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Summary. Image-based rendering takes advantage of the bounded display reso-
lution to limit the rendering complexity for very large datasets. However, image-
based rendering also suffers from several drawbacks that polygon-based rendering
does not. These include the inability to change the illumination and material prop-
erties of objects, screen-based querying of object-specific properties in databases,
and unrestricted viewer movement without visual artifacts such as visibility gaps.
View-dependent rendering has emerged as another solution for hierarchical and in-
teractive rendering of large polygon-based visualization datasets. In this paper we
study the relative advantages and disadvantages of these approaches to learn how
best to combine these competing techniques towards a hierarchical, robust, and
hybrid rendering system for large data visualization.

1 Introduction

As the complexity of 3D graphics datasets has increased, different solutions
have been proposed to bridge the growing gap between graphics hardware
and the complexity of datasets. Most algorithms which effectively reduce the
geometric complexity and overcome hardware limitations fall into the fol-
lowing categories: visibility determination [32,36,7,5,33,25,38], level-of-detail
hierarchies [17], and image-based rendering (IBR) [10].

IBR has emerged as a viable alternative to conventional 3D geometric
rendering, and has been widely used to navigate in virtual environments. It
has two major advantages over the problem of increase in complexity of 3D
datasets: (1) The cost of interactively displaying an image is independent
of geometric complexity, (2) The display algorithms require minimal com-
putation and deliver real-time performance on workstations and personal
computers. Nevertheless, use of IBR raises the following issues:

• Economic and effective sampling of the scene to save memory without
visually perceptible artifacts in virtual environments,

• Computing intermediate frames without visual artifacts such as visibility
gaps,



2 Chang et al.

• Allowing changes in illumination, and
• Achieving high compression of the IBR samples.

To address some of the above issues we have developed a multi-layer
image-based rendering system and a hybrid image- and polygon-based ren-
dering system. We first present a hierarchical, progressive, image-based ren-
dering system. In this system progressive refinement is achieved by displaying
a scene at varying resolutions, depending on how much detail of the scene
a user can comprehend. Images are stored in a hierarchical manner in a
compressed format built on top of the JPEG standard. At run-time, the ap-
propriate level of detail of the image is constructed on-the-fly using real-time
decompression, texture mapping, and accumulation buffer. Our hierarchical
image compression scheme allows storage of multiple levels in the image hier-
archy with minimal storage overhead (typically less than 10%) compared to
storing a single set of highest-detail JPEG-encoded images. In addition, our
method provides a significant speedup in rendering for interactive sessions
(as much as a factor of 6) over a basic image-based rendering system.

We also present a hybrid rendering system that takes advantage of the
respective powers of image- and polygon-based rendering for interactive visu-
alization of large-scale datasets. In our approach we sample the scene using
image-based rendering ideas. However, instead of storing color values, we
store the visible triangles. During pre-processing we analyze per-frame vis-
ible triangles and build a compressed data-structure to rapidly access the
appropriate visible triangles at run-time. We compare this system with a
pure image-based, progressive image-based system (outlined above), and pure
polygon-based systems. Our hybrid system provides a rendering performance
between a pure polygon-based and a multi-level image-based rendering sys-
tem discussed above. However, it allows several features unique to polygon-
based systems, such as direct querying to the model and changes in lighting
and material properties.

2 Previous Work

Visibility determination is a time- and space-consuming task. Good visibil-
ity information often takes significant time to compute and space to store.
Current applications involving this problem often pre-compute the visibility
information and store it for later use to improve the rendering speed. Teller
and Sequin [32] divide a building into rooms and compute room-to-room vis-
ibility. Yagel and Ray [36] have proposed an algorithm to compute cell-to-cell
visibility by applying a subdivision scheme. They also propose a clustering
scheme to cluster cells with similar visibility. Coorg and Teller [6,7] use large
occluders in the scene to perform occlusion culling for a viewpoint. Cohen-Or
et al. [5] use large convex occluders to compute cell-to-object visibility. Wang
et al. [33] pre-compute visible sets and simplify the regions where the visible
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sets are very large. Coorg and Teller [6] compute visibility information by
using frame-to-frame incremental coherence. Panne and Steward [25] have
presented two algorithms which effectively compress pre-computed visible
sets over three different types of models.

