoretical importance, for structure-based drug design
and protein folding. There are two ways to model the electrostatic properties of
biological samples – quantum mechanical methods and classical electrostatics.
Quantum mechanical methods are more accurate, but due to their immense
computational demands, can only be applied to small molecules. Thus the
application of quantum mechanical methods to large molecules, such as the
ones we consider here, is currently not possible for real-time systems.

Classical electrostatic interactions are modeled as the interactions between
partial atomic charges (also called net atomic charges). Partial atomic charges
arise since electronegative elements, such as Oxygen, attract electrons more
readily than elements such as Hydrogen. This give rise to an unequal distribu-
tion of charges in a molecule. The electrostatics of molecules depend not only
on their 3D structures and charge distributions, but also on their environment.
Biological processes occur in aqueous solution, so solvent plays an important
role in determining the electrostatics of the solute molecules. Solvent proper-
ties are usually described in terms of average values. Thus, instead of treating
each solvent atom explicitly, we treat them as a continuum with average prop-
erties. The more important solute molecules are treated explicitly (Honig and
Nicholls, 1995). The Poisson-Boltzmann equation (PBE) describes the electro-
static interactions in solution. Several methods have been developed to solve
the PBE efficiently. They normally solve the equation and compute the elec-
trostatic potentials either on the surface of the solute molecules, or on the 3D
grid discretizing the space, or on a slice of the 3D space.

In this paper, we propose a new method for efficiently computing the electro-
static potentials. Our method is based on the observation that the accuracy
and stability of the solution to PBE is quite sensitive to the boundary layer
between the solvent and the solute. So an accurate construction of this bound-
ary with adaptively controlled grid density should improve the solution. In our
algorithm, we first analytically construct the molecular surface, then build a
tetrahedral decomposition of the 3D space around the surface and a distance
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field from the surface. Next we build iso-surfaces by the marching-tetrahedra
method on the distance field with progressively greater distances. This results
in nested isosurfaces at varying distances from the molecular surface. After
that, we apply an edge collapse algorithm to simplify the tetrahedral grids to
adaptively adjust the grid point density in space according to their influence
on the solution. We maintain a higher resolution for the solution-sensitive re-
gion in the vicinity of the molecular surface. We have found that this improves
the accuracy and stability of the solution while speeding up the computation.
In our work, we have generalized the traditional finite difference computations
on regular grids to irregular grids by a Taylor series expansion. We validate
our algorithm on an analytical solvable case and compare the results with the
popular DelPhi program.

The main contributions of this paper are:

1. We show that PBE can be solved more efficiently by taking advantage of
the exact geometry around the solution-sensitive boundary layer.

2. We achieve better results by using an application-driven hierarchy of detail
for 3D space decomposition.

2 Previous Work

Theoretical models for molecular electrostatics fall into two categories. Micro-
scopic models explicitly treat each atom in the protein or solvent molecule,
and each ion in the surrounding solution. Macroscopic or Continuum models
describe properties of groups of molecules or ions in terms of average values.
The earliest models were all macroscopic. An increase in the computational
power has gradually allowed us to incorporate greater atomic-level detail for
solute molecules. Currently, the most widely used models still treat the solvent
as a continuum (G. Allen (editor), 1999).

Modern electrostatic models are based on non-linear Poisson-Boltzmann equa-
tion (PBE). If there are no highly charged molecules or high ionic strengths,
the equation can be well-approximated by a linear PBE, and an analytic solu-
tion is possible (Tanford and Kirkwood, 1957). In most cases, however, such an
analytical solution does not exist, and numeric methods have been developed
to solve linear (Warwicker and Watson, 1982) or nonlinear PBE. Among them
the finite difference method (FDM) (Warwicker and Watson, 1982) is the most
widely used. In finite difference methods the molecule is mapped onto a 3D
grid. Ionizable atoms are assigned to grid points and the electrostatic poten-
tial at each grid point is calculated using the finite difference approximation
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of the PBE. The accuracy of the results is highly dependent on grid spacing,
while the computational cost increases steeply with the number of grid points.
One approach to reduce the cost is focusing (Gilson et al., 1988), in which the
mesh of the grid is reduced only in the vicinity of ionizable groups of particular
interest with potentials from coarser grids used as initial guesses. A more pow-
erful approach is the multi-grid method (Oberoi and Allewell, 1993), in which
the solution on a given grid (generally the finest grid), is obtained by iterat-
ing over a hierarchy of coarser grids. The key advantage is that the accuracy
of the solution is iteratively improved by solving the problem on the coarser
grids where the computational cost is low with infrequent visits to the finer
grids where the computational cost is high. One drawback of the multi-grid
method is that, while it works gracefully for linear PBE, the solution might
not converge when applied to non-linear PBE.

