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Abstract—The field of visualization has addressed navigation of very large datasets, usually meshes and volumes. Significantly
less attention has been devoted to the issues surrounding navigation of very large images. In the last few years the explosive
growth in the resolution of camera sensors and robotic image acquisition techniques has widened the gap between the display and
image resolutions to three orders of magnitude or more. This paper presents the first steps towards navigation of very large images,
particularly landscape images, from an interactive visualization perspective. The grand challenge in navigation of very large images
is identifying regions of potential interest. In this paper we outline a three-step approach. In the first step we use multi-scale saliency
to narrow down the potential areas of interest. In the second step we outline a method based on statistical signatures to further
cull out regions of high conformity. In the final step we allow a user to interactively identify the exceptional regions of high interest
that merit further attention. We show that our approach of progressive elicitation is fast and allows rapid identification of regions
of interest. Unlike previous work in this area, our approach is scalable and computationally reasonable on very large images. We
validate the results of our approach by comparing them to user-tagged regions of interest on several very large landscape images
from the Internet.

Index Terms—Image Saliency, Very Large Scale Images, Scene Perception, Interactive Visualization, Anomaly Detection, Guided
Interaction.

1 INTRODUCTION

We are seeing a significant growth in the interest and relevance of
very large images. One of the reasons behind this trend is the de-
velopment of systems that can automatically capture and stitch pho-
tographs to create images of unprecedented detail ranging from a few
gigapixels [8, 27, 46] to even a few terapixels [12]. Recent advances
in consumer-grade robotic image acquisition from companies such as
Gigapan have further energized social network communities that are
interested in building, sharing, and collectively exploring such large
images. Some relevant work on processing of very large images in-
cludes a streaming multigrid solver for gigapixel scale out-of-core
gradient-domain image processing by Kazhdan and Hoppe [22]. More
recently, Summa et al. [40] present progressive processing of high-
resolution images with interactive previews. Kopf et al. [27] discuss
how to naturally display the stitched image by cylindrical projections.
Luan et al. [32] adaptively annotate these very large images by text
and audio according to the viewing position and scale. While these
are very interesting first steps in computational processing and display
of very large images, this paper addresses a different challenge for
such large images – their effective visual navigation.

Consider a gigapixel image shown in Fig. 1 . The successive zooms
give an indication of the level of detail in such images. When viewing
such images, users typically pan at the coarse level and occasionally
zoom in to see the fine details. Panning at the finest level of detail is
too tedious and panning at the coarsest level of detail does not have
enough information for the user to know where to zoom in. Just to
convey the magnitude of the problem, let us consider some numbers.
Imagine a user is visualizing a 4 Gigapixel image on a 2 Megapixel
monitor. This would suggest that every monitor pixel is representing
2000 image pixels and the observable image on the monitor is a mere
0.05% of the total dataset. Further, if it takes a user just a couple of
seconds to scan the monitor, it will take more than an hour to scan
through the entire image.

In this paper, we leverage principles of visualization to ease the task
of navigating very large landscape images. In visual exploration of
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very large images the biggest challenge involves identifying the most
salient content and visually presenting this information to the user. Just
as the transfer function design in traditional visualization uses opacity
to identify what data to show and color to emphasize, we present data-
driven techniques to identify and emphasize potential areas of interest
in very large images. Our techniques are relevant for visualization of
datasets when the data size is several orders of magnitude larger than
what the display device can accomodate. We use techniques based
on visual knowledge discovery to help in user navigation and adap-
tive context- and scale-dependent visual overlays to assist in spatial
localization of salient detail.

Challenges: The interactive visual exploration of very high-
resolution large-scale images presents three challenges:

Visual Scalability: The visual scalability challenge arises from the
inability of the human visual system to take in all the details that are
present in a very large image. This arises from a fundamental limita-
tion of the retina as well as the display hardware which have not kept
pace with our ability to acquire ever larger images. Fig. 2 shows the
growth in resolution of the mainstream consumer-grade LCD displays
against camera sensors in recent years. The display resolutions corre-
spond to the highest-resolution monitors sold by a mainstream vendor
(such as Dell and Apple) and the camera-sensor sizes correspond to the
highest-resolution entry-level SLR cameras manufactured by Canon,
Nikon, or Sony. The resolution growth of these off-the-shelf cameras
has clearly outpaced the resolution of the display monitors.

Information Scalability: The challenge here is to design effective
computational algorithms to identify nuggets of useful visual infor-
mation that hide in large-scale images. In very large images, most of
the image data is innocuous and unimportant and even considering it
wastes precious time and resources. Often relatively small regions in
such very large images are accorded a very high information value by
human observers. Identifying informative regions in very large images
that match human expectations is an ambitious challenge.

Data Scalability: The sheer data size of these images poses a com-
putational challenge. Processing such large images along with their
auxiliary data structures often necessitate out-of-core methods as well
as designing of algorithms that are cache- and memory-efficient. Even
routine image-processing operations for very large images require a
careful mapping to the many-core and multi-core processor architec-
tures for any reasonable performance.



Fig. 1. A very large image contains fine details. We progressively zoom
into the blue, yellow, and red regions in the panorama. There are in-
teresting regions at different scales: The overview panorama shows the
landscape. The blue region shows the hotel and parking lot. The yellow
region shows the cars. The red region shows a human. Note the red
region is less than one pixel at the overview scale.
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Fig. 2. The growth of camera sensor resolution vs display resolution.

Contributions: In this paper we present the first steps towards ad-
dressing the above challenges for interactive visual exploration of very
large images. We outline our main contributions next.

1. We extend classical computational image saliency to very large
images. Users often navigate across three or more orders of mag-
nitude scale differences – from the overview to the finest-scale
views while viewing a very large image. Classical algorithms
for multi-scale image saliency break down at handling such a
large span of visual scales. We discuss the issues involved and
present a solution in Section 4.