Image-based Rendering (IBR) has recently emerged as an alternative to
polygon-based rendering. The study of IBR has focused on image morphing
and image interpolation for walkthroughs in virtual environments. Several
ideas have been proposed to solve these problems including use of textures,
environment maps, range images, depth information, movie maps, and so on.
Several computer vision techniques have been being used in IBR for solving
problems such as disparity maps, optical flows, and epipolar geometry. The
techniques in computer graphics and computer vision are merging gradually
in the newer applications to IBR.

An image morphing method usually involves two steps. The first step con-
structs the correspondence (mapping) between images. The second step uses
the mapping to interpolate the intermediate images. Chen and Williams [4]
have proposed an image morphing method. Their method uses the camera
transformation and image range data to determine the pixel-to-pixel cor-
respondence between images. They use a Z-buffer algorithm on pixels to
solve the pixel overlap problem and interpolate adjacent pixels to fill holes.
Chen [3] has described an image-based rendering system, which is now known
as QuickTime VR. He uses 360◦ cylindrical panoramic images. In this system,
a fixed-position camera can roll freely by simply rotating images. The pitch
and yaw can be achieved by reprojecting an environment map. To achieve
high quality in continuous zooming, this system interpolates the adjacent
levels in a hierarchical image representation.

Adelson and Bergen [1] have proposed the plenoptic function concept.
They used a plenoptic function to describe the structure of information in
the light impinging on an observer. The plenoptic function is parameterized
by eye position (Vx, Vy, Vz), azimuth and elevation angles θ and φ from any
viewable ray to the eye, and a band of wavelengths λ. A view from a given
eye position in a given direction is thus formulated as P (Vx, Vy, Vz, θ, φ, λ).
McMillan and Bishop [22] have proposed plenoptic modeling for image-based
rendering. They have formulated the relative relationships between a pair of
cylindrical projections (cylindrical epipolar geometry). They have resolved
the visibility problem efficiently by a simple partitioning and enumeration
method on cylinders, in a back-to-front ordering. Mark et al. [18] have pro-
posed a post-rendering 3D warping algorithm by first reconstructing the
image-space 3D mesh from reference frames and then warping the mesh into
the derived frame. Rademacher and Bishop [27] have proposed “multiple-
center-of-projection images”(MCOP). An MCOP image consists of a two-
dimensional array of pixels and a parameterized set of cameras. A Z-buffer
algorithm is used here to solve the visibility problem. To achieve a better
quality, blending methods in [26] and [9] can be applied. MCOP images pro-
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vide connectivity information among adjacent samples and allow different
parts of scene to be sampled at different resolutions.

Shade et al. [29] have proposed layered depth images (LDI). In a LDI,
each pixel contains a set of depth values along one line of sight sorted in
front-to-back order. They have also proposed two rendering algorithms which
heavily depend on McMillan’s ordering algorithm ([20,19,22]). After pixel or-
dering, traditional splatting methods are applied to render the warped image.
Oliveira and Bishop [24] have proposed an image-based representation for
complex three-dimensional objects, the image-based object (IBO). Each IBO
is represented by six LDIs sharing a single center of projection (COP). They
have proposed a list-priority algorithm, which is based on epipolar geometry
and an occlusion compatible order [22] for rendering.

