
Voxel Based Object Simplification

Taosong He, Lichan Hong, Arie Kaufman, Amitabh Varshney, and Sidney Wang

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400

Abstract
We present a simple, robust, and practical method for
object simplification for applications where gradual
elimination of high frequency details is desired. This is
accomplished by sampling and low-pass filtering the object
into multi-resolution volume buffers and applying the
marching cubes algorithm to generate a multi-resolution
triangle-mesh hierarchy. Our method simplifies the genus
of objects and can also help existing object simplification
algorithms achieve better results. At each level of detail a
multi-layered mesh can be used for an optional and
efficient antialiased rendering.

1. Introduction

Automatic generation of multi-resolution object
hierarchies has become a crucial process for reconciling
scene realism with interactivity through level-of-detail-
based rendering [3, 4, 7]. The basic idea in a level-of-
detail-based rendering scheme is to use the perceptual
importance of a given object in the scene to select its
appropriate level-of-detail representation. Thus, higher
detail representations are used when the object is
perceptually more important and lower detail
representations are used when the object is perceptually
less significant. This method allows one to achieve higher
frame update rates while maintaining good visual realism.

Research on automatically generating multi-resolution
object hierarchies has proliferated in the last few years [5,
6, 8, 12, 14-16]. A constraint common to most existing
work has been the genus preservation criterion. Our work,
on the other hand, provides a method to simplify the genus
of an object in acontrolled fashion. Preservation of
topology (or the genus) is crucial for certain applications
such as molecular surface modeling, where the presence
(or absence) of interior tunnels and cavities in a molecule
conveys important structural and chemical information to
the biochemist. Clearly, if the target application demands
topology preservation, then the simplification algorithm
should adhere to it. However, if the goal is fast and realistic
rendering, such as for virtual reality or some other time
critical applications, topology preservation criterion could
stand in the way of efficient simplification.

Let us consider a virtual flythrough in a CAD model. A
tiny hole on the surface of a mechanical part in this model
will gradually disappear as the observer is moving away
from the part. However, genus preserving simplification of
this object will retain such features, thereby reducing
frame rates (due to limits on the amount of geometry-
simplification one can achieve while preserving topology)
and increasing image-space aliasing (due to
undersampling, especially in perspective viewing). This
idea has also been demonstrated in [4], where a chair has
been shown at three levels of detail with no preservation of
the topology across them.

Object simplification process can be viewed as consisting
of the following two stages:
(a) geometry simplification, in which the number of
vertices, edges, and faces is reduced; and
(b) genus simplification, in which the number of holes,
tunnels, and cavities is reduced.
Depending upon the target application, these two stages
can be performed either independently or jointly. For
example, given a certain criterion of genus simplification,
geometry simplification can be applied on the genus-
simplified objects to further reduce their complexity. Most
of the existing work in the area of object simplification
deals exclusively with stage (a) above, and the extension to
stage (b) is usually difficult and complicated. The goal of
our research is to address stage (b) in a simple and robust
way, and thereby also help the current geometry
simplification algorithms to achieve better results for
certain applications.

In this paper we present a method for the generation of
multi-resolution hierarchies with gradual elimination of
high-frequency features including, but not limited to, tiny
holes, tunnels, and cavities. An interesting feature of our
approach is that it can simplify not only individual objects,
but also collections of objects. In our approach the input
object is sampled and low-pass filtered into a three-
dimensional volume buffer of uniform voxels, a process
referred to as volume sampling by Wang and Kaufman
[17]. Then a triangle mesh fitting technique, such as the
marching cubes, is used on the volume buffer of filtered
sample points to produce a low-pass-filtered mesh. By



simply adjusting the size of each voxel, thereby adjusting
the resolution of the volume buffer, the desired level of
detail can be achieved, and consequently, a multi-
resolution hierarchy of triangle meshes can be generated.