2. As discussed above in the information scalability challenge, it
is important to identify the regions of interest in very large im-
ages that characterize areas of high information value to users.
The question of how to effectively characterize visual informa-
tion content is still far from settled. There are a number of mea-
sures of visual information content and often the definition de-
pends on the task at hand. Our goal is not to provide a definitive
characterization of the visual information content of a region of
an image, which is a very deep question related to the issues of
task semantics and knowledge. Instead we present here a fairly
general information discovery algorithm in Section 5, that can
serve as a framework for further research with other measures of
information content.

3. Interactive visual exploration of very large images requires a
careful balancing of computational analysis and user prefer-
ences. Too much reliance on automatic intelligence-extraction
algorithms is currently not feasible since it is often very difficult

to codify semantics of what a user is looking for. At the same
time a purely interactive visual exploration without any compu-
tational assistance proves to be tedious and overwhelming due to
the sheer scope of the data that is being visualized. We present an
interactive visual exploration and information discovery system
in Section 6.

4. Data scalability is an important issue when dealing with very
large images and we present advances in this area in Section 7.

5. We present and compare our results with those from a social
community of gigapixel image enthusiasts in Section 8.

2 RELATED WORK

Over the years a number of techniques have evolved to address lim-
itations of the display medium with respect to the visual data. If the
input data has more bits of color information than those that can be dis-
played, we use tone mapping to approximate the appearance of high-
dynamic range images [10]. This involves mapping the color space
from a high-dimensional input to a low-dimensional output, while pre-
serving most of the salient content. Similarly, video summarization
techniques [9] typically involve extraction of the salient key-frames
with some context that results in warping of the temporal space. Re-
cent research has also looked at how to carry out image warping so
that images that are larger than the display can be adaptively resized
to preserve their most salient content [1, 37]. Most recently, Laf-
font et al. [28] present content-aware zooming on images up to 16
megapixels. While such image re-targeting techniques could be effec-
tive for images that are an order of magnitude larger than the displays,
they do not scale well to three orders of magnitude or more that we de-
sire. In this paper we present distortion-free navigation of very large
images, assisted by identification of their most salient content, to allow
viewing of very large images on displays of modest sizes. Unlike the
previously discussed methods, visualization by navigation maintains
the metric fidelity of the image. The pan and zoom interactions allow
the users to follow the local image context naturally.

2.1 Scene Analysis and Image Saliency

Image saliency has been used in modeling visual attention. Top-
down and bottom-up models for building a saliency map have been
introduced by Tsotsos et al. [42], Itti et al. [17] and several others.
Oliva et al. [35] apply the top-down model to object detection.

Recent approaches include work by Hou and Zhang [14] that
computes image saliency by the difference of the image’s original
and smoothed log-Fourier spectrum. Bruce et al. [4] learn a set of
sparse code from example images to evaluate saliency of new images.
Wang et al. [44] use random graph walk on image pixels to compute
image saliency. Goferman et al. [11] consider visual organization and
high level features such as human faces in saliency computation.

In spite of the impressive advances in the recognition of specific ob-
jects, such as buildings, cars, and humans, general scene understand-
ing remains a hard problem [13]. State-of-the-art systems [7, 31, 38]
train on web-scale databases of small images and then extract regions
of interests for test scenes in a supervised manner. More recently, Kim
and Torralba [23] use alternating optimization on sets of unlabeled im-
ages to extract one to three regions of interest per image. Our system
needs a more general approach since we expect a variety of regions
and objects of interest in a very large image.

Although there has been extensive previous work in identifying
salient regions using several methods, such techniques typically ex-
tract a very small number of regions from a relatively small image.
For instance, Goferman et al.’s [11] program requires 74 seconds to
process a 250× 142 image, and Bruce et al.’s [4] program requires
30 minutes to process a 3000× 1500 image. These timings are on
a current state-of-the-art workstation described in Section 8. Assum-
ing their running time scales linearly and memory swapping does not
become an issue, these approaches will take hundreds of hours to pro-
cess gigapixel-sized images. The purpose of this is not to downplay
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Fig. 3. Our system discovers regions of interests in very large images and assists user exploration. In the first step we build a saliency map by
augmenting the traditional multi-scale image saliency approach with a sliding window over scales. In the second step we carry out information
discovery by using color descriptors to identify the most unique regions. In the third step we facilitate rapid elimination of false positives through
user interaction during visualization.

the achievements of these approaches, which are actually quite im-
pressive in what they are targeting, rather to highlight the difference in
their approaches from ours.

We believe user interaction in the visualization process can greatly
assist in rapid culling of false positives and can greatly enhance the
overall computational efficiency of the resulting algorithms. Our ap-
proach adopts a three-step process of progressive culling of potential
regions of interest. We believe this provides a better balance of ac-
curacy and computational efficiency with a user in the middle than a
purely computational approach.

2.2 Visual Data Analysis
There is a rich history of data analysis for visual summarization and
identification of information-rich subspaces for effective visual pre-
sentation. We next present a few example of how salience is defined
and used for visual datasets to enhance their depiction. Notable ad-
vances include defining saliency for polygonal meshes [30], compar-
ing it to human eye movements [26], and illuminating meshes based
on saliency [29]. Howlett et al. [15] use eye-tracking data to identify
salient features on meshes and carry out user studies to validate their
findings. Kim et al. present and validate saliency-based enhancement
operators to guide visual attention in volume visualization [24] and
geometric meshes [25].