Darsa et al. [9] have constructed image-space triangulation ([8]) from
cubical environment maps with depth information. The goal of the triangu-
lation is to establish the 3D geometric information of an environment map as
accurately as possible. The triangulation represents a view-dependent sim-
plification of the polygonal scene. Each triangle is assigned a quality which
is related to the angle that the normal vector of the triangle makes with the
viewing ray. In real time, the warping process involves projecting the trian-
gles of the visible triangulations and texture mapping. A Z-buffer is used
for hidden surface removal. Several blending schemes are used to render the
intermediate images and improve the quality. This warping highly depends
on the hardware texture mapping and transformations.

Levoy and Hanrahan [16] and Gortler et al. [11] have reduced the 5D
plenoptic function (without λ) to a 4D Light Field or Lumigraph. They
make use of the fact that the radiance does not change along a line un-
less it is blocked in free space. Light fields or Lumigraphs may be represented
as functions of oriented lines. The authors have used light slabs as the rep-
resentations. Both methods use quadralinear basis function to improve the
result of interpolations. Sloan et al. [31] have extended the work of Gortler
et al. [11] by using hardware texture mapping. Heidrich et al. [13] have im-
proved the image quality of Lumigraph by adding new images to the current
Lumigraph. They warp the closest images from the Lumigraph to a new view-
point that lies on the viewpoint plane and add the new images. The warping
step relies on depth information and performs the depth-correction precisely.
Schirmacher et al. [28] have presented an adaptive acquisition algorithm by
applying the work of Heidrich et al. They predict the error or potential ben-
efit in image quality when adding a new image, and decide which new image
should be rendered and added to the Lumigraph. Instead of using two slabs,
Camahort et al. [2] have proposed a two-sphere parameterization (2SP) and
a sphere-plane parameterization (SPP)for a more uniform sampling.

Nimeroff et al. [23] have effectively re-rendered the scene under various
illuminations by linearly interpolating a set of pre-rendered images. Wong
et al. [35,34] have proposed an algorithm which allows image-based objects
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to be displayed under varying illumination. They compute a bidirectional
reflectance distribution function (BRDF) [14] for each pixel over various illu-
minations, and store the tabular BRDF data in spherical harmonic domain
for reducing the storage.

3 Multi-Level Image-Based Rendering

In this section, we present an image-based rendering system. This system
composes a scene in a hierarchical manner to achieve the progressive refine-
ment by using different resolution images. Progressive refinement is achieved
by taking advantage of the fact that the human visual system’s ability to
perceive details is limited when the relative speed of the object to the viewer
is high. We first discuss the pre-processing and then the run-time navigation.

3.1 Image Sampling and Collection

Data sampling and collection plays a very important role in an image-based
rendering system. It directly affects the storage space and the real-time per-
formance of the system including image quality, rendering speed and user’s
visual perception. Different sampling strategies can be applied depending on
the purpose of the system.

Environment Setting In our system the model is placed at the center of a
virtual sphere. The viewer (camera) is positioned on the sphere with the
viewing direction toward the origin. The viewer can move around the sphere
along longitude and latitude. The camera takes one snapshot every ∆θ degree
along longitude and ∆φ degree along latitude. Due to the symmetry of the
sphere, we will have 360/∆θ×180/∆φ camera positions. The sampling density
of camera positions may be adjusted by changing the values of ∆θ and ∆φ. In
our implementation, we use ∆θ = ∆φ = 5◦ to achieve a reasonably smooth
and continuous motion with 2592 images.

3.2 Multi-Level Image Construction Algorithm

The algorithm computes n different levels of resolution of images as the basis
for building the system image database. Our algorithm has the following
steps:

Step 1: Decide the number n of progressive refinement levels in the system
and the resolution of the display window, say W × W , where W = 2m, and
m ≤ n.

