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Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed
for this task, but they are designed for traditional single-processor architectures. The current trend in
computer hardware is towards increasingly parallel architectures for which these algorithms are not well

We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to
the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of
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1. Introduction

Computation of molecular surface area is important in the
grand challenge problems of molecular docking and protein
folding as it allows one to incorporate the effects of solvent in
the potential energy calculations. Recent work on interactive
manipulation [1] and visualization of large-scale proteins [2]
shows us how interactive visualization offers a powerful front end
for computational steering of calculations. In such settings, rapid
calculation of protein conformations becomes especially impor-
tant and fast solvent-solute interactions are an essential first step.
In this paper we address the mapping of molecular surface area
calculations on the emerging multi-core architectures for potential
use in interleaved computation and visualization of large bio-
macromolecular complexes.

To serve this need for molecular surface area computation, a
wide variety of algorithms and programs have been developed—a
few examples are the early works by Connolly [3,4], MSMS [5] by
Sanner et al., GETAREA [6] by Fraczkiewicz and Braun, LSMS [7] by
Canetal,, 3V [8] by Voss, and an adaptive grid-based algorithm [9]
included in TexMol [10] by Bajaj et al. These algorithms have been
designed to work well on traditional, single-processor computer
architectures using a serial programming model.

However, computer architectures are now facing the first major
disruptive challenge in over two decades in the form of pervasive
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parallelism. For example, AMD and Intel have already changed
their product lines to include dual-core and quad-core processors.
According to the Intel road map, they plan to have hundreds of
cores on a single chip becoming a reality over the next decade. The
Cell processor has eight stream processing cores in addition to a
conventional scalar processor. GPUs have been at the forefront of
the multi-core revolution in that they are already shipping with
hundreds of cores. NVIDIA’s G80 has 128 multiprocessors. Intel has
recently disclosed their plans for a GPU consisting of 24-32 cores
each involving a 16-wide SIMD vector processor with over two
TFLOPs of performance. In addition, GPUs and CPUs are being
merged thereby blurring the distinction between cores that
specialize for graphics and cores that are more general purpose.
Both AMD and Intel are working on fused CPU-GPU cores; this will
enable tight coupling between applications and graphics. Because
of the large computer games market, these highly parallel GPUs are
being mass produced and are available for commodity prices.
While the use of this hardware for scientific computation originally
required some unpleasant hacks, recent development environ-
ments such as NVIDIA’s CUDA (compute unified device architec-
ture) [11] and ATI’'s CTM (close to metal) [12] make the use of this
hardware much more elegant. Bringing GPU computing further
into the mainstream is NVIDIA’s Tesla product line, a GPU designed
specifically for general-purpose computation.

Unfortunately, algorithms and programs designed for a single-
processor architecture are often not able to directly take advantage
of these new parallel processors. Algorithms designed for serial
computation can sometimes be parallelized, but this can be a non-
trivial task.
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To take advantage of this new trend in high-performance
computer architecture, we present a parallel algorithm, imple-
mented for both CPU and GPU, to efficiently compute molecular
surface area. In addition to its parallel nature, the algorithm is also
progressive, providing a rough estimate of surface area very
quickly and refining the estimate over time until the desired
accuracy is reached. Finally, the algorithm generates points on the
molecular surface, which can be used to create point-based
renderings of the molecule.

2. Related work
2.1. Molecular surface area computation

Molecular surface areas have been computed through several
different methods. The program MSMS [5] by Sanner constructs the
solvent accessible surface (SAS) [13] and solvent excluded surface
(SES) [14] by considering the intersections of spheres representing
Van der Waals radii of atoms of the molecule, and using this
information to compute a set of patches which make up the surface.
The reduced surfaces it computes correspond to alpha shapes [15].
The program GETAREA [6] by Fraczkiewicz and Braun also calculates
surface area by computing surface patches based on sphere
intersections, making use of some additional ideas from computa-
tional geometry. A different type of approach was used by Wodak
and Janin[16], who give a fast method to estimate molecular surface
area using only distances between pairs of atoms.

Additionally, any program that computes triangulations of
molecular surfaces, such as SURF [17] by Varshney et al., can be
easily converted to give an estimate of molecular surface area by
adding up the areas of all the generated triangles. SURF is designed
to take advantage of data-parallelism at the granularity of
individual atoms, but cannot scale to take advantage of an
unlimited degree of parallelism as our algorithm can. The SURF
algorithm is also restricted to molecules defined as a collection of
discrete atoms, while our algorithm can be applied to molecular
surfaces defined in virtually any manner.