Machiraju et al. [33] present a system to detect contextually signif-
icant multiscale features in very large datasets directly in the wavelet
domain and visualize them progressively. Bordoloi and Shen [3] se-
lect informative views of volumetric data based on saliency defined
using entropy measures. Viola et al. [43] determine the most expres-
sive view for a selected region of interest in a volume using mutual
information. Bruckner and Möller [5] use isosurface similarity maps
based on mutual information to automatically select the most salient
isosurfaces. Saliency-based summarization of time-varying datasets
has been carried out for videos [9] and molecular dynamics simula-
tions [36]. Wiebel et al. [45] identify salience with the vortices that
originate from walls in three-dimensional time-dependent vector fields
and track their evolution using generalized streak lines. Unlike much
of the previous work on volumetric or time-varying data, the focus of
this paper is on visualization of very large images.

3 OVERVIEW OF OUR APPROACH

The goal of our paper is to carry out computationally-assisted naviga-
tion of very large images. We leverage the principles of visual saliency
and statistical similarity to outline a three-step approach. Fig. 3 shows
an overview of our approach.

Our first goal is to identify regions of interesting detail in very large
images. The challenges here are in dealing with the dramatic span of
visual scales and the sheer amount of data as well as information. Our
approach addresses each of them.

Visual Scalability: Traditional algorithms for multi-scale image
saliency work well for small images up to a few megapixels but do not
scale up well to gigapixels and beyond. To address this we augment the
traditional multi-scale image saliency approach with a sliding window

over scales to effectively work with very large images. Our approach
only requires Gaussian convolutions on images. It is highly paral-
lelizable and scales linearly with the size of the image. The sliding-
window saliency map phase of our approach discovers thousands of
locally salient regions from billions of pixels.
Information Scalability: Typical landscape images comprise of a
large number of natural elements such as clouds, rocks, grass, and
trees. In this paper we assume that such repeating scene elements are
not of interest to the viewers. We characterize all image regions us-
ing automatic color-structure descriptors. We then argue that the most
interesting regions are the ones that are the most different from their
k nearest neighbors (k-NN) in such color-structure feature space. We
have empirically observed that this definition works well for landscape
images. Other descriptors may be found to be more suitable for other
datasets. We use a spatial index to accelerate the k-nearest-neighbor
queries. This indexing and querying process grows as O(n logn),
where n is the number of salient regions identified by the sliding-
window saliency step. For gigapixel images n is typically of the order
of a few tens of thousands. We refer to this step as anomaly detection.
Interactive Visual Exploration: We have developed an interactive
visualization environment to assist in exploration of very large images.
We facilitate users to be aware of details that are a fraction of the screen
pixel by ensuring that the overlays for such regions are large enough
to be visible at every scale. The users can then explore and inspect
all such regions interactively. We also have an automatic mode of the
system in which the users are led through a smooth camera fly-through
over all the informative regions in the image in order of their unique-
ness as determined by the Visual and Information Scalability stages of
the algorithm. If a user comes across a region of the image that the
system claims is important, but the user finds to be unimportant, the
user can identify all similar regions (using a slider) and discard them
interactively. The spatial index structure built to address the Informa-
tion Scalability stage of the algorithm allows this operation to occur
within a few milliseconds.
Data Scalability: The size of the very large images together with
their auxiliary data-structures imposes a significant computational and
storage burden. We have used a number of approaches to ameliorate
this problem including out-of-core computation, efficient storage of
salient regions, and building the image viewer using a clipmap-based
tiled approach.

4 SLIDING-WINDOW SALIENCY

A very high resolution image is particularly interesting because it ex-
ceeds what the human eye can see at a given spot. In a very large
image we can zoom from seeing the big picture to scrutinizing the
finest details. Figure 4 shows three different views of an image at
three different scales. We note that the cars seen in Figure 4(c) are not
discernible in Figure 4(a).

4.1 Traditional Image Saliency
A saliency map shows which part of an image is likely to attract the
most attention of the low-level human visual system. Itti et al. [17]
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Fig. 4. We zoom into a very large image (a) to see the lake and the
nearby terrain, (b) to discover the hotel and parking lot (b) and then go
still further (c) to see the cars in the parking lot.
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Fig. 5. Computational saliency mimics the contrast detection mecha-
nism in the human retina. This image shows how Difference of Gaus-
sians (DoG) operator detects the high contrast cars instead of the low
contrast parking grids.

have proposed a computational model of visual saliency by using mul-
tiscale image processing. Multiscale image processing techniques ana-
lyze an image at different scales to simulate the retinal receptive fields.
Their image saliency model aggregates the results from three features
of an image – intensity, color opponencies, and orientation. We have
found that the use of the orientation features decreases the quality of
our results as it ends up enhancing naturally occurring structures with
strong edges such as cracks in rocks or trees, that end up becoming
too salient. In this paper we only consider the intensity and the two
color-opponency attributes for computing image saliency. The inten-
sity (FI) is the average of primary colors, red, green, and blue. The
color opponency attribute contains two sub channels, Red-Green(FR)
and Blue-Yellow(FB). The details on computation of these attributes
can be found in [17].

We next briefly review the traditional algorithm for computing the
saliency map S of an image.

Fi← Image, i ∈ {I,R,B}
Gi, j = G ( j)⊗Fi, j ∈ σ ,2σ ,4σ ,8σ ,16σ · · ·

Di, j,k = |Gi, j−Gi,k|, k ∈ {4 j,8 j}
NI = ∑

k
∑

j
N (DI, j,k)

NC = ∑
k

∑
j
[N (DR, j,k)+N (DB, j,k)]

S =
1
2
[N (NI)+N (Nc)] (1)

We first extract the intensity feature, FI , and color features FR,FB
from an image. Then, we convolve the feature images Fi with Gaussian
kernels, G , at different scales j. We find contrasting regions by com-
puting the difference of Gaussians (DoG) images at each scale, Gi, j.
We compute the DoG images at scales {σ ,4σ},{σ ,8σ}. The DoG
operation mimics the contrast detecting receptive fields of retinal gan-
glion cells. Fig. 5 shows the DoG operation extracts contrasting cars
from the background. N is a normalization function that promotes
the peak salient regions [16]. The saliency map, S , is an aggregation
of the normalized DoG images. We use σ = 2.0 in our experiments.