The finite difference algorithms using regular grid, though quite successful,
have several shortcomings. First, their computational cost is proportional to
the cube of the grid size, which makes it very hard to increase the resolu-
tion. Second, they do not scale well. For fixed grid size, the resolution will
decrease as the dataset becomes bigger. Third, the low resolution approach,
even with multi-grid refinements, may introduce visual artifacts at the visu-
alization stage.

Adaptive space-subdivision approach (Baker et al., 2000; Holst et al., 2000)
has been used to address the high cost of using a regular grid. This approach
increases the accuracy of the solution by explicitly giving a higher spatial
resolution to the solvent-solute boundary region. However, since the adaptive
space-subdivision approach does not start from an analytical definition of the
solvent-solute boundary (the molecular surface), it tends to over-subdivide
around the boundary region. This over-subdivision results in two drawbacks.
First, it increases the number of grid points and therefore the time for each
iteration of the PBE solver. Second, it increases the number of iterations to
reach a desired convergence threshold since a greater number of closely-spaced
points near the boundary increases the time to propagate the solvent-solute
boundary effects.

Our new approach solves the linear or non-linear PBE on an irregular grid.
It has the advantage that the PBE-solution-sensitive boundary layer is con-
structed analytically. We generate a progressive level of grid detail with the
highest levels of detail around the solution-sensitive solvent-solute boundary
region that gradually change to coarser levels of detail farther from the solvent-
solute boundary. Since we start with an analytical definition of the solvent-
solute boundary, we do not suffer from the problems of over-subdivision in
trying to straddle that boundary. This allows us to speed up the time to
compute the PBE solution with lesser number of points than previous work.
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3 Fundamentals of Molecular Electrostatics

The current trends in real-time molecular electrostatics follow the principles
of classical electrostatics, treating the solvent as a continuum. In this section
we outline the physical foundations for molecular electrostatics and explain
the application of different forms of the Poisson-Boltzmann Equation.

3.1 Electrostatics in Uniform Dielectric Medium

Electrostatics has a simple form when all the charges and field considered are
in a uniform dielectric medium, including vacuum. The electrical potential
then satisfies the Poisson equation (Jackson, 1975):

52φ(−→r ) +
4πρ(−→r )

ε
= 0

where φ(−→r ) is the electrostatic potential, ρ(−→r ) is the charge density, and both
φ(−→r ) and ρ(−→r ) are functions of position. Here the dielectric constant, ε, is
independent of the position in uniform media.

As an example, the electric potential field generated by a point charge is
given by Coulomb’s Law (Jackson, 1975): φ(r) = q

εr
, where the point charge

q is assumed to be at the origin and r is the distance from the origin. Here
the linear superposition rule holds and the electric potential field generated
by a set of point charges is the summation of the fields generated by each

point charge (Jackson, 1975): φ(−→r ) =
n∑

i=1
φi(
−→r ) =

n∑
i=1

qi

ε|−→r −−→ri | , where n is the

number of point charges, qi is the charge and −→ri is the position vector of point
charge i.