A significant amount of object-space aliasing can be
eliminated by removing the high-frequency components
using the object simplification technique outlined above.
To further reduce the image-space aliasing during
rendering, we have dev eloped a multi-layered triangle
mesh rendering algorithm. Our idea is to smooth out the
transition between the boundary of an object and empty
space surrounding it by using multiple layers of triangle
meshes with increasing translucency from the innermost
layer to the outermost one. Unlike the earlier antialiasing
techniques presented in [1, 2], the prefiltering of the
projected objects in image-space is replaced by a view-
independent filtering in object-space, which is performed
only once in a pre-rendering stage. Our object-space
antialiasing approach involves rendering of translucent
polygons, which could be more expensive than traditional
image-space antialiasing on some platforms. However, it
has the advantage of higher accuracy.

The rest of the paper is organized as follows. We outline
our object simplification process in Section 2 and the
multi-layered marching cubes algorithm for antialiasing in
Section 3. We hav e implemented our algorithm and tested
it on several kinds of objects and summarize our results in
Section 4. Our conclusions and some ideas on future work
appear in Section 5.

2. Object Simplification

In this section, we adopt a signal-processing approach to
object simplification by sampling the input object and
using low-pass filtering to gradually remove the high
frequencies (i.e., detailed features) of the object. The class
of input objects that our algorithm can accept and process
includes polygonal meshes, volume datasets, objects
derived from range-scanners, and algebraic mathematical
functions such as fractals. Since our algorithm adopts a
signal-processing approach to object simplification, it
cannot output infinitely high frequencies, such as those
introduced by sharp edges. Thus, although it generates
reasonable results for all classes of objects outlined above,
it works best for objects that represent volumes with no
sharp discontinuities.

Our simplification algorithm starts by first overlaying the
object with a three-dimensional grid and applying a low-
pass filter at each grid point. A three-dimensional volume
buffer data-structure is used to store these filtered grid-
point values. That is, for a grid point (i , j , k) in the volume
buffer, the resulting filtered densityf (i , j , k) is calculated

as:

(1)
f ( i , j , k) =

∫ ∫ ∫ h(i − α , j − β , k − γ ) S(α , β ,γ ) dα dβ dγ

where h is a radially symmetric low-pass filter and
S(α , β ,γ ) is a binary function defined as:

(2)S(α , β ,γ ) =




1

0

if point (α , β ,γ ) ∈ object

otherwise

Once the filtering and sampling process is completed, a
polygon mesh fitting technique is employed to produce the
detail-eliminated polygon mesh from the set of filtered
sample points represented in the volume buffer.

Theoretically, high frequencies that exceed the Nyquist
frequency of the volume raster can be filtered out by
applying an ideal low-pass filter (sinc) with infinite
support. In practice, this ideal low-pass filter is always
approximated by filters with finite support. For volume
modeling of objects, lower sampling resolution of the
volume raster corresponds to lower Nyquist frequency, and
therefore requires a low-pass filter with wider support for a
good approximation. This direct correspondence between
the size of the filter support and the resolution of the
volume raster leads to a hierarchical representation of the
model. The base of the proposed hierarchy contains the
most detailed and the highest resolution of the object. As
one moves up the hierarchy, low-pass filters with wider
support are applied, and the top contains the blurriest low-
resolution version of the objects.

At first glance, this approach might seem somewhat similar
to the clustering scheme [12] or the three-dimensional
"mip-map" approach [9, 13]. However, our approach is
based on volume-based filtering for gradual elimination of
high frequencies, which is different from the locality-based
clustering of geometry as presented in [12]. In the three-
dimensional "mip-map" approach, every level of the
hierarchy is formed by averaging several voxels from the
previous level. In our approach, each level of the volume
buffer hierarchy is created by convolving the original
object with a low-pass filter of an appropriate support,
whose size can be theoretically any positive real number.
Thus, errors caused by a non-ideal filter do not propagate
and accumulate from level to lev el. Furthermore,
depending on the requirements of simplification speed and
accuracy, a variety of low-pass filters can be applied. For
example, for efficiency and ease of implementation, a
hyper-cone filter can be used. A hyper-cone filter has a
spherical filter support of radiusR and is weighted such
that its contribution is maximum at the center of the filter
support, and linearly attenuates to zero at a distanceR
from the center. Mathematically, the hyper-cone filter is



defined as:

(3)h(r ) =







(R − r )w

R
0

0 ≤ r ≤ R

otherwise

where w is the normalization factor which constrains the
total contribution of the filter to be one. To achieve better
results, one can employ a higher-order filter, such as a
Gaussian filter.