More recently, the program LSMS [7] by Can et al. discretizes
atomic Van der Waals spheres onto a regular grid, and then uses
the level-set method to propagate fronts to compute the SAS and
SES; it can also compute the solvent excluded volume. The
program 3V [8] by Voss also discretizes the molecule onto a regular
grid and computes area and volume, but does not use the efficient
level-set algorithm of LSMS.

Another recent algorithm by Bajaj and Siddavanahalli [9] can
compute several different molecular surfaces. Their work models
atoms using signed distance fields, which are similar to the radial
basis functions used in our work. However, our algorithms are very
different—Bajaj and Siddavanahalli’s algorithm builds up mole-
cular surfaces incrementally on a grid by adding atoms one at a
time, while our algorithm measures surface area using parallel,
stochastic sampling.

2.2. General-purpose GPU computing

Although graphics processing units (GPUs) were originally
specialized hardware suitable only for 3D graphics computations,
modern GPUs have evolved into general-purpose high-perfor-
mance parallel processors. NVIDIA’s G80 product line, for example,
features 128 programmable processor cores and advertises a
maximum performance of 300 gigaflops. These processors are
programmed in an SPMD (single program, multiple datastream)
fashion; all processors execute the same program, but are allowed
to take different branches at conditional statements at the cost of a
performance penalty. The high peak performance of GPUs relative

to CPUs is largely due to the fact that GPUs devote a larger
proportion of their transistors to arithmetic computation instead
of tasks such as memory caching. Because of this architecture,
GPUs perform best with algorithms that do a large amount of
computation relative to their number of memory accesses; this
type of algorithm is referred to as having high arithmetic intensity.

Modern GPUs have large amounts of on-card memory; first
generation Tesla cards, for example, will have 1.5 GB of RAM.
Historically, each processor on a GPU was only able to write its
output to a single location in memory, corresponding to the pixel
whose value that processor was computing. Modern GPUs have
overcome this limitation and allow full read and write access to
any location in memory from any processor. Additionally, the
processors have access to a small pool of very fast shared memory
which is suitable for communication between processors within
the inner loop of an algorithm.

In the past, writing a general-purpose program for a GPU meant
casting the algorithm in terms of graphics operations, such as
texture look-ups and RGB color vector manipulations. With the
recent advent of development environments such as NVIDIA’s
CUDA and ATI's CTM, however, general-purpose algorithms can be
written in much more natural terms. CUDA, for example, is
basically equivalent to the C language with a few extensions to
facilitate the launching of parallel computation kernels.

Even though GPU algorithms can now be written in develop-
ment environments similar to those used for CPU algorithms,
developing an algorithm for a highly parallel architecture such as a
GPU requires a different approach than developing for current
CPUs. For an algorithm to run efficiently on a GPU, it must be
divided into a large number (at least on the order of hundreds) of
independent tasks which can be executed simultaneously. We note
that our algorithm is ideal for this, since it is based on taking a large
number of independent random samples. Care must also be taken
to reduce main memory access as much as possible, and to take
advantage of the available fast shared memory.

3. Gaussian molecular modelling

We calculate the surface area of a protein which is represented
as the level-set of a sum of Gaussian radial basis functions (RBFs),
with one RBF being placed at the location of each atom’s center.
This implicit molecular surface representation has been used as far
back as Blinn’s 1982 work [18], as well as in many more recent
works such as Grant and Pickup [19], Ritchie [20], and Bajaj and
Siddavanahalli [9].

Symbolically, each Gaussian RBF ¢(x) can be represented as

6i(x) = wyeIx—nifail’ o

where w; is the weight of the ith RBF, u; is the location of the ith
RBF’s center, and o; controls the width of the ith RBF.

The program reads the same XYZR file format used by MSMS [5],
which can be generated from PDB [21] files by the pdb_to_xyzr
utility that comes with MSMS. Note that multiple atoms may be
combined into a single entry in the PDB file (merging with
hydrogens, for example), in which case the number of RBFs will be
different than the number of atoms in the protein.