3.2 Electrostatics in Nonuniform Medium with Environmental Response

The Poisson equation given in previous subsection assumes uniform medium
and without the environmental response. If the dielectric ε varies through
space, then we arrive at a general form of the Poisson equation:

5[ε(−→r )∇(φ(−→r )] + 4πρ(−→r ) = 0

where ε(−→r ) is a function of position. Normally the solute is treated as a
uniform medium with a low relative dielectric of about 2 ∼ 4. The solvent is
also treated as a uniform medium with a relative dielectric of about 80 (G.
Allen (editor), 1999).
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The environmental response consists of three physical processes that screen
the effects of charge: (a) electronic polarization; (b) reorientation of permanent
dipole in polar materials; and (c) redistribution of charges, such as mobile ions.
Combining these factors, we get a general form for the molecular electrostatics
– the Possion-Boltzmann Equation (PBE):

5[ε(−→r )∇(φ(−→r )]− κ′2(−→r ) sinh[φ(−→r )] + 4πρ(−→r ) = 0

where κ′ is the modified Debye–Hückel parameter and defined as: κ′2 = 8πNae2I
1000kT

,
where Na is Avogadro’s number, e is the electron charge, k is Boltzmann
constant, T is the absolute temperature, and I is the ionic strength of the bulk
solution. The variables φ, ε, κ′, and ρ are all functions of the position vector−→r . The general PBE above incorporates electronic and dipole polarization
through ε and ion-screening through κ′.

If there are no highly-charged molecules and ionic strengths are low, we can
make an approximation to linearize the sinh term: sinh[φ(−→r )] ≈ φ(−→r ), and
then the general PBE simplifies to the linear PBE:

5[ε(−→r )∇(φ(−→r )]− κ′2(−→r )φ(−→r ) + 4πρ(−→r ) = 0

If there are no mobile ions present in the system, the modified Debye–Hückel
parameter κ′ will be equal to zero, and PBE reduces to the general Poisson
equation.

4 Finite Difference Method for PBE

The analytical solution to the PBE exists for very few cases, with highly
simplifying assumptions. For almost all cases, we have to rely on numerical
methods to arrive at the solution. The most widely-used numerical method
for the solution of the PBE is the finite difference method (FDM), introduced
by Warwicker and Watson (Warwicker and Watson, 1982) in 1982.

In FDM the molecule and a region of the surrounding solvent are mapped onto
a 3D grid. Each grid point represents a small region of either the molecule or
the solvent. Values are assigned at each point for the charge density, dielectric
constant, and ionic strength parameters in the PBE. With a fine enough grid
scale, variation in the dielectric response can be represented at the atomic
resolution. The electrostatic potential at each grid point is calculated using
the finite difference approximation of the PBE:

φnew
0 =

∑
εiφi + 4πq0/h∑

εi + κ′2h2[1 + φ2
0/3! + . . . + φ2n

0 /(2n + 1)! + . . .]
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where the non-linear term is represented as an infinite series, which equals 1
for linear PBE, h is the grid spacing in Å, φ0 is the electrostatic potential at
the central grid point, q0 is the charge at this grid point, and the summations
are over the six neighboring grid points (i = 1–6) (Warwicker and Watson,
1982).

To assign charge density, dielectric constant, and ionic strength parameters
to the grid points, we first define the molecule-solvent boundary, which is
the smooth solvent-accessible surface (Lee and Richards, 1971), using a probe
radius for the water molecule (typically 1.4 Å).

Solvent

Ion-exclusion layer

Molecule

Mobile ions

Fig. 1. 2D view of the electrostatic model (based on (Holst, 1993))

Figure 1 shows the two-dimensional view of the electrostatic model. The grid
points within the molecule are normally assigned a uniform dielectric of ε1 =
2 as an approximation to the high-frequency dielectric constant of organic
liquids. All grid points within the solvent region and the ion-exclusion layer are
assigned a dielectric constant ε2 = 80. The modified Debye–Hückel parameter
κ′ is zero inside the molecule and at the ion-exclusion layer, where there are
no mobile ions; κ′ is non-zero in the solvent region. With these considerations
we get following forms of the PBE:





ε1∇2φ(−→r ) + 4πρ(−→r ) = 0 inside molecule

ε2∇2φ(−→r ) + 4πρ(−→r ) = 0 at ion-exclusion layer

ε2∇2φ(−→r )− κ′2(−→r ) sinh[φ(−→r )] + 4πρ(−→r ) = 0 within solvent

The numerical solvers for partial differential equations using FDM initialize
the grid boundary values using various methods. The boundary values, once
estimated, do not change. We use the analytical approximation obtained using
Debye-Hückel potentials (Gilson et al., 1988) that are accurate if the solution
grid is large enough relative to the size of the molecule.
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5 Interface-Layer-focused FDM for PBE