Analytic evaluation of Equation 1 is sometimes possible
for objects which are represented by algebraic
mathematical functions. However, for general
mathematical functions, polygon meshes, or volume
datasets, an analytical solution either does not exist or is
too expensive to be calculated. For such cases, a discrete
approximation can be used. This is accomplished by
convolving a precomputed-discrete filter with the object.

Once the multi-resolution volume representations have
been established, the marching cubes algorithm [10] is
used for reconstructing isodensity surfaces. In this
algorithm, an isodensity surface is approximated by
determining its intersections with edges of every voxel in
the volume buffer. Up to five triangles are used to
approximate the surface within a voxel. One advantage of
the marching cubes algorithm is that it can be efficiently
implemented using a precomputed lookup table for the
various arrangements of surface-voxel intersections.

3. Multi-Layered Marching Cubes Rendering

Although the binary surface classification used by the
traditional marching cubes algorithm generally generates
good results from the point of view of modeling, it does
introduce infinitely high frequencies. Since these
frequencies cannot be fully represented in the discrete
image, they can cause image-space aliasing. As an
alternative to the commonly used hardware-supported
antialiasing for rendering, we have dev eloped a multi-
layered marching cubes antialiased rendering algorithm.
This approach takes advantage of the low-pass filtering
applied during the volume-sampling stage. The non-
binary surface classifier that we have used permits surfaces
to be associated with a continuous range of densities,
thereby allowing a smooth transition from the object-
boundary to the empty space.

In this section, we present a marching cubes based
approach to discretely approximating the surface boundary
by generating several layers of triangle meshes with
increasing translucency from the innermost layer to the
outermost one (Figure 1b). Then, by appropriately
compositing these layers of triangle meshes using
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Figure 1:(a) Binary surface classification. (b) Continuous
surface classification and discrete approximation.

hardware-assisted blending, a high frame rate of
antialiased rendering can be achieved. The accuracy of the
discrete approximation of the continuous surface
classification is determined by the number of mesh layers
used and their corresponding isodensities. Better
approximation can be achieved with more layers, at the
cost of increased storage space and rendering time. The
minimum number of layers needed for the approximation
to be within a user-specified error bound depends upon
both the low-pass filter employed to generate the volume
buffer and the geometry of the original polygon mesh (e.g.,
Figure 2). However, it can be computed approximately by
the following method.

First, it is assumed that the translucency of a point with a
certain densityd is

(4)1 −
d

m

wherem is the maximum isodensity value associated with
the innermost layerM of the multi-layered surfaces. Then,
by assuming that the density of a point is decided solely by
its distance toM , we can approximate the density at every
point. Mathematically, centering the low-pass filterh with
supportR at a point with distancer from M , and assuming
the filter intersects a planar surface (Figure 2a), the density
of this point is:

(5)d(r ) = ∫
R

r ∫
√ R2−α 2

−√ R2−α 2 ∫
√ R2−α 2−β 2

−√ R2−α 2−β 2
h(α , β , γ )dα dβ dγ

R

r

(a) (b) (c)
Figure 2:Different intersections between a surface (solid)
and the filter (dashed).



Therefore, given an error boundε , the minimum number
of layers needed and their corresponding isodensities are
decided by a piecewise constant functionp with a
minimum number of segments which satisfies:

(6)∫
R

0
|p( x ) − d( x )| dx ≤ ε

The optimal piecewise constant functionp might not be
analytically derivable for certain filters. However, by using
the heuristic that more layers should be placed where the
derivative of the functiond is high, sub-optimalp can be
recursively generated. The number of layers of triangle
meshes is then equal to the number of segments in the
function p, and the isodensities of the meshes are the
corresponding constants of that function. In addition, the
corresponding translucency can be computed using
Equation 4.