For the results reported in this work, we set the y; to the RBF
centers in the XYZR file. RBF weights and widths are set based on
the constants given in Ritchie [20] and Grant and Pickup [19],
which are designed to model the Van der Waals surface of a
molecule. Specifically, we set w; =2.70 for all RBFs and
o; = 1;/v/2.3442, where r; is the RBF radius from the XYZR file.
We form the overall scalar field by summing together all RBFs, and
treat the surface as being at an isovalue of 0.259.
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To accelerate sampling of the scalar field, we insert the RBFs
into a bucketing spatial data structure. We partition space into a
regular grid, and store a pointer to a list of the RBFs that overlap
each grid cell at the corresponding element of a three-dimensional
array. The Gaussian RBFs are truncated to zero at a radius of 3o.

4. Stochastic area measurement

To measure molecular surface area we make use of the Cauchy-
Crofton formula (Eq. (2)) from integral geometry, which relates the
area of a surface to the number of intersections with the surface of
a set of lines. This formula can be written as

/mmzm )

where s is the surface area, m represents the number of
intersections along a given line, and the integration is taken over
the space of all possible lines.

A numeric approximation to this integral can be made by taking
arandom sample of lines and counting their intersections with the
surface. Approximating the integral in this manner gives
n;/N=~crs;, where n; is the count of intersections, N is the
number of sampled lines, s; is the surface area, and c is an unknown
constant of proportionality. To get rid of ¢, we can intersect the
same set of lines with a second surface, giving n,/N =~ cns;.
Combining these equations gives

n
S|~ n—;sz (3)

If the area of the second surface s, is known, we can then calculate
the molecular surface area s;. This derivation is given in more detail
inLietal.[22],and further applications are discussed in Liu etal. [23].

4.1. Sampling the space of lines

Several methods for generating lines from randomly chosen
parameters are given in Li et al. [22]. We use a method called the
chord model, which consists of picking two random points from a

uniform distribution of points on the surface of a sphere and then
taking the line that passes through them. Uniformly distributed
points (x,y,z) on a sphere can be generated from pairs (u,6) of
uniformly distributed random numbers by using the formula

1/2

*,y.2) = (1 —u?)"*coso, (1 — u?)"* sino, u) (4)

where u is in [—1,1] and 6 is in [0,2x). Further discussion of
generating uniformly distributed points on spheres is given on the
Mathworld web site [24].

To generate random lines with this method, we must generate
uniformly distributed random numbers. This would typically be
done using a pseudo-random sequence; however, better results
can be obtained by using a quasi-random sequence (also called
low-discrepancy sequences). These sequences have less clustering
of values than pseudo-random sequences, which results in a more
representative sampling of lines and actually provides an
asymptotically lower error bound for the numeric integration [22].

In our implementation we used the Niederreiter quasi-random
sequence [25], which can be found in the GNU Scientific Library
[26]. We generate 4D quasi-random points (a, b, c,d), and use the
first and second coordinate pairs (a,b) and (c,d) to generate the
(u1,61) and (uy,6,) for Eq. (4).

Comparisons between 2D points generated from a pseudo-
random, a quasi-random, and a regular grid distribution are given
in Fig. 3. Note that the pseudo-random distribution has more
clusters and bare regions than the quasi-random distribution. The
regular grid distribution also avoids clustering, but is so regular
that its use could cause aliasing artifacts. Further analysis of
sampling points using quasi-random distributions can be found in
Rovira et al. [27].

4.2. Intersection counting

For our line intersection algorithm, we start by enclosing the
RBFs representing the atoms in the tightest bounding sphere
centered at the center of the molecule. One possible optimization
would be to instead use the absolute tightest bounding sphere