From the discussion above, we find that the molecular surface boundary layer
is critical to the accuracy of the FDM solution of the PBE. Not only are all the
atomic charges within the molecule, but also there are large differences in the
dielectric constants between the two regions separated by the boundary layer.
As several biological processes occur at or near the molecular surface, a high
accuracy for the solution to PBE close to this boundary layer is critical. Not
coincidentally, the stability and accuracy of numerical methods also depend
largely on the discretization of the grid in this region. To the best of our
knowledge, no previous algorithm for solving PBE for molecules exists that
builds the tetrahedral grid based on the molecular surface at the solvent-solute
boundary. In this paper we present a new algorithm to solve the PBE more
efficiently by building an adaptive tetrahedral space-decomposition about the
molecular surface. The main idea is to give higher priority and resolution to
the boundary region, and lower priority and resolution to other non-critical
regions. We also adjust the grid density to be close to uniform in each region.

5.1 Analytical Molecular Surface

Previous methods to solve PBE approximate the molecular surface after build-
ing a 3D grid around the molecule. For each grid point, a binary marker in-
dicates whether it is inside the molecule or inside the solvent. The molecular
surface is then defined as passing between those grid points that have dis-
similar markers. With such methods the accuracy of the molecular surface is
limited to the grid resolution; the actual molecular surface points do not in
general coincide with the grid points.

Several analytical molecular surface algorithms have been published (Akkiraju
and Edelsbrunner, 1996; Bajaj et al., 2003; Connolly, 1983; Klein et al., 1990;
Sanner and Olson, 1997; Varshney et al., 1994). We analytically generate the
molecular surface using the approach in (Varshney et al., 1994) and then
incorporate it in the 3D grid used for the solution of the PBE. Guaranteeing
that the grid points at the solvent-solute boundary are actually on the exact
surface improves the accuracy and speed of the algorithm.

5.2 Distance-Field-based Tetrahedralization

The accuracy of the FDM solution to PBE depends on the ionic strength
assignment, which is zero in the 2 Å ion-exlusion layer from the molecular
surface, and constant outside. Therefore we need an accurate ionic-screening
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surface that is 2 Å offset outwards from the molecular surface. Our tetrahe-
dralization algorithm is based on the distance field from the molecular surface
and can generate the ionic-screening surface as well as provide an adaptive
space decomposition.

We use an odd/even scheme for splitting rectilinear and curvilinear grids into
tetrahedra as done in (Max et al., 1990). We use a method similar to the
one described in (Gibson, 1998) to build a signed-distance map of the space
that measures the distance of each grid point to the molecular surface (points
inside the molecule are assigned negative distances).

V0

V1 V2

V3

V0

V1 V2

V3

V4

V5

V6

Fig. 2. Marching-tetrahedra-based Iso-surfaces and Tetrahedral grid refinement

Next, we generate a sequence of iso-surfaces from the distance map using
a tetrahedral variant of the Marching Cubes algorithm (Lorensen and Cline,
1987; Nielson and Hamann, 1991). We use tetrahedra instead of cubes for sim-
plicity and stability. We insert new grid points into the 3D grid such that they
form surfaces at a fixed distance away from the molecular surface. One case of
the marching tetrahedra is shown in Figure 2. Here the processing of tetrahe-
dron V1V2V3V0 generates triangle V4V5V6, which splits the original tetrahedron
into four new tetrahedra: V4V5V6V0, V4V3V5V6, V1V5V3V4, and V1V2V3V5.

5.3 Adaptive Tetrahedralization

Multiresolution hierarchies have been well-researched for triangle meshes (Lue-
bke et al., 2002) and tetrahedral meshes (Floriani, 2002). Such hierarchies have
been used for domain decomposition in finite element analysis (Hebert, 1994;
Maubach, 1995; Rivara and Levin, 1992), and used extensively in scientific
visualization (De Floriani and M.Lee, 2003; Gerstner and Rumpf, 1999; Gre-
gorski et al., 2002; Lee et al., 2001; Pascucci and Bajaj, 2000; Roxborough
and Nielson, 2000; Trotts et al., 1999; Zhou et al., 1997). In our case, adaptive
tetrahedral space decomposition is driven by the twin goals of accuracy and
efficiency of the PBE solution. We desire a finer grid near the solvent-solute
boundary for accuracy and a sparser grid elsewhere for efficiency.