In order to generate the correct composition of semi-
transparent meshes, the triangles should be projected in
either a back-to-front or a front-to-back order, each of
which generally involves an expensive sorting process. A
nice property of a marching cubes generated mesh is that it
is associated with a volume buffer. As a result, sorting can
be accomplished by traversing only the surface-intersected
voxels in a slice-by-slice fashion. Projection of multiple
objects, however, is more complex. One simple solution is
to perform the sorting on bounding boxes of the volume
buffers associated with the objects. A more accurate and
efficient sorting algorithm is to take advantage of the
volume buffers associated with the meshes of these
objects, since intersections among the regularly partitioned
volume buffers are easy to compute. Therefore, all the
surface-intersected voxels can be rapidly traversed in the
correct order.

4. Results

We hav e tested our object simplification algorithm on a
variety of objects such as a fractal sphereflake dataset, a
CSG-generated mechanical part, and a sampled dataset of
a human head. The results of our algorithm on the genus-
simplification (as well as on the triangle count
simplification to a certain extent), have been very
encouraging and are summarized below.

Figure 3 illustrates the triangle-mesh hierarchy of a
sphereflake fractal with 820 spheres. The original triangle
mesh, shown in Figure 3a, is reconstructed from a high
resolution volume buffer to preserve the details. By
convolving the original fractal functions with Gaussian
filters with different radius supports, we decrease the
resolution of volume buffers accordingly, and the resulting
number of triangles in the simplified mesh is reduced. The
simplification results are presented in Table 1, with the
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Figure 3:Different levels of detail of a fractal sphereflake
using a triangle mesh hierarchy.

index specifying the corresponding image in Figure 3. The
discrete approximations of the Gaussian filters applied are
at resolution 11× 11× 11. The surfaces have been
reconstructed from multi-resolution volume buffers using
an isodensity of 0.5 on a normalized scale of 0 to 1.

Table 1:Simplification of a fractal sphereflake

Index Resolution Radius Triangles

a 200×200×200 1 322214

b 100×100×100 2 64926

c 50×50×50 4 13576

d 30×30×30 6.7 3756

e 15×15×15 13.3 636

f 5×5×5 40 8



Figure 4: Di�erent levels of detail of a synthetically CSG-generated mechanical part.

Figure 5: Level-of-detail-based rendering of mechanical parts at six levels.



Figure 4 demonstrates a mechanical part generated by
CSG operations using volume-sampled voxelized
primitives [17]. The level-of-detail meshes established by
applying Gaussian filters of different radius supports are
presented in Table 2, with the index specifying the
corresponding image in Figure 4. The surfaces have been
reconstructed from multi-resolution volume buffers using
an isodensity of 0.5 on a normalized scale of 0 to 1. These
images have been rendered using a solid steel texture.
From these results, it can be seen that our algorithm
provides an elegant way to gradually reduce the genus and
small features. Figure 5 presents the effect of the
simplification on an assembly of identical mechanical parts
at different resolutions (as shown in Figure 4) which
depend on the distance of the parts from the viewpoint.

Table 2:Simplification of a CSG mechanical part

Index Resolution Radius Triangles

a 200×200×120 1 271504

b 100×100×60 2 64344

c 50×50×30 4 13292

d 40×40×24 5 8660

e 20×20×12 10 1508

f 5×5×3 40 88

Figure 6 presents the results of applying our algorithm on a
volumetric dataset, a CT-scanned human head of
256× 256× 225 resolution. The original and the
simplified meshes reconstructed from marching cubes are
presented in Table 3, with the index specifying the
corresponding images in Figure 6. Hyper-cone filters with
different radius supports are applied in this example.