Step 2: Dump a Level 0 image, say I0, at the display window resolution
(W × W ).
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Fig. 1. Multi-Level Image Construction

Step 3: Construct Level i + 1 image (resolution = W/2i+1 × W/2i+1), i.e.,
Ii+1. The RGB values of the level i + 1 image are constructed from the RGB
values of the level i image by the following equations:

Ri+1
j,k = min{Ri

2j,2k, Ri
2j+1,2k, Ri

2j,2k+1, R
i
2j+1,2k+1} (1)

Gi+1
j,k = min{Gi

2j,2k, Gi
2j+1,2k, Gi

2j,2k+1, G
i
2j+1,2k+1} (2)

Bi+1
j,k = min{Bi

2j,2k, Bi
2j+1,2k, Bi

2j,2k+1, B
i
2j+1,2k+1} (3)

where i = 0, 1, . . . , n − 2. For example, we compute Ri+1
00 as the minimum

amongst {Ri
00, Ri

10, Ri
01, Ri

11}. We repeat this step until image In−1 is
computed.

Step 4: Compute the W/2i × W/2i resolution image Ii from the W/2i+1 ×
W/2i+1 resolution image Ii+1 as follows. Display Ii+1 on a W/2i × W/2i
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resolution window using texture mapping and dump the displayed window
image as Ti. Compute image difference Di as:

Di = Ii − Ti, i = 0, 1, . . . , n − 2
Repeat this step until image difference Dn−2 is computed, see Figure 1.

Step 5: Store In−1, Dn−2, Dn−3, . . . , D0 in JPEG format as the database
images.

This algorithm works well since texture mapping hardware provides speed
and antialiasing capabilities through the OpenGL function glDrawPixels().
Also, image differences compress better than full images and provide an easy
way to generate progressive refinement. For compression and decompression
we use the public-domain JPEG software [12] in our implementation. It sup-
ports sequential and progressive compression modes, and is reliable, portable,
and fast enough for our purposes. The reason we take the minimum value in
equations 1–3 is so that we can store all RGB values of Di as positive values
and save a sign bit in storage.

3.3 Progressive Refinement Display Algorithm

Let us define Tex(In−1) as the image generated by mapping texture image
In−1 on a W×W resolution window, and define Tex(Di) as the image created
by mapping texture image Di on a W × W resolution window, where i =
0, 1, . . . , n − 2. At run time, image Ii is displayed by accumulating images
Tex(In−1), Tex(Dn−2), Tex(Dn−3), . . ., Tex(Di), where i = 0, 1, . . . , n − 1.

If i = n−1, we only display image Tex(In−1), which has the lowest detail.
We add image Tex(Di) to Tex(In−1), for i = n−2, n−3, . . . , 0, to increase the
image details. Image I0, which is Tex(In−1)+

∑n−2
i=0 Tex(Di), has the highest

detail (see Figure 2). Notice that all images are decompressed before texture
mapping. The implementation is done using the OpenGL accumulation buffer
and texture mapping.

In a real-time environment, progressive refinement can be achieved by
displaying different levels of images, depending on how much detail of the
scene the user needs to see. If the user moves with high speed, we can simply
display lowest detail. As the user speed reduces, we can raise the level of
detail of the displayed image in a progressive fashion.

3.4 Our Implementation and Results

In our implementation, we use three different image resolutions, 128 × 128,
256×256, and 512×512, for progressive refinement. We use sequential mode
with quality setting 80 for JPEG compression, which gives us an unnotice-
able difference from the highest quality setting of 100. We observed that the
composite image quality in our system is not only affected by the lossy JPEG
compression, but also by the error from image difference and the geometric
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Fig. 2. Hierarchical Accumulation of JPEG Images

error from texture mapping. Table 1 shows the JPEG image reduction from
full images I to image differences D.

∑
Ii is the sum of storage space re-

quired for all the Ii (level i) images. Similarly,
∑

Di is the sum of storage
space required for all the Di (level i) images. The total storage space required
is computed as

∑
(I2 + D1 + D0). Note that the total memory consumption

compares quite favorably to the original (non-progressive) storage space re-
quirements (

∑
I0).