4.2 Sliding Window Aggregation
To see the difficulties introduced by the traditional saliency method,
consider the saliency map for the parking lot image in Fig. 4 com-

(b)σ to 4σ

(c)4σ to 16σ(a) All σ
(σ to 256σ)

(d)16σ to 64σ

Fig. 6. This shows a comparison of the thresholded Itti et al.’s [17]
method in (a) and our sliding window saliency maps in (b)-(d). (a) The
center cars and the parking lot are salient while the surrounding cars
are suppressed (σ to 256σ ). (b) All cars are salient (σ to 4σ ). (c) The
lower part of the parking lot becomes salient with a few cars (4σ to 16σ ).
(d) Only the parking lot is salient (16σ to 64σ ).

puted by Itti’s et al. [17] method. If we aggregate the saliency at all
the levels of detail, we obtain the salient region in Fig. 6(a). We ob-
serve that mostly the center of the parking lot has been included, while
most of the surrounding cars have been excluded. It is interesting to
note that if we analyze the saliency maps at each scale we find that
cars are salient at fine scales σ ,2σ ,4σ and the parking lot is salient at
scales 16σ ,32σ ,64σ . This can be seen in Figures 6(b)–(d). Therefore
even though the saliency maps at individual scales were able to cor-
rectly identify the constituent salient elements, the overall aggregation
ended up suppressing a number of them. The reason behind this is that
if the salient regions at two different scales overlap, this overlap tends
to disproportionately promote the overall salience of that region. Such
events are infrequent or otherwise are not of great concern when the
image sizes are relatively small. However, this no longer holds true in
very large images. As shown in Fig. 4, an observer would recognize
the parking lot and the cars quite independently of each other at differ-
ent scales. Therefore we believe that it is inappropriate to aggregate
the saliency of the cars and the parking lot together since they are de-
tected by DoG filters that are 16 scales of difference apart. The key
observation here is that while simulating the multiscale capabilities of
the human visual system, we have to be aware that our eyes have a
finite resolution. We should limit the number of scales in multiscale
image processing based on the limits of the human visual system.

To address the above, we introduce a sliding-window approach to
build saliency maps at multiple scales with limited aggregation. In this
approach by limiting the scales of saliency aggregation we produce
multiple maps that simulate the zooming operation. This allows views
of drastically different scales to be analyzed virtually independently
of each other. For example, we can extract cars from the aggregation
of normalized maps at scales {σ ,2σ ,4σ}. Fig. 6(b) shows the result-
ing saliency map. It highlights most of the cars without highlighting
the parking lot. We separate salient regions at widely different scales
by limiting the aggregation procedure. We limit the aggregation of
normalized maps from scale j to scale j + δ . We modify the aggre-
gation procedure in equation (1) to equation(2). This sliding window
approach ensures overlapping regions from drastically different scales
do not interfere with one another.



NI, j = ∑
k

j+δ

∑
j

N (DI, j,k)

NC, j = ∑
k

j+δ

∑
j
[N (DR, j,k)+N (DB, j,k)]

S j =
1
2
[N (NI, j)+N (NC, j)] (2)

We seek a scale difference δ that truly reflects the human visual
system. We use δ = 4 j in this paper. We next use arguments from the
human visual system theory to suggest why this may be appropriate.

Human Visual System Considerations: We would like to use the
scales in multiscale image processing based on the sensitivity differ-
ence between foveal and peripheral vision. Perceptual studies have
shown that the fovea is the most sensitive region of the retina and the
sensitivity drops as the view angle increases. Let us assume that we
are viewing an image on a 30-inch monitor at 1 meter. In this case, the
view angle subtended from the edge of the monitor to the center of the
screen is about 20◦. At 20◦, our retina retains approximately 1/5th

of the foveal resolution. Therefore, we have decided to compute the
saliency maps with images within the 4 scales (σ −4σ ).

Fig. 7 shows the saliency map resulting from our sliding-window-
scale approach for an example image. The computational saliency
model detects 18 thousand salient regions. The computational saliency
model pre-processes the data efficiently and reduces our quest for in-
teresting and meaningful detail from billions of pixels to thousands
of regions. Yet this is still too many regions for a user to manually
inspect. We next discuss a more discriminating anomaly detection
procedure to refine this initial pool of candidate regions.

5 INFORMATION DISCOVERY

It is difficult to quantify the visual information content of a region.
Some very interesting advances have been made in this field recently.
Jänicke et al. [19, 20, 21] have extended the idea of local statis-
tical complexity to measure the local information content of a re-
gion. This provides an application-independent, purely mathematical
measurement of information. More recently, a very interesting and
expansive treatment of how saliency and information theory can be
adapted and adopted for visualization has been carried out by Chen
and Jänicke [6, 18]. In this paper we wish to slightly side-step the
deeply intriguing topic of how to quantify visual information content
of a region in the general case, and instead talk about what we have
found to work well for large-scale landscape images. We hope that
further advances in the field of visual information quantification will
seamlessly replace the method that we outline next to work with a wide
variety of very large image databases beyond just landscape images.

In this paper we have decided to adopt the approach that the most
important regions of an image are those that are the most different from
every other region. In other words, we are interested in identifying the
outliers, or the anomalies, in a very large image. As seen in Fig. 7, the
sliding-window saliency aggregation step identifies a large number of
salient regions. They range from patches of grass on the ground, to
cracks between the rocks in the mountains.