Table 1
Comparison of the surface areas and running times of our method, LSMS with a 1283grid, LSMS with a 2563grid, MSMS, and SURF
Protein
1GCQ 2PTN 1PPE 8TLN 2CHA THIA 1N2C 1PMA 1FFK THTO
1678 * 1712 2 1991 * 2621 ° 3542 ? 4584 ° 24,237 ° 56,392 ¢ 64,268 © 90,672 °
Our area (A?) 8806.06 8258.64 8805.47 11256.8 16761.7 21157.2 79010.5 192,382 461,631 335,624
Area difference (%) 0.95 3.39 0.48 1.12 9.78 3.51 17.92 - - -
CPU time (s) 1.63 3.13 2.53 2.23 2.52 2.90 2.58 5.11 7.56 5.42
GPU time (s) 0.24 0.48 0.38 0.33 0.38 0.52 0.60 222 3.49 1.71
LSMS 1283
Area (A?) 8225.56 8437.62 9155.30 10926.5 16919.5 19748.0 74059.3 184,464 422,295 301,674
Area difference (%) 5.71 5.63 4.47 4.02 8.93 9.94 23.06 - - -
Time (s) 0.76 0.93 0.98 0.87 0.85 0.88 0.75 0.89 1.00 1.11
LSMS 256°
Area (A?) 827237 8466.53 9148.43 11202.1 18171.1 21078.2 84250.1 203,324 472,889 352,981
Area difference (%) 5.17 5.99 439 1.60 2.20 3.87 12.48 - - -
Time (s) 6.66 8.01 8.20 6.98 6.94 6.90 5.72 6.87 6.38 6.61
MSMS
Area (A?) 8724.65 8039.77 8807.21 11364.4 18538.6 21944.8 97129.4 - - -
Time (s) 0.83 0.81 0.99 1.36 1.65 2.40 14.51 - - -
SURF
Area (A?) 8722.10 7935.88 8719.81 11404.0 18619.9 21909.9 95388.7 - - -
Time (s) 0.66 0.64 0.80 1.03 1.45 1.83 10.55 - - -

Protein size is given in RBFs, which is equal to the number of atoms listed in the PDB file. For our method, we used 20,000 sample lines. All methods computed the SES area (or
an approximation to it) of all disconnected surface components using a probe sphere radius of 1.4 A. Tests were performed on a machine with a GeForce 8800 GTX GPU, an
Intel Xeon 3.0 GHz CPU, and 4 GB of RAM. A ‘—' means that MSMS or SURF was unable to compute a surface for this molecule.

¢ Size.
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(without restriction on center location), perhaps computed by the
method in Gartner [28].

We then generate a sequence of quasi-random lines using pairs of
points on the surface of the bounding sphere as described above. For
each line, we step in uniform increments from one point to the other,
evaluating the scalar field at each step to determine whether the
current point lies in the interior or exterior of the surface. The
optimal step size is a function of the typical atomic radii and packing
densities. In this work we have used a step size of 0.25 A, which we
have experimentally determined to be a reasonable value.

To evaluate the scalar field at a point, we iterate over all RBFs that
overlap that point’s bucket, adding their values to a running total
until either all RBFs have been processed or the current total exceeds
the surface’s isovalue. If a point is found to be in the interior of the
surface and the previous point was in the exterior (or vice versa), a
running count of surface intersections is incremented.

Once the number of intersections of the lines with the
isosurface has been computed, Eq. (3) can be used to estimate
the surface area of the molecule (the area of the bounding sphere
can be easily computed analytically, and the number of intersec-
tions with the bounding sphere is simply two times the number of
lines intersected). The approximation improves as more lines are
intersected.

5. Parallelization for GPU

Because the sampling along each line is completely indepen-
dent from all other lines, this algorithm is a natural fit for a highly
parallel architecture such as a GPU. In fact, our algorithm is able to
linearly scale to take advantage of an unlimited amount of
parallelism, since each additional available processor can be
assigned to compute the intersections of another random line,
increasing the speed at which the result converges.

We have implemented a version of the algorithm in NVIDIA’s
CUDA language that runs on a GPU, and compared its performance
to the CPU version. In our GPU implementation the 4D quasi-
random points that define the sample lines are generated on the
CPU and then sent to GPU memory. After the per-line intersection
counts are computed in parallel on the GPU, this data is sent back
to CPU memory where the per-line counts are aggregated into an
overall total. This process could potentially be optimized by
computing the quasi-random points and performing the summa-
tion of the per-line counts on the GPU, which would not only take
further advantage of the GPU'’s parallel processing capabilities but
also avoid time-consuming data transfers to and from the GPU.

6. Test results

Areas can be calculated for several different types of molecular
surfaces. The Van der Waals surface is formed by a union of spheres
located at the centers of the molecule’s atoms, with radii equal to
the atoms’ Van der Waals radii. The solvent accessible surface [13]
is defined as the surface traced by the center of a probe sphere
(representing a solvent molecule) as it is rolled along the Van der
Waals surface. Finally, the solvent excluded surface [14] is the
boundary of the area that no part of such a probe sphere may
penetrate. Programs can also calculate either the area of the
outermost shell of the surface only, or include the area of any
interior cavities as well.