We depict a 2D version of our adaptive tetrahedral grid in Figure 3(c). Here the
thick red curve represents the molecular surface, while the thin red curves are
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(a) Regular (b) Adaptive Subdivision (c) Interface-focused

Fig. 3. Different Space Decompositions for PBE solvers

the iso-distance layers from the surface. Figure 3 clarifies the conceptual differ-
ence between our approach and the approaches using regular grids(Figure 3(a))
or octree-based space sub-division scheme(Figure 3(b)). The advantage of our
approach is that we refine the grid directly on or close to the molecular surface.
Regular grids are not adaptive and hence suffer from low accuracy, or high
computational costs, or both. The adaptive octree-based subdivision scheme
in most cases generates an excessively fine grid around the molecular surface
to approximate it well. Our approach can adjust the resolution progressively
and seamlessly based on the distance from the molecular surface.

We achieve adaptive tetrahedral decomposition by using edge collapses. Mul-
tiresolution tetrahedral grid hierarchies have been built using bottom-up edge-
collapses (Cignoni et al., 2004; Trotts et al., 1999) or top-down longest edge
bisections (Gregorski et al., 2002). An edge collapse will decrease the triangle
count on the iso-surfaces, as well as the tetrahedra count. We use a half-edge
collapse scheme so that an edge will collapse to one of its vertices and no
new vertices need to be generated. Each edge collapse decreases the vertex
count by one, and decreases the triangle and tetrahedron count based on its
local connectivity. As an example, Figure 4 shows the collapse of edge E that
results in decimation of tetrahedron V0V1V2V5 and vertex V2, while the tetra-
hedron V0V2V3V5 is changed to V0V1V3V5. The finite difference method (FDM)
computes the value at a grid point from the values at its neighboring points
(Section 4). During volume simplification we have to be careful not to simplify
the volume into a state in which some grid points lose some of their neighbors
necessary for FDM.

V0

V2V1

V4
V3

V5

E

V0

V1

V4

V5

V3

Fig. 4. Edge collapse for tetrahedral decimation
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We also carefully avoid generating tetrahedra with negative volume (i.e., tetra-
hedra with a wrong orientation) and flipped triangles with reversed normals
during the simplification process. In Figure 5, we show a 2D projection of one
of these cases. Here the collapse of edge E results in grid point V0 losing one
of the six neighbors necessary for FDM. To avoid this we check and invalidate
edge collapses that result in a new tetrahedron with three collinear vertices.
In Figure 5, we get a new tetrahedron with collinear vertices V0, V3, and V1

and therefore the edge E’s collapse should not be allowed.

V0
V1

V2

V4

V6

V3

V5

E

V0
V1

V2

V6

V3

V5

Fig. 5. An invalid edge collapse may lose a neighbor necessary for FDM solver

Another constraint for edge collapses is to preserve the spatial grid’s outer
(volumetric) boundary. We do this to ensure that the total volume of all the
tetrahedra in the grid does not change as a result of the edge-collapse-based
simplification. If a candidate edge for collapse has one of its vertices on the
grid boundary we collapse the edge to the boundary vertex. If the candidate
edge for collapse has both of its vertices on the grid boundary we carry out
the collapse only if it will not result in a change in the total volume of all the
affected tetrahedra.

5.4 Derivative Computation for Irregular Grids

The FDM solver for the PBE has to compute first and second derivatives of
the 3D potential field at each grid point. The derivatives can be computed for
regular grids by taking the finite differences between the potential value at each
grid point with values at their six axis-aligned neighboring grid points. The
regular structure of the regular grids makes this procedure straight forward.
For irregular grids the situation is complicated by the fact that not only do
the distances between grid points vary, but also the neighboring points are
rarely axis-aligned.