Fig. 7. The saliency map of our example image. The sliding-window
saliency map detects 18k regions. (The salient regions are enlarged for
visibility)

5.1 Image Region Descriptors
To be able to quantify differences amongst different image regions we
need to first identify what we mean by an image region and then we
need to settle on the space in which such differences will be measured.

To identify an image region, we fit oriented ellipses to the salient
regions that were detected in the previous section. We then fit bound-
ing boxes to the ellipses, pad them by a few extra pixels (we have
used 20 pixels for all the examples in this paper) to ensure that the
padded bounding boxes fully enclose the salient regions. These bound-
ing boxes then represent the image regions of interest.

To achieve rotational invariance, we use histograms of the color-
space of the pixels belonging to the region of interest. We have tested
a number of color spaces – RGB, HSV, CIELab and found that neither
of them were very discriminative. We also experimented with shape
and orientation descriptors and found that they were excessively dis-
criminative. This search led us towards a descriptor that would repre-
sent both color as well as statistical structural information of an image
region and would have a discriminating ability that would lie between
the two extremes (color-based and edge-based descriptors).

The MPEG-7 color-structure image descriptor represents both color
and structural information. The MPEG-7 is an ISO standard for de-
scribing multimedia content data and facilitates information retrieval.
It consists of generic descriptors that cover many basic visual fea-
tures, such as color, texture, and shape. The MPEG-7 color-structure
descriptor embeds color structure information into the descriptor by
counting color frequencies in a moving window of 8×8 pixels. Color
values are represented in the double-coned HMMD color space, which
is quantized non-uniformly into 64 bins. The range of histogram is
normalized to 0− 255. The resulting descriptor is a 64-dimensional
vector. We follow the recommendation of MPEG-7 standard and com-
pare them using the Euclidean L2 norm distance.

D(p,q) = ‖p−q‖2 (3)

p and q are the descriptors of two image patches and D(p,q) is the
distance in between the descriptors. We compute the MPEG-7 color-
structure descriptor for each image patch using the software provided
by the BilVideo-7 [2] video indexing and retrieval system.

5.2 k-Nearest-Neighbors Anomaly Detection
We compute the uniqueness of each region by considering its k-
nearest-neighbors (k-NN). For each image region, we search for its
k-nearest-neighbor regions:

U(p) =
k

∑
i=1

D(p,qi)

k
where p,qi ∈ P, p 6= qi

D(p,q1)≤ D(p,q2)≤ . . .≤ D(p,qk)≤ D(p,qk+1) . . . (4)

P is a set of image patch descriptors. The uniqueness of image patch
p, U(p), is its average distance to its k-nearest neighbors, q1 . . .qk.
Repetitive regions with many close neighbors have a low average dis-
tance. Regions such as humans, signs, or vehicles should be distinct
from the other regions and have a high average distance. We iden-
tify the unique regions of interest by their high average distances. We
select the top 3% of salient regions as the regions of interest in our
experiments.

Approximate nearest-neighbor data structures accelerate the k-
nearest-neighbor search [39]. The biggest overhead in the k-
nearest-neighbors anomaly detection is the need to retrieve k-nearest-
neighbors for each region. Linear search of the k-nearest-neighbor
queries is computationally expensive. Research in computational ge-
ometry provides many spatial data structures to facilitate this nearest
neighbor querying. The approximated nearest-neighbors index signif-
icantly accelerates this search process. The sum of distances to the top
k-approximated nearest-neighbors provides a reliable uniqueness esti-
mate of each region. Our implementation uses a randomized KD-Tree
index in the flann library [34] through the OpenCV library.
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Fig. 8. We visualize the detected regions with adaptive scaling. (a)
Small detected regions are too small to be seen in the macro view. (b)
Adaptive scaling ensures the unique regions are enlarged and visible.

Fig. 8(b) shows an image with detected regions overlaid after
anomaly detection phase. This process reduces the 18 thousand salient
regions to just about 500 anomalous regions.

6 INTERACTIVE VISUALIZATION

We guide users to explore the image through the detected regions and
interactive visualization. We visualize the detected regions, provide
automatic fly-through, and allow interactive user refinement. We high-
light three features to assist large image exploration.

• Adaptive scaling ensures the regions of interest are visible.

• Automatic exploration guides the user to discover the unique re-
gions of the image.

• User interaction refines the computed detections.

6.1 Visualizing the Detected Regions
We want the users to see the detected regions from the macro view
of the image and also allow them to zoom-in to inspect. We believe
maintaining the zooming procedure gives the users a much more nat-
ural context. Small regions are invisible at the macro view, therefore
the corresponding overlay regions are also too small to be seen. We
need to visualize these regions more effectively.

We adaptively scale the overlay tags on the detected regions to en-
sure the most unique regions are visible. We compute the scale, λ , as
follows:

λ (r) =

{
sm
sr

(
1− rank(r)

#regions

)
if sr < sm

1 otherwise
(5)

λ (r) aims to enlarge the overlay tag for the region r according to
the viewing scale and the uniqueness of region r. sr is region r’s size
in pixels on the screen. sm is a user-defined target screen size for the
overlay tag. Rank(r) is the relative order of the uniqueness of region
r as determined by equation 4 and # regions is the number of regions
identified at the end of the anomaly detection phase. Thus, the greater
the uniqueness of a region r, the greater the λ (r) would be. As we
zoom into an image, sr increases and λ (r) gradually decreases, and the
overlay tags will be shown in their actual size once sr ≥ sm. We color
the overlay tags from cyan to magenta (the most unique) according to
their rank of uniqueness (equation 4).