Table 2 shows the decompression time, rendering time, and frame rate
on different image levels. All numbers in this table are average numbers over
different models. Ii, i = 0, 1, 2 are full images of 512 × 512, 256 × 256, and
128 × 128 resolutions, respectively. Di, i = 0, 1 are the image differences we
discussed in Section 3.2. The image error is the root-mean-squared difference
between the two images. The errors reported are with respect to the I0 image.

4 Hybrid Rendering

Image-based rendering is a two-stage process. The first stage is off-line prepro-
cessing that includes sampling of the necessary scene information and setting
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Table 1. Storage for Ii, Di and the total system

Model Level 2 Level 1 Level 0 Total (MB)
∑

I2

∑
I1 → ∑

D1

∑
I0 → ∑

D0

∑
(I2 + D1 + D0)

Bunny 10.70 21.39 10.70 53.11 31.34 52.74

Submarine 19.35 40.54 29.63 112.53 70.13 119.11

Enoyl Hydratase 21.29 37.88 21.31 107.34 46.26 88.86

Stanford Dragon 12.19 25.73 21.15 64.70 42.61 75.95

Stanford Buddha 10.70 20.15 14.22 47.22 30.86 55.78

Table 2. Multi-Level Image Rendering Comparison

Image
Level

Decompression Rendering Speed Image

Time (msec) Time (msec) (fps) Error

I2 + D1 + D0 98.6 23.8 7.99 0.435

I2 + D0 25.4 16.6 23.80 0.077

I2 6.3 9.4 63.96 0.079

I1 20.9 10.1 32.31 0.025

I0 78.9 17.4 10.37 0.0

up data structures, possibly with hierarchy and compression, to reduce access
times. The second stage deals with real-time rendering of pre-processed image
data which may include image interpolation and warping. Like conventional
image-based methods, our hybrid method also has two stages; and the key
difference is that, instead of using three- or four-channel color values for each
image, we compute the exact visibility of each triangle for each viewpoint,
and only the visible (displayed) triangles are stored for each viewpoint. We
outline our hybrid system below:

Preprocessing

1. Initialization
1.1 Load polygonal dataset.
1.2 Encode all primitive ids into RGB values.
1.3 Set environment parameters such as viewing angle, distance, and res-

olution.
2. Dumping process

2.1 Dump visible triangles for each camera position.
3. Compression process

3.1 Single frame compression (run-length and Huffman compression).
3.2 Frame-to-frame compression (intersection and union analysis).
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Run-time Navigation

1. Initialization
1.1 Load frame data file.
1.2 Set frame specific world environment parameters.
1.3 Construct Huffman trees and locate viewpoints for frames.

2. Real time
2.1 New viewer position.
2.2 Get the corresponding frame for current viewer node.
2.3 Decompress the frame.
2.4 Display frame.

These steps are explained in the following sections.

Load Polygon Model 

Set World Space Environment
Decision on

 Dump
 Visible

  Primitives
for

         Frame
          Compression

          to
          Storage

Each
 Camera
  Position

Frame-by-Frame
Intersection and Union

Analysis

     Global Data Compression
    Take advantage of Frame-to

      -Frame Coherence

    
   

Load Data File

    Environment

      and 
         Construct Huffman Trees

              Locate Viewpoints for Frames    

         Get the Corresponding Frame
        for

        Current Viewer Node

                  
   New Viewer Position

       Decompress Frame

all Frame Writing Parameters

                Display Frame

   Set Frame Specific World

Navigation Box
   Run-time

Fig. 3. Hybrid Rendering System Overview
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4.1 Preprocessing

We adopt the same environment settings as we did in the JPEG image-based
rendering system, see section 3.1.