We compute the derivatives of the potential at a grid point i by using the
values at the vertices of the tetrahedra that are adjacent to i and include
the principal axes from point i. As an example, consider the derivatives along
x-axis for point V0. First, we find the two tetrahedra that share the vertex
V0 extend towards positive and negative x-axis from point V0 as shown in
Figure 6. This can be done by a simple orientation test.
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xV0

V1

V2

V3V4

V5

V6

V-x V+x

Fig. 6. Neighboring tetrahedra of V0 along x-axis

After we identify the two tetrahedra we locate points V−x and V+x, that are
equidistant from V0 and along the x-axis. Let the distances between V−x and
V0 and between V+x and V0 be h, then the second-order derivative of potential
at V0 can be approximated by:

∂

∂x
[ε(−→r )

∂

∂x
φ(−→r )]

∣∣∣∣
V0

≈ ε(V+x)φ′x(V+x)− ε(V−x)φ′x(V−x)
2h

The first partial derivative of potential along x at V−x and V+x can be esti-
mated by using a Taylor series expansion. We express potential values at ver-
tices of each tetrahedron in terms of the value and derivatives at point V−x and
V+x. As an example, φ′x(V+x) can be estimated by solving the following system
of four linear equations in four unknowns (φ(V+x), φ

′
x(V+x), φ

′
y(V+x), φ

′
z(V+x):

8
>>>>>><
>>>>>>:

φ(V0) = φ(V+x) + φ′x(V+x)(−h)

φ(V1) = φ(V+x) + φ′x(V+x)4x1 + φ′y(V+x)4y1 + φ′z(V+x)4z1

φ(V2) = φ(V+x) + φ′x(V+x)4x2 + φ′y(V+x)4y2 + φ′z(V+x)4z2

φ(V3) = φ(V+x) + φ′x(V+x)4x3 + φ′y(V+x)4y3 + φ′z(V+x)4z3

where [4xi,4yi,4zi], i = 1, 2, 3, is the vector difference between 3D posi-
tional vector of point Vi and V+x: [4xi,4yi,4zi] = −→r (Vi)−−→r (V+x).

The above equations can be solved analytically. With such a solution we can
express the second-derivative of the potential at V0 along x axis as the linear-
weighted sum of the potentials at V0 to V6. We similarly compute the deriva-
tives along y and z axes. This method of computing the derivatives for irregular
meshes will have the same degree of accuracy as the method used for regular
grids because both use the first-order Taylor series expansion to connect the
values at neighboring points.
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6 Results and Discussion

In this section we discuss the results obtained using our algorithm. We have
used a 2GHz Pentium 4 PC running Windows 2000 with a nVIDIA GeForce3
graphics card. We present results on an analytical solvable case and compare
them with the results by the well-known DelPhi system for computing mole-
cular electrostatics. Our results show clear advantages of our algorithm over
the standard DelPhi algorithm. We achieve better accuracy with less compu-
tation time. We then show our results on some real molecular datasets. We
display the results by color coding smooth molecular surfaces as well as by
direct volume rendering.

6.1 Results and Comparisons on an Analytical Solvable Case

Normally it is difficult (or impossible) to obtain analytical solutions to the
PBE. In some special cases we may have analytical solutions to the linearized
PBE. One example is that of a spherical molecule, with total charge q uni-
formly distributed on the surface, immersed in a solvent containing mobile
ions, as shown in Figure 7.

Solvent

Ion-exclusion layer

Molecule

Ra

Mobile ions

(a)

The analytical solution here is (Holst, 1993):





φ(r) = q
ε2R

(
1− Rκ

1+κa

)
inside molecule

φ(r) = q
ε2r

(
1− rκ

1+κa

)
ion-exclusion layer

φ(r) = qeκa

ε2(1+κa)
· e−κr

r
inside solvent

(b)

Fig. 7. An analytically solvable case of PBE

We have tested the analytical solvable case using our algorithm and the DelPhi
(V.4) program. The results are summarized in Table 1. Here we have used a
spherical surface charge with a diameter of 27 Å and a positive charge of 20e
(where e is the charge of an electron). The sphere is immersed in a cubic
solvent volume of each side 66 Å.