Fig. 8 shows the example image and the overlay tags on the detected
regions. We see very few detected regions in Fig. 8(a) because they are
too small to be seen. We scale the detected regions in Fig. 8(b) by λ (r).
Fig. 8 (b) shows two groups of regions on the left and on the right. The
center region corresponds to a single salient car on the road.

6.2 Automatic Exploration
Our system guides the users to fly through the detected regions. This
helps the users to start exploring the image when they know little about
it. It smoothly pans and zooms into the detected regions according to
their uniqueness. We achieve this by sorting the regions in descend-
ing order of their uniqueness (equation 4). This forms a natural explo-
ration sequence that starts from the most unique regions. If users come
across misidentified regions during the fly-through, they can suppress
the regions by interactive refinement.

6.3 Interactive Refinement
Automated systems recognize a lot of regions of interest but they may
also make mistakes. Our system allows the users to refine the results
by selecting misidentified regions and deleting them. This mechanism
allows the users to refine the automatic result but it can be tedious
when users need to delete multiple regions. We provide interactions in
our system to batch delete misidentified similar regions.

The user may delete a batch of misidentified regions that are sim-
ilar in a single interaction. Fig. 9 illustrates this mechanism. This
select-slide-delete mechanism can remove many misidentified similar
regions at once. In the first step the user identifies a set of regions
that in the opinion of the user have been misidentified by the system.
Amongst these regions, the user selects one representative region in
the second step. This is highlighted by the system. In the third step the
user adjusts a slider control to change the similarity distance from the
one misidentified representative region to others that are like it. The
system interactively highlights other regions that it detects to be simi-
lar to the misidentified region. Once the highlighted regions match the
user’s intent, they can be deleted all at once.

The spatial index and color-structure descriptors of regions provide
the interactive search capability. The anomaly detection spatial index
is used in this step to provide fast similarity queries for regions. The
system expands the region selection by querying the spatial index for
regions that are similar to the user selection. The slider thresholds the
number of regions retrieved. The spatial index performs a fast nearest-
neighbor query to retrieve similar regions. The system includes these
regions in the selection and performs these operations at an interactive
speed. Fig. 10 shows our results after a few user interactions. The
number of detected regions reduces from 500 to about 300 with just
three such interactions.

7 DATA SCALABILITY

Processing many gigabytes of image data requires out-of-core algo-
rithms and techniques. We pay special attention to memory constraints
when we implement our saliency computation, storage of results, and
our interactive viewer.

Fig. 9. Users refine the results by deleting misidentified regions in batch.
1. Locate similar misidentified regions. 2. Select one representative. 3.
Adjust the slider to cover the desired regions. 4. Delete the selection.



Fig. 10. A few user-refinement interactions remove most of the misiden-
tified regions. The number of regions reduces from 500 to about 300
with three select-slide-delete interactions.

7.1 Out-of-core GPU Saliency Computation

We use GPUs to accelerate image saliency computation. The required
operations for Difference of Gaussians (DoG): image filtering, addi-
tion, subtraction, and resizing are highly parallelizable and suitable for
GPU implementation.

We compute a Gaussian pyramid to approximate the Gaussian
blurred images at different scales. We repeatedly downsize the im-
age by a scale of two and convolve it with a fixed Gaussian kernel of
scale σ . We store the xσ scale Gaussian image at level log2(x) of the
pyramid. The DoG images can be computed by simply finding the
difference of Gaussians images between two levels. The non-linear
normalization function N iteratively applies the DoG operation [16]
to promote the peak regions. We compute each of these normalized
maps once and use them to compose sliding-window saliency maps .

A significant problem in processing very large images (which cur-
rently are a few gigapixels) is that the entire image will not fit in the
GPU or main memory. To address this, we divide each image into
small tiles (256×256). We load the image tiles into the GPU indepen-
dently for addition, subtraction, and resizing operations.

Gaussian filtering requires information on image boundaries. Fil-
tering each tile without overlap results in loss of information at the
tile boundaries. To address this we load these tiles into the GPU with
overlaps for filtering. For every sub-image that is to be filtered we load
two extra rows of tiles (top and bottom) and two extra columns of tiles
(left and right) that surround the sub-image. We fill the GPU memory
with the largest possible sub-image (with additional surrounding over-
lapping tiles) to ensure efficient processing and minimize re-filtering
of overlapping tiles. Depending on the loading order, either one row or
one column will be used for filtering the next consecutive set of tiles.
The ability to independently filter these tiles allows parallelization.

In our implementation, we use the NVIDIA performance primitives
for GPU Gaussian filtering, resizing, addition, and subtraction.

7.2 Salient Regions Storage

We store ellipses to approximate salient regions to ease storage. The
sliding-windows saliency maps incur a storage burden. Similar to stor-
ing mipmaps, it takes 1 1

3 times the image size to store the saliency
maps at all levels. Although it is a constant factor increase, doubling
the storage of the already very large images poses a challenge.

To address this, we first threshold the sliding-window saliency
maps and locate continuous regions, also sometimes referred to as
blobs. The open-source library cvblob provides blob detection in
our implementation. We carry out local Principal Component Analy-
sis (PCA) to fit ellipses to these regions. This allows us to reduce the
storage of each region from hundreds of pixels to a few parameters
(center, orientation, and principal axes intercepts of each ellipse). The
threshold of our experiments is 0.25.

