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Abstract

Interactive display of molecular datasets is an impor-
tant tool to better understand the structural and func-
tional properties of biological samples. It remains a
challenge to display large molecular datasets, especially
time-varying ones, interactively. In this paper, we de-
velop a time- and memory-efficient algorithm to solve
this problem. Our approach speeds up the graphics ren-
dering pipeline at several stages by developing and ex-
tending various rendering techniques for efficient display
of time-varying molecular data, such as run-time tri-
angle strip and triangle fan generation, visibility-based
culling, view-dependent precision control, and memory-
bandwidth reduction. More importantly, our algorithm
requires no pre-processing and little memory overhead.
It is linearly scalable in the sizes of the molecular
datasets. Overall, we have achieved interactive display of
time-varying molecular datasets with several thousands
of atoms. Our algorithm is flexible and scalable and our
ideas for this problem can also be applied to visualiza-
tion of other large time-varying datasets. We illustrate
the capability of the proposed algorithm by presenting
a fast animation of the gating transition of the bacterial
mechanosensitive channel MscL.

1 INTRODUCTION

Interactive visualization of large datasets has become one
of the major challenges for computer graphics and scien-
tific visualization researchers. Several acceleration algo-
rithms for faster rendering have been developed over the
years. They include techniques such as multi-resolution
rendering and visibility-based culling that work by re-
ducing the number of graphics primitives to be rendered
based on viewing and illumination parameters. An-
other class of techniques works by improving the memory
bandwidth efficiency by better organization of the data
(for example triangle strips and triangle fans) or reduc-

ing the precision of each graphics primitive (for example
variable-precision rendering). These two kinds of tech-
niques complement each other and have been applied
successfully to render static scenes.
The above techniques work by a pre-analysis of data

with the design of clever data structures for efficient run-
time access. They have achieved impressive results on
static data. However, it is non-trivial to adapt the above
techniques to time-varying datasets and there is little
prior art for accelerating the rendering of time-varying
datasets. In this paper, we address the problem of inter-
active rendering and visualization of large time-varying
molecular datasets. We solve this driving application by
developing new techniques and extending existing ones
to deal with time-varying molecular datasets.
Globular proteins are well packed and adopt ordered

three-dimensional structures. More importantly, they
possess a variety of motions such as bond vibrations,
side-chain rotations, segmental motions, and domain
movements. It is motion that is required for proteins to
work, and it is our inability to fully understand protein
dynamics and their role in protein function that restricts
our understanding of the mechanisms of protein folding,
recognition, allostery, and catalysis. Protein dynamics
are extremely complex and difficult to analyze, because
a variety of motions take place in the same molecule and
at the same time. Being able to simulate and visualize
protein motions on a computer is therefore of utmost
importance for the understanding of the very complex
picture of protein dynamics and for the development of
proper theoretical models for the analysis. In this paper
we discuss interactive rendering of large molecular dy-
namics simulations to allow a better and more informed
understanding of the relationships between their struc-
ture and function.
The main contributions of this paper are:

1. We show how to extend current acceleration tech-
niques, such as multi-resolution rendering and preci-
sion control for rendering static scenes to display time-
varying molecules.

2. We develop a novel occlusion-culling scheme for
rendering time-varying molecules. At each frame we



build a new conservative occlusion map to cull the in-
visible atoms.

3. We build front-facing triangles into triangle fans
and strips at run-time for efficient use of memory band-
width. We show that our algorithm is linearly scalable.

2 RELATED WORK

Many techniques have been developed for speeding
up the visualization of large datasets, especially static
scenes. In this section, we give an overview of the rele-
vant previous work, such as level-of-detail hierarchies,
triangle-strip generation, occlusion-based culling, and
variable-precision rendering.
Multi-resolution hierarchies for level-of-detail-based

rendering have traditionally involved modelling each ob-
ject at multiple levels of detail. The detail is usually
measured in the number of geometric primitives required
for representation. A high-detail triangle-mesh object
will require a higher number of vertices, edges, and tri-
angles. At run-time, an appropriate level of detail is
selected based on viewing parameters for a faithful rep-
resentation. Even better, level of detail can be applied in
a view-dependent manner to take advantage of temporal
coherence and adaptively refine or simplify the geometry
between adjacent frames [Luebke et al. 2003]. Normally
the multi-resolution hierarchies of the geometry are built
as a pre-process.
Triangle strips provide a compact representation of tri-

angular meshes and are supported by popular graphics
APIs such as OpenGL. The use of triangle strips results
in fast rendering and transmission. A triangle strip with
n triangles can be rendered with only n + 2 instead of
3n vertices. Thus substantial savings for memory band-
width and computation of per-vertex operations such as
transformations, lighting, and clipping can be achieved.
Triangle strips can be generated as a pre-process and
stored with the geometry for later usage [Evans et al.
1996], or can be pre-generated and later updated view-
dependently [El-Sana et al. 1999]. It can be costly to
generate triangle strips from scratch at run-time [El-
Sana et al. 1999]. Triangle strips can also be used
for polygonal mesh compression [Gumhold and Straßer
1998; Taubin et al. 1998].
Occlusion culling works by culling away portions of