The average error in Table 1 is the average of the relative error over all grid
points. Peak-signal-to-noise-ratio (PSNR) is 20 log10(

signal energy
noise energy

). The signal
energy is defined as the sum of the squares of the potential values over all
grid points. The noise energy is defined as the sum of the squares of the
errors over all grid points. PBE time is the time for solving linear PBE on
the grid. One can see from Table 1 the advantages of our method. To get the
same accuracy, our method needs only 27K points instead of several million
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DelPhi Our Method

Grid size 673 1333 1993 N/A

# of pts 300,763 2,352,637 7,880,599 26,987

PSNR 8.17 19.1 25.1 27.7

Avg. error 30.88% 17.91% 13.27% 15.98%

PBE Time 0.31 sec 4.50 sec 20.09 sec 0.25 sec
Table 1
Comparison of our method with DelPhi

needed by DelPhi, and takes only 0.25 seconds to converge, compared with
several seconds by DelPhi. For about the same amount of time, our method
is much more accurate than DelPhi, e.g., 15.98% instead of 30.88% error. Our
algorithm with 27K points has even higher PSNR than DelPhi with about
8M points.

6.2 Results on Molecules

We now show our results for some molecules. The first dataset is superoxide
dismutase (SOD) enzyme, which consists of 2196 atoms. Our second dataset
is a channel on the outer membrane of the Escherichia coli (Ecoli) bacterium
molecule (Sukharev et al., 2001), which consists of 10585 atoms. The results
are shown in Figures 8 and 9. We have used about 2000 directions to pre-
compute the accumulated transparencies for each contributing voxel.

Figures 8(a) and 9(a) display the smooth molecular surfaces of SOD and Ecoli
membrane channel using the SURF algorithm (Varshney et al., 1994). Fig-
ures 8(b) and Figure 9(b) display the electrostatic potential on the surfaces,
with red for negative and blue for positive potential; both use the poten-
tial information to modulate lighting color with grey for neutral potential.
Figure 8(c) and 9(c) show the volume rendered 3D potential field, from the
viewer up to the molecular surface. Figure 8(d), (e), and (f) are closeups of
Figure 8(a), (b), and (c) respectively. Electrostatic potential is traditionally
displayed on molecular surfaces (Rocchia et al., 2001). We find it is more infor-
mative to use direct volume rendering for the potential between the viewer and
the molecular surface. This gives more information compared to the on-surface
only potential display. Comparing Figure 8(e) with 8(f), one can clearly see
that in front of the negative on-surface potential in the central region, there
is a sizable positive potential region. It would have been hard to use the tra-
ditional electrostatic potential display methods such as color-coded molecular
surfaces or electrostatic iso-potential surfaces to convey the same amount of
visual information.
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(a) Molecular surface (b) Surface electrostatics (c) Volume rendering

(d) Closeup of (a) (e) Closeup of (b) (f) Closeup of (c)

Fig. 8. Electrostatics on SuperOxide Dismutase (SOD) dataset (red is for negative
potential, and blue is for positive potential)

(a) (b) (c)

Fig. 9. Ecoli’s mechanosensitive channel shown as (a) its molecular surface, (b) its
surface color-coded by electrostatics potential (red for negative potential, and blue
for positive potential), and (c) volume rendering of the electrostatics field around
the channel surface

7 Conclusions

We have presented new algorithms for efficiently computing electrostatic po-
tentials for large molecular datasets. Our methods give higher priority and
resolution to the solution-sensitive region to improve the accuracy and ac-
celerate convergence rates. We build a 3D tetrahedral partition of the space
directly from an analytically constructed interface layer. We also provide an al-
gorithm to control the density and uniformity of the grid by using an edge col-
lapse scheme. Compared with the state-of-the-art method using analytically-
solvable testing case, our method is faster and more accurate. The advantage
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of our algorithm in solving partial differential equations directly from the geo-
metrical point of view gives it a broad range of possible applications in other
application domains.

With the advances presented in this paper our electrostatic computation meth-
ods are now fast enough to be used in interactive molecular docking experi-
ments with interleaved computation and visualization of large molecules. We
plan to explore this in the near future.
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