7.3 Tiled Image Viewer

Very large images presented in this paper do not fit in the GPU or main
memory for display. Each gigapixel in RGB format takes three giga-
bytes of memory in an uncompressed format for rendering. Images
with even a few gigapixels exceed the GPU or main memory of a work-
station. We have implemented an out-of-core tiled-image viewer. Our
viewer fetches only what can be seen at an appropriate scale from the
disk. This is similar in spirit to the concept of a clipmap [41]. To carry

this out we build a mipmap pyramid of the image. We divide the im-
ages on each level into tiles of 256×256. We load the required image
tiles according to the viewing parameters. We pre-fetch two extra rows
and columns of image tiles surrounding the viewing region to provide
smooth panning. Loading images from the immediately nearby scales
prepares for the zooming operation. We store these images in a tex-
ture array. This array is independent of the display arrangement of the
textures. We map each texture to an array location by a hash function.
The loaded texture can be reused on different views without any mem-
ory movement. The memory usage of the viewer is independent of the
size of the image. It is related to the size of the viewing window on
the screen only. Our viewer needs 350 megabytes for viewing a five
gigapixel image with a few hundred overlay regions.

8 RESULTS

We evaluate our approach on four multi-gigapixel images. We re-
port the regions identified by our system and compare them against
web community tags. We also report timings of our experiments. We
perform our experiments on the Linux platform with one Intel E5420
CPU, 4GB RAM, and one NVIDIA GeForce GTX 295 GPU (895MB).

8.1 Datasets
Digital image stitching and consumer grade robotics have made
panoramic photography very popular. Compact digital cameras can
stitch multiple consecutive pictures into a panorama. Robotic devices
such as the Gigapan EPIC can take hundreds of pictures automati-
cally for image stitching. These products allow consumers to create
images of several gigapixels. Community panorama websites such as
Gigapan and HDView have gained much popularity on the Internet.
Users around the world upload their panoramic pictures to these web-
sites. The web community of panoramic photography enthusiasts then
explore, tag, and comment on interesting regions in these images. We
downloaded four gigapixel images from the Gigapan website as shown
in Fig. 11 and discussed below.

Grimsel Pass: The Grimsel Pass is a high mountain pass in Switzer-
land. It connects the valley of Rhone River in the canton of Valais and
the Haslital in the canton of Bern. The picture shows an overview of
the mountain area, the lake, and the road network. There are distinc-
tive areas with building constructions, hotels, and numerous cars on
the road.

Royal Gorge Bridge: The Royal Gorge Bridge is the highest sus-
pension bridge in the world. This tourist attraction is located in a
theme park near Canon City, Colorado, shown in the top right of the
picture. The Royal Gorge Route Railroad is a heritage railroad of-
fering scenic and historical train-rides, shown at the bottom left of the
picture. The picture shows the valley of Arkansas River with the Royal
Gorge Bridge and a small town on the right.

Cacti: This picture shows a cactus field in Arizona. A few hikers are
hidden among thousands of cacti.

Main Mt. Whitney Trail: This is a trail in the Sequoia National Park,
California. This image of mountains and lakes includes many hikers.
They all took the challenge to hike the highest peak (14,497’) in the
lower 48 states.

8.2 Evaluation
We show a sample of the detected regions in Fig. 11. We tag the loca-
tions with numbers and show the detected region in the corresponding
thumbnails. We overlay the ellipses onto detected regions. Our system
identifies a variety of regions at multiple scales. It locates humans, ve-
hicles, buildings and even special features of the landscape such as a
glacier. This shows the generality of our approach.

In the Grimsel Pass picture (Fig. 11(a)), the system detects build-
ings in thumbnails 1 and 8. Thumbnail 2 shows a blue Swiss Tardis.
Cars, coaches, and road signs are found in thumbnails 3, 4, and 5.
Thumbnail 6 shows a glacier in the mountain. Thumbnail 7 gives a
view of the parking lot example in Section 4.



(a) Grimsel Pass (1.3 gigapixels)
http://www.gigapan.org/gigapans/30463/

(b) Royal Gorge Bridge (1.4 gigapixels)
http://www.gigapan.org/gigapans/7295/

(c) Cacti (4.0 gigapixels)
http://www.gigapan.org/gigapans/14937/

(d) Mt. Whitney (5.0 gigapixels)
http://www.gigapan.org/gigapans/44272/

Fig. 11. Gigapan picture datasets with samples of numbered detected
regions shown in the thumbnails.

Image SW Saliency k-NN Interactions
Grimsel Pass 18k (64) 525(64) 400(64), 325(62)
Royal Gorge 19k (49) 567(49) 226(49), 121(45)
Cacti 50k(10) 1.5k(10) 761(10), 513(7)
Whitney 40k(15) 1069(15) 604(14), 259(12)

Table 1. This table shows the quality of results after each step of
processing. The SW Saliency column shows the results after sliding-
window saliency map. The k-NN column shows the top 3% regions se-
lected by anomaly detection. The Interaction column shows the results
after three and five user interactions. In each of these columns, the
number shows the count of computer-selected regions and the number
in parenthesis is the count of the detected objects of interest. An object
of interest may contain multiple detected regions.

In the lower left of the Royal Gorge Bridge picture (Fig. 11(b)), the
system finds a train and a river rafting boat along the Arkansas river
in thumbnails 1 and 2. We see two cable cars in thumbnails 3 and
4; the one in 3 has just departed the station whereas the one in 4 is
much closer to the camera. Thumbnails 5 and 6 show a caravan and a
restaurant sign around the town. Thumbnail 7 shows tourists and flags.

We found a few hikers among the cacti in Fig. 11(c). Thumbnail
1 shows the back of a hiker; the system has identified him by his
jeans. Thumbnail 2 shows a double image of two hikers, who probably
moved and were captured at two instances. The hiker in thumbnail 3
was using a camera. We find a man sitting in thumbnail 4. Two other
hikers are detected in thumbnail 5.

Although Mt. Whitney (Fig. 11(d)) is a popular hiking spot, we
detect more than the hikers. Thumbnail 1 and 4 show a bridge and
the Alpine lake. We found 4 hikers in thumbnails 2 and 5. A hiking
backpack is shown in thumbnail 3. We are able to detect 12 out of 13
hikers in this picture.