Table 3:Simplification of a CT-scanned human head

Index Resolution Radius Triangles

a 256×256×225 1 865698

b 128×128×113 2 193790

c 64×64×57 4 42688

d 32×32×29 8 9246

e 8×8×8 32 300

f 4×4×4 64 52

Unlike the volume buffer generated from a solid object, a
medical dataset such as the CT-scanned head generally
does not have a well-defined surface. However, for a given
point it is still possible to test whether this point is inside
or outside the surface by tri-linearly interpolating the point
value from the neighboring eight vertices and comparing it
to the isodensity, and therefore Equations 1 and 2 can still

be applied. Another method of simplifying volumetric
datasets without well-defined surfaces is to directly apply
the reconstruction filters with different radius supports on
the original volumes. The application of 3D reconstruction
filter for volumetric datasets has been previously discussed
for volume rendering [18].

The effect of our antialiasing algorithm is demonstrated by
employing five layers of meshes on a bolt, shown at the
bottom half of Figure 7, and contrasted with the aliased
result of applying the traditional algorithm with binary
surface classification shown at the top half of Figure 7. It
should be emphasized that the multi-layered marching
cubes rendering generally requires more memory, and the
rendering speed might be slower than the other hardware-
supported antialiasing algorithms. However, it provides a
competitive object-space antialiasing method, and is quite
useful when a high-quality antialiasing effect is required.

5. Discussion and Future Work

We hav e outlined a practical and robust method for genus
simplification of objects. The strengths of our method are
that it (a) works for a wide variety of objects; (b)
supplements existing geometry-based object simplification
algorithms by gradually eliminating higher-frequency
features; (c) is relatively easy to implement; and (d) is
based on the robust theoretical foundation of signal-
processing theory.

In order to reduce temporal aliasing, smooth interpolation
between two adjacent resolution meshes should be
generated on-the-fly, which is generally a non-trivial task.
However, it is straightforward and efficient to interpolate
between two adjacent resolution volume buffers for
generating an in-between resolution volume buffer. To
generate the corresponding polygon mesh on-the-fly using
the marching cubes algorithm, only those voxels which
might contain surfaces are examined. An interpolated
voxel might contain a surface only if at least one of the
corresponding regions in the two volume buffers contains a
surface, or exactly one of the corresponding regions is
inside the surface. Such voxels can be efficiently
generated since the regions in the two volume buffers
satisfying the above conditions can be pre-computed.

A potential problem with our voxel-based simplification
method is that the marching cubes algorithm could
generate a large number of redundant triangles in the
regions of low surface curvature. However, a nice property
of our approach is that it can be used as the first stage of
the object simplification process to eliminate the
undesirable high frequencies. Any of the other existing
geometry-simplification methods that preserve the
topology can then be applied to further reduce the number



Figure 6: Levels of detail of a CT-scanned human head.

Figure 7: A bolt rendered using multi-layered marching cubes (bottom) compared to a traditionally rendered bolt

(top).



of triangles. A fundamental solution to the above problem
is to use the idea of adaptive subdivision of the volume
space [11]. As part of our ongoing research in this area,
we intend to explore the use of our voxel-based object
simplification in conjunction with a local curvature-based
adaptive volume buffer scheme which will enable us to
simplify both the geometry as well as the genus of an
object in a single pass. We are currently developing a
method of low-pass filtering and sampling a polygon mesh
into volume buffer with adaptive size voxels, where the
high curvature areas are represented by small voxels and
the smooth areas by large voxels. A corresponding
adaptive marching cubes algorithm is being investigated.

Another area that promises to be of interest, and one that
we are currently exploring, is the use of multi-resolution
object hierarchies in collision detection. The idea here is
to recursively perform collision detection among the multi-
resolution descriptions of objects, starting from the lowest
resolution representations and moving up to the higher
resolutions only when an intersection is suspected. To test
whether two objects collide at a certain resolution, the
volume buffers associated with them are directly used. All
the voxels of a volume buffer whose values are above a
certain threshold are transformed into the local coordinate
system of the other volume buffer. By checking the
neighboring eight voxels in the other volume buffer, the
possible intersections are detected. This approach works
because every time a low-pass filter is applied with a larger
support, the area affected by it becomes a superset. Thus,
computation time is saved by avoiding intersection
detection in regions that cannot possibly collide.
Furthermore, this hierarchical approach can be interrupted,
allowing us to trade accuracy for speed.
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