the scene that are not visible from the viewer. Culling
can be done in object space through the use of spatial
partitions or bounding volume hierarchies [Coorg and
Teller 1997; Hudson et al. 1997]. Object-space algo-
rithms have been developed for several specialized envi-
ronments such as architectural or urban datasets [Airey
et al. 1990; Hudson et al. 1997; Wonka et al. 2001]. How-
ever such techniques are not very effective on scenes with
several small occluders. Culling can also be done in im-
age space using hierarchical Z-buffer [Greene and Kass
1993] or hierarchical occlusion maps [Zhang et al. 1997].

Image-space occlusion culling usually achieves better oc-
cluder fusion. Normally occlusion culling is done conser-
vatively [Klosowski and Silva 2001; Yoon et al. 2003].
Non-conservative culling [Klosowski and Silva 2000] can
lead to popping artifacts when objects appear and dis-
appear between adjacent frames.
Variable-precision approach [Hao and Varshney 2001]

complements the multiresolution techniques as it reduces
the precision, instead of the number, of the primitives to
be rendered. This method relates the minimum number
of bits of accuracy required in the input data to achieve a
desired accuracy in the display output. The reduced pre-
cision can be used to accelerate the graphics rendering
pipeline at various stages. One can speedup the geome-
try transformations and lighting using SIMD parallelism
on modern processors. One can also reduce the mem-
ory bandwidth bottleneck between central and graphics
processors by sending less precise values with fewer bits.
Best of all, all this acceleration comes without sacrificing
image quality.
Most of the above techniques rely on a certain level of

pre-processing of the scenes and build the appropriate
data structures before the rendering phase. Hence they
are well-suited for scenes with static geometry. For time-
varying scenes, especially molecular dynamics simula-
tions with significant changes, these techniques can not
be readily applied. In this paper, we develop techniques
for interactive display of large time-varying molecules.
Our algorithm requires no pre-processing of the data,
has nearly no memory overhead, and is linearly scalable.

3 OUR APPROACH

The space-filling display of time-varying molecules in-
volves rendering each atom of the molecule as a sphere
with a van der Waals radius for every time frame. Dif-
ferent atoms are represented by different-sized spheres,
with possibly different resolution tessellations. Since
viewing individual atoms is not a normal real-life expe-
rience, parallel projections are often considered more in-
formative in molecular graphics than foreshortened per-
spective projection. Here we assume parallel projection.
Figure 1 shows the pipeline of our algorithm for dis-

playing each frame of a time-varying molecular dynam-
ics data. We start by loading the list of atoms with
their 3D positions for current time frame, and we sort
them according to their distance from the viewer using
a quick-sort algorithm. Next we determine the visibility
of each atom, by using our visibility-based culling algo-
rithm (detailed in Section 3.1). We use multi-resolution
techniques to decide the appropriate number of triangles
with which to represent the spherical atoms. We also de-
cide the necessary precision for vertex data from display
resolution specification. For the triangles that survive
the back-face culling phase we generate triangle strips
and compute illuminated color. Finally, we send the tri-
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Figure 1: Pipeline of our run-time algorithm
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Figure 2: Visibility test of an atom

angle strips and triangle fans with appropriate precision
to the graphics card for rasterization and display.

3.1 Determination of the Visible Set of
Atoms

Previous approaches for occlusion culling deal with gen-
eral environments. They achieve efficiency of occlu-
sion test by pre-processing the scene and building a
good data structure such as a cluster hierarchy [Yoon
et al. 2003] to store the relationships between objects.
Run-time efficiency is achieved through temporal coher-
ence, since the viewing parameters seldom change sig-
nificantly from one frame to the next. Occlusion culling
for time-varying molecules is different from the previous
situations. First, molecules go through large structure
changes, so the occlusion information between adjacent
frames may change significantly. This makes use of tem-
poral coherence by pre-processing the scene difficult and
less efficient. Second, there are no large occluders in
time-varying molecules. Each molecule consists of thou-
sands of atoms whose sizes are of the same order. The
relationships among this large number of small potential