Encoding Triangle IDs In order to compute the visibility for each trian-
gle, we assign each triangle a unique id when we load the dataset. We then
decompose the number, in binary format, into three consecutive bytes and
assign them to R, G, and B in order. During the dumping process, we render
the whole dataset with the given RGB value for each triangle as its color.
Notice here that in order to render all colors correctly, the illumination and
antialiasing function in OpenGL should be turned off. We then read the color
buffer of this image to get the color for each pixel and compose the R, G, B
back to the id. We currently use unsigned char for each single color value,
which means, with a one-pass encoding process, we can encode as many as
(28)3 = 16 million triangles. For larger datasets, multiple-pass encoding pro-
cesses may be needed. In our method we dump triangles for each camera
position (θ, φ) by using the dumping process we discussed in Section 3.1 into
an occupancy bit-vector, say TriMap(θ, φ).

Compression Process Two types of compression are relevant in image-
based navigation of virtual environments: single-frame compression and frame-
to-frame compression. We have only worked with single frame compression
at this stage; the multiple frame compression, which needs more analysis and
work, will be dealt with in the future. For representing the visible triangles
in a single frame we use an occupancy bit vector (an unsigned char array) in
which each bit represents the triangle id corresponding to its position in the
vector. The bit is 1 if the triangle is visible in that frame, 0 otherwise.

As the size of 3D datasets increases and the resolution of image space re-
mains fixed, the number of dumped triangles will saturate around the display
resolution. In our results, the million triangle Buddha model has on an aver-
age only 5 ∼ 6% visible triangles for a 512×512 resolution window. It means
that most bits in a bit vector would be 0, and consecutive-0-bit-segment cases
would occur frequently. This result inspires us to use run-length encoding and
Huffman compression.

4.2 Run-time Navigation

At run time the 3D dataset and precomputed information in compressed for-
mat is loaded first. The precomputed information not only includes the visible
primitives for each frame but also the viewing parameters including viewing
angle, distance, and so forth. The run-time viewing parameters should be
exactly the same as those used in the dumping process. In the system, each
camera position has a frame pointer pointing to the corresponding frame in
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compressed format. A Huffman tree, which is used for decompression, is also
constructed for each frame.

At run time the viewer moves around in a virtual environment follow-
ing discrete camera positions at ∆θ, ∆φ increments which were used in the
dumping process. For a given viewer position, we can locate the corresponding
frame by following its frame pointer and decompress the frame by retracing
the Huffman tree.

The rendering speed of the system highly depends on the number of visi-
ble triangles and the decompression time. In our implementation, the decom-
pression function doesn’t have to go through a whole data frame, it stops the
decompression loop immediately whenever it detects that all dumped trian-
gles have been found and sends them to the graphics engine. However, the
decompression time still depends on the size of the frame (the size of object
model) and the number of visible triangles in the frame.

5 Results

We have tested five different polygonal models on SGI Challenge and Onyx2.
All models are tested at a window resolution of 512 × 512 pixels with 2592
images. We describe our results in this section.

Bunny, Dragon, and Buddha are scanned models from range images from
the Stanford Computer Graphics Lab. The submarine model is a represen-
tation of a notional submarine from the Electric Boat Division of General
Dynamics. The E. Hydratase Molecule (Enoyl-CoA Hydratase) is from the
Protein Data Bank. All models have vertex coordinates (x, y, z) in floating-
point format, and all triangles are represented by their three vertex indices
(integers). The submarine dataset provides RGB color values (unsigned char)
for each triangle. The E. Hydratase Molecule has a normal vector for each
vertex.

Table 3 shows the average compression ratios for all models. The average
dumped tris % is the average percentage of dumped triangles over all 2592
images.

In Table 4, P refers to conventional Polygonal rendering, H refers to the
Hybrid rendering system discussed in Section 3, I refers to the Multi-level
Image-based rendering system discussed in Section 2. The Image Error is the
root-mean square error with respect to the images rendered using the conven-
tional polygonal rendering method . Dcmprs is the time for decompression. As
can be seen, the Hybrid method has consistently low image errors. Multi-level
image-based rendering has the highest image error amongst these methods,
since JPEG compression, image differences, and texture mapping all con-
tribute to the final image error. For the Hybrid method, all visible triangles
are stored in a bit vector and compressed by two steps: run-length encod-
ing and Huffman compression. The decompression and rendering speeds are
highly dependent on the displayed frame size and the number of dumped tri-
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Table 3. Compression Ratios for the Hybrid Method