For our tests, we set the parameters of our Gaussian RBF implicit
surface representation to approximate the SES formed with a probe
radius of 1.4 A. Our algorithm calculates the surface area of the
outer surface as well as the interior cavities. We compare our
results against several other programs that compute molecular
surface area—MSMS [5], LSMS [7], and SURF [17].

Fig. 1 illustrates how our algorithm converges on an estimate of
the SES for the several proteins as increasingly more lines are
intersected with the surface. In the remainder of the tests we set
the number of intersected lines to 20,000, which we have found
gives quick estimates with reasonable accuracy. The number of
sample lines could be set higher or lower based on the speed and
accuracy requirements of a particular application.

To evaluate the accuracy of our surface area computations, we
would like to have some ground truth to compare our results
against. Both MSMS and SURF compute the SES analytically, and
their reported surface areas usually agree very closely. Therefore,
we take the true SES area to be the average of the SES areas
reported by MSMS and SURF, and measure algorithm accuracy as a
percent difference from this average value. The differences
between the area we report and this average area come from
two main sources—our algorithm not having yet fully converged
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Fig. 1. Surface area approximation errors for several proteins using various numbers
of intersected lines. Vertical axis is the percent error from the final value (the area
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RBFs, which is equal to the number of atoms listed in the PDB file. For MSMS and SUREF, data is not available for the larger proteins since these programs were unable to
compute the area for proteins of that size. Percent differences are given as absolute magnitudes.

on the area of our surface, and the fact that the surface whose area
we are converging on is not quite the same as the SES surface that
we are comparing ourselves against.

As can be seen from Table 1, our differences are comparable to
the differences of LSMS when using a fine 256>grid, while our GPU
running time is significantly faster than LSMS using a 256°grid, and
is often even faster than LSMS using a coarse 1283 grid. We observe
that our running time depends mostly on the molecule size, while
for LSMS the running time depends mostly on the grid resolution.
Our GPU implementation is also faster than MSMS and SUREF,
especially for larger molecules. A graph of running times of the
various algorithms is given in Fig. 2.

7. Discussion and future work

Because our algorithm generates points on the molecular
surface, it can easily be used to create point-based renderings [29]
of the molecule (Fig. 4). Surface normals for lighting calculations
can also be easily generated by analytically computing the gradient
of the implicit function at each surface point. Because of their light

weight and simplicity, points are a good primitive for the
representation of large models. Some point-based molecular
renderings generated from our implementation using different
numbers of points are shown in Fig. 4.

One nice feature of our algorithm that we have not explored is
its progressive nature. As the algorithm runs, a rough approxima-
tion of the surface area is returned almost immediately, while
increasingly accurate approximations are obtained as more and
more line intersections are computed. This feature could be used to
tune the speed versus accuracy of the algorithm for different
applications, or to provide a rough estimate to decide whether or
not more exact calculations are worth performing.

One possible area of future work might be to extend the
program to compute other geometric properties of molecules, such
as volume or mean curvature, as discussed in Schroder [30].
Molecular volume computation in particular would likely be an
easy and useful extension.

One final issue worth mentioning is the treatment of hollow
cavities within the interior of a molecule. Depending on the
application, it may or may not be desirable to include interior

Fig. 3. 2D distributions of points generated on a regular grid (left), from the Niederreiter quasi-random sequence [25](middle), and from a pseudo-random sequence (right).
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Fig. 4. Point-based renderings of the protein with Protein Data Bank ID 1HTO using 10* points (left), 10° points (middle), and 10° points (right).

cavity surface area in the overall surface area reported. A
discussion of these interior cavities can be found in Liang et al.
[31]. Our algorithm includes the surface area of these cavities in the
final figures reported, as does SURF. MSMS and LSMS give an option
to either include these areas or not. All surface areas and running
times reported in this work are for the outer surface plus all
cavities. If only the outer surface area is required, MSMS can
compute this several times faster than it can compute the area of
the outer surface plus all cavities.

8. Availability

The source code for our implementation is available on the GVIL
web page at http://www.cs.umd.edu/gvil/.
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