Outer enclosing square
Circle projection of atom sphere
Inner enclosed square

Figure 3: Over- and under-estimation for Occlu-
sion Culling

occluders vary significantly over time. Thus, instead of
trying to use pre-processing with temporal coherence, we
decided to build per-frame occlusion map on-the-fly to
achieve better efficiency. We use the culling algorithm
described below to build per-frame occlusion map and
estimate the visible set of atoms.
The list of atoms for each frame is sorted using the

quick sort algorithm. We use a conservative culling
scheme to determine the potentially visible atoms. Since
our algorithm is conservative, it is possible for a few
non-visible atoms to be sent to the graphics card for
rendering. Figure 3 shows the conservative nature of
our culling. Each spherical atom is projected to a cir-
cle on the image plane under parallel projection. We
project the atoms in a front-to-back order. If all the
screen-space pixels of an atom are already occupied by
the nearer atoms, then the current atom will not be vis-
ible. Since the projection and checking for overlap of
circles is hard to implement efficiently, we instead use
two different-sized nested squares. As shown in Figure 3,
the blue square covered by the projected circle is used
to represent the definite occlusion by this atom for the
atoms behind it. We use the inner square of each atom
to build the occlusion map and the outer green square
(in Figure 3) to check if the atom has been blocked by
previously rendered atoms. An example is shown in Fig-
ure 2. Here the atom is visible since its outer square
has not been totally blocked. The occlusion map is then
updated using the atom’s inner square.
For memory and time efficiency, we use a bit pattern

to store the occlusion map and check for atom visibil-
ity. Initially, each bit is set to zero to indicate non-
occupancy. The bit is set to one when the pixel gets



covered by the inner square of an atom’s projection for
the first time. The pixel will from then on act as an
occluder for the atoms that project on it later. The bit
pattern storage using integers improves the memory us-
age. For a 1024× 1024 image, we only need 128K bytes
for storing the occlusion map. More importantly, storing
the bit pattern as packed integers improves efficiency. As
an example, if a new atom is visible and we want to ad-
just the occlusion map according to its inner-projected
square, then we just set the occlusion map pixels covered
by the square to one. So we can use a bitwise-OR op-
eration of the values of the covered pixels with a all-one
pattern to simultaneously cover several pixels in a single
operation. Similarly if we want to check for visibility
of a new atom, we need only to use a bitwise exclusive
OR operation of the values of the covered pixels with an
all-one pattern and check if the result is zero.

3.2 Generation of Appropriate Triangle Tes-
selations of Spheres

Recent multi-resolution literature [Luebke et al. 2003]
has discussed the interactivity and visual realism trade-
offs in selecting an appropriate resolution for geometry.
The screen-space size of an atom is an important de-
terminant for picking the number of triangles for rep-
resenting a sphere. We pick the tesselation resolution
such that each triangle will have about ten pixels on the
image plane.
For flexibility in adjusting the tesselation reso-

lution, we generate points on spheres along circles
with same latitude (i.e. same angle to the z–axis)
and symmetric over the x–y plane as shown in Fig-
ure 4. We then connect the points to form triangles.
Points connected to the North or South pole will
form a complete triangle fan. One such triangle fan
(0, 1, 2, 3, 4, 5, 6, 7) is shown in 5(a), where the ith

triangle is described by the 0th, ith, and (i + 1)st

vertices in the sequence. The points between adjacent
circles form a complete triangle strip. One such strip
(0, 1, 2, 3, 4,3, 5, 6, 7,6, 8, 9, 10, 11, 12,11, 13, 14, 15,14,
16, 17, 18,17, 19, 1, 0) is shown in 5(b). Note that this is
generalized triangle strip [Evans et al. 1996] where the
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Figure 4: Generating points on a sphere
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(a) Triangle fan (b) Triangle strip

Figure 5: A complete triangle fan and triangle
strip as seen from above the pole of a sphere)

repeated vertices are shown in bold.

3.3 Run-time Triangle Strip and Triangle
Fan Generation

After we decide the appropriate tesselation of an atom,
we know from Section 2 that sending triangle strips or
fans to the graphics card is more efficient than sending
separate triangles. We can generate the triangle strips
and fans easily from our tesselation scheme in Section 3.2
using traditional methods. However, that will not always
be the best solution. A pre-generated triangle strip is
fixed and will include both visible and non-visible tri-
angles for each viewing direction. Even if an atom is
visible, its back-facing triangles will not be visible. Pre-
generated triangle strips can be updated at run-time for
complex geometry [El-Sana et al. 1999]. However, here
we observe that we can take advantage of the spherical
atoms to generate the proper triangle strips and fans for
their front-facing triangles. Thus we can benefit from
the efficiency of triangle strips without the need to send
back-facing triangles or to update the triangle strips for
every frame.
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(a) Front-facing fan (b) Front-facing strip

Figure 6: Triangle fan and triangle strip of front-
facing triangles (in blue) as seen from above the
pole of a sphere)

We first decide which triangles are front-facing. The
front-facing triangle is defined as one with at least one
front-facing vertex. The front-facing vertex can be easily
determined by a dot product of its normal with view-
ing direction. Then we generate the triangle fan for



triangles consisting of front-facing vertices connecting
to the pole of the sphere, and triangle strips for tri-
angles consisting of front-facing vertices between adja-
cent circles on the sphere. As an example, Figure 6(a)
shows a run-time triangle fan (0, 2, 3, 4, 5, 6, 7) of Fig-
ure 5(a), while Figure 6(b) shows a run-time trian-
gle strip (4, 3, 5, 6, 7,6, 8, 9, 10, 11, 12,11, 13, 14, 15, 16) of
Figure 5(b). The grey triangles in the figure are back-
facing triangles.
An alternative to run-time generation of triangle strips

and triangle fans is to generate a fixed triangle strips
and triangle fan for the visible hemisphere, and rotate
spheres at run-time to keep their orientation relative to
the viewer fixed.