Model
Avg Dumped Run Length Huffman Total

Tris % Ratio Ratio Ratio

Bunny 35.68 % 1.47 1.29 1.82

Submarine 2.83 % 6.27 1.46 9.16

Enoyl Hydratase 11.21 % 3.54 1.24 4.38

Dragon 7.79 % 1.68 1.60 2.69

Buddha 4.04 % 2.32 1.75 4.07

Table 4. Comparison Results for Different Methods

Time and Speed

Model System Storage Decompression Rendering Overall Speed Image

MB (msec) (msec) (fps) Error

Bunny
69K tris

P 1.54 0.0 61.3 16.39 0.0

H 12.35 10.8 81.7 10.79 2.02E-4

I 52.74 83.6 28.2 8.94 2.66E-2

Submarine
376K tris

P 12.85 0.0 3549.0 0.28 0.0

H 13.32 11.1 118.1 7.73 7.29E-3

I 119.11 107.8 27.1 7.40 1.42E-1

Enoyl
Hy-

dratase
717K tris

P 14.95 0.0 777.4 1.28 0.0

H 37.93 32.1 177.8 4.76 4.15E-4

I 88.86 108.6 28.9 7.26 2.69E-2

Dragon
871K tris

P 19.19 0.0 1306.9 0.76 0.0

H 104.98 87.8 223.45 3.10 4.82E-4

I 75.95 102.2 28.7 7.63 2.45E-3

Buddha
1087K
tris

P 23.92 0.0 1638.3 0.61 0.0

H 86.56 69.4 191.9 3.82 5.14E-4

I 55.78 95.9 27.9 8.07 9.60E-2
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angles in that frame. The rendering speed on the Submarine is much slower
than on the other models because we do the coloring for each rendered trian-
gle. Without coloring, the Polygonal method has the average rendering speed
about 7 − 9 frames/sec, and the Hybrid method is over 10 frame/sec.

The traditional polygon rendering has the best quality amongst all meth-
ods and requires least storage space, but it has the lowest rendering speed.
The hybrid method which only renders visible triangles has very good ren-
dering speeds, but needs much more storage space than traditional polygon
rendering. Multi-level JPEG provides progressive refinement and has the low-
est rendering complexity, but needs a lot of storage space. Figure 4, 5 and 6
show the images displayed by these methods on various models.

(a) Polygonal: 69,473 tris (b) Hybrid: 29,018 tris

(c) JPEG Level 0 (d) JPEG Level 2

Fig. 4. Different Rendering Methods for the Bunny
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(a) Polygonal: 376,436 tris (b) Hybrid: 7,724 tris

(c) JPEG Level 0 (d) JPEG Level 2

Fig. 5. Different Rendering Methods for the Auxiliary Machine Room of a notional
submarine

6 Conclusions

In this paper we have presented a hybrid method as well as a progressive
refinement image-difference-based rendering method for high-complexity ren-
dering. Our hybrid method takes advantage of both conventional polygon-
based rendering and image-based rendering. The hybrid rendering method
can provide rendering quality comparable to the conventional polygonal ren-
dering at a fraction of the computational cost and has storage requirements
that are comparable to image-based rendering methods. The drawback is that
it does not permit full navigation capability to the user as in the conventional
polygonal method. However, it still retains several other useful features of
the polygonal methods such as direct querying to the underlying database
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(a) Polygonal: 1,087,716 tris (b) Hybrid: 51,474 tris

(c) JPEG Level 0 (d) JPEG Level 2

Fig. 6. Different Rendering Methods for the Buddha

and the ability to change illumination and material properties. In future we
plan to further explore compression issues for the hybrid method by taking
advantage of frame-to-frame coherence in image space and view-dependent
geometric hierarchical structures.
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