Table 1 shows a summary of the detected number of regions after
each step. We inspect the results and count the number of detected
meaningful objects, such as humans, vehicles, and buildings, after
each processing step. These are shown in parentheses. Many detected
regions may map to different parts of the same meaningful object.

The number of detected objects remains the same until the user-
guided interactive refinement step. This shows our system is conser-
vative and generally does not remove positive results. Our system finds
a few hundred regions from images of a few gigapixels.

Gigapan Community Tags: Internet users tag and comment on
these very large images on Gigapan’s website. Table 2 shows our sys-
tem is able to detect a majority of the gigapan community tags. Fig. 12
compares the tags with our user-refined results. These tags contain
high-level semantic information. For example, the pattern we detected
in thumbnail 1 of Fig. 11(a) is a child’s drawing for a construction
accident prevention campaign. Although a large number of tags repre-
sent regions of interest, such as vehicles or humans, not all interesting
regions are tagged. Fig. 13 shows two examples of tags that contain
semantics beyond general visual information. In Fig. 13 (a), a user
has tagged a common cactus as being the original one. Another user
has tagged some buffelgrass in Fig. 13 (b) because it grew after a fire.
Clearly such tags require high-level semantic knowledge that a purely
low-level perception-based system such as ours is unable to detect. We
show the number of tags without semantic information in the second
column of Table 2.

8.3 Performance

We report timings for different stages of our system. Table 3 shows
the pre-processing times for the sliding-windows saliency computa-
tion, k-nearest neighbors anomaly detection, and user-guided interac-
tive refinement.

The running time for the sliding-window saliency computation av-
erages to 2.5 hours per gigapixel. Since the saliency computation rou-
tines are parallelizable, we expect a cluster of machines can easily pro-
cess each gigapixel within a few minutes. k-nearest neighbor anomaly
detection takes less than a minute. This is considerably faster than the

http://www.gigapan.org/gigapans/30463/
http://www.gigapan.org/gigapans/7295/
http://www.gigapan.org/gigapans/14937/
http://www.gigapan.org/gigapans/44272/


Image Gigapan Tags Detected by
our systemAll Non-Semantic

Grimsel Pass 35 32 25
Royal Gorge 35 30 24
Cacti 24 17 15
Whitney 11 11 10

Table 2. This table compares our results with Gigapan community tags.
Our system detects most of the Giganpan community tags. The second
column shows the count of tags without semantics as discussed in Sec-
tion 8.2. There is a difference between the count of tags and detected
objects. Each tag may cover multiple objects and not all meaningful
objects are tagged. Some of the tags also overlap with one another.

Image Preprocessing Interaction
SW Sal. k-NN w/o k-NN w/ k-NN

Grimsel Pass 3.2h 5s 1193ms 9ms
Royal Gorge 4.5h 6s 1247ms 9ms
Cacti 10.3h 25s 2029ms 20ms
Whitney 11.1h 23s 1968ms 17ms

Table 3. This table shows the running time of our system. The prepro-
cessing time includes the sliding-window saliency (SW Sal. column) and
anomaly detection (k-NN columns). The interaction column show tim-
ings for interactive user refinements. This select-slide-delete refinement
cannot be interactive without the k-nearest neighbors (k-NN) anomaly
detection step.

recent image saliency techniques in Section 2.1. This pre-processing
can be computed offline.

The k-nearest neighbor anomaly detection reduces thousands of
salient regions to a few hundreds while it also enables the interac-
tive refinement process. The interactive select-slide-delete refinement
process (searching, and redrawing) takes only tens of milliseconds. In
contrast, when we try to interactively refine thousands of salient re-
gions, each interaction takes several seconds.

9 CONCLUSIONS AND DISCUSSION

In this paper, we show how to use visualization and computation to as-
sist the exploration of very high-resolution large-scale landscape im-
ages. We address the visual scale challenge by introducing the sliding-
window computational saliency model. Anomaly detection automati-
cally discovers information while visualization allows the users to ex-
plore the image interactively. Our system implementation is scalable
to large datasets by using out-of-core methods. We show our system
can detect interesting details from various landscape images. The de-
tections largely match community user tags.

In this paper we have focused on large-scale landscape images that
have been acquired by stitching together of a large number of pho-
tographs. However, very large scale images are finding use in a num-
ber of different areas. For example, semiconductor wafer manufac-
turers are using terapixel images for quality inspection of their chips
for detecting circuit anomalies. As another example, latest generation
microscopes stitch together volumes of very high resolution, multi-
slice imagery that depicts the entire life-cycle of a number of para-
sites. As yet another example, astronomers are exploring the farthest
reaches of the universe through the use of terapixel imagery. Our sys-
tem is currently targeted for analyzing landscape images using color
and appearance. The key to analyzing other domain-specific images
is to design appropriate descriptors that characterize similarity across
regions of interests. The descriptors should allow fast discovery of lo-
cally distinct regions as well as accurate identification of the globally
unique regions. We believe the field of visualization will be consider-
ably strengthened by incorporating analysis and visualization of very
large images as a first-class data primitive next to volumes and meshes.
This paper presents some of the first steps towards that goal.
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(a) Grimsel Pass

(b) Royal Gorge Bridge

(c) Cacti

(d) Mt. Whitney

Fig. 12. This figure shows the Gigapan community tags and our de-
tected regions. The rectangles are the Gigapan tags and the ellipses
are our user-refined detected regions.

Fig. 13. Gigapan community tags: (a) The original cactus. (b) Some
buffelgrass after a fire. These tags contain semantics beyond general
appearance.
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