3.4 Memory Bandwidth Reduction

To further improve the memory and run-time effi-
ciency, we adapt the variable-precision approach [Hao
and Varshney 2001] to reduce the precision of the vertex
data. As shown in [Hao and Varshney 2001], we need no
more than 16 bits of accuracy to represent vertex data
for pixel-level positional accuracy in up to 213 × 213 ren-
dering window under parallel and 211×211 window under
perspective projection. In this work we use 16 bits in-
stead of 32 bits (floating point representation) to reduce
the memory bandwidth by half.
We also save some bandwidth by computing the color

of vertices on the CPU and sending only the unsigned
byte color (three bytes total for red, green, and blue)
to the graphics card, instead of sending a vector vertex
normal.
We have also used display list mechanism provided

by OpenGL to get better memory coherence to display
atoms. At each frame, we generate a new display list for
each type of atom (carbon, oxygen, nitrogen, hydrogen,
etc). Every visible atom is just a differently translated
instantiation of the display list containing the triangles
for its canonical representation.

4 RESULTS AND DISCUSSION

We have attempted to apply the approach described
above to ion channel studies, a dynamic branch of
biophysics with multiple applications in neurobiology,
pharmaceutical research, and many other branches of
biomedical science. Fast and efficient 3D visualization
and animation of molecular models helps to present the
dynamic nature of structures and facilitates the cross-
disciplinary exchange with information. To illustrate the
power of the fast-rendering algorithm we present a two
hundred-frame animation of the structure of the large-
conductance mechanosensitive channel MscL as it tran-
sitions from the closed to the open state. The animation
was based on five models representing the closed, open

(a) Top-view of frame 0 (b) Side-view of frame 0

(c) Top-view of frame 50 (d) Side-view of frame 50

(e) Top-view of frame 100 (f) Side-view of frame 100

(g) Top-view of frame 150 (h) Side-view of frame 150

(i) Top-view of frame 200 (j) Side-view of frame 200

Figure 7: Top and side views of five stages of Es-
cherichia coli mechanosensitive channel opening
and closing

and three intermediate conformations. The smooth tran-
sition between these modeled states was implemented
using a linear interpolation algorithm.
MscL is a ubiquitous part of the osmoregulation sys-

tem residing in the cytoplasmic membrane of most
bacteria, both free-living and pathogenic. Escherichia



coli MscL (EcoMscL) is the best understood model
mechanosensitive channel gated directly by membrane
tension. The atomic-scale model of EcoMscL based on
the crystal structure of its homolog from Mycobacterium
tuberculosis was built in order to relate the structural
information to the wealth of experimental data available
specifically for the E. coli channel. In the closed state
the channel core is represented as a tightly packed bundle
of ten transmembrane alpha helices (Fig. 7a, b). The
opening transition driven by external tension was mod-
eled as an iris-like expansion of the transmembrane bun-
dle accompanied by tilting of alpha-helices. The open
conformation is characterized by a large (3 nm) pore ca-
pable to pass a large current or a flux of small omolytes
(Fig. 7g, h). The last row of images (Fig. 7i, j) represent
the intermediate semi-closed conformation.
The pentameric EcoMscL complex consists of 10585

atoms. We display the ion channel transition process as
a two hundred frame animation. We have used a 2GHz
Pentium 4 PC running Windows 2000 with a nVIDIA
GeForce3 graphics card. We have achieved more than
32 frames per second (fps) rendering speed on this time-
varying dataset, each frame of which consists of 1.3 mil-
lion triangles. Our approaches are about four times
faster than VMD (version 1.8.2) [Humphrey et al. 1996]
with the same image quality.

5 CONCLUSIONS

In this paper we show that large time-varying molecu-
lar datasets can be displayed interactively using our time
and memory efficient algorithm. Various techniques have
been developed or extended to accelerate the graphics
rendering pipeline. Our algorithm has several properties
which make it very attractive. It has no memory over-
head, requires no pre-processing, and is linear scalable.
Though the techniques are designed especially for time-
varying molecular datasets display, the concepts are gen-
eral enough to benefit interactive display of large time-
varying datasets in other application domain as well.
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