Stripe: A Software Tool For Efficient Triangle Strips

Francine Evans

Abstract

The speed at which triangulated surfaces can be displayed is crucial to in-
teractive visualization and is bounded by the rate at which triangulated data
can be sent to the graphics subsystem for rendering. Partitioning polygo-
nal models into triangle strips can significantly reduce rendering times over
transmitting each triangle individually. We outline the design of our software
tool, Stripe, for constructing triangle strips from partially triangulated mod-
els, and present experimental results showing these strips are 10-30% better
than those from previous best known public-domain codes.

1 Introduction

The speed of rendering triangular meshes in computer graphics is limited
by the rate at which triangulation data is sent to the graphics processor.
Each triangle can be specified by three vertices, but to maximize the use
of the available data bandwidth, it is desirable to order the triangles so
that consecutive triangles share an edge. Using such an ordering, only the
incremental change of one vertex per triangle need be specified. In this
paper, we consider the problem of constructing good triangle strips from
partially triangulated polygonal models. Our software tool, Stripe, exploits
the freedom to triangulate these faces to produce strips that are 10 — 30%
better than those of previous best known public-domain codes.

To allow greater freedom in the creation of triangle strips, a “swap”
command permits one to alter the FIFO queuing discipline in a triangle strip
[5]. A swap command swaps the order of the two latest vertices in the buffer
so that the instead of vertex ¢ replacing the vertex (¢—2), vertex ¢ replaces the
vertex (¢ — 1). Although the swap command is supported in the GL graphics
library [5], it is not supported in OpenGL [3, 4] for portability reasons [2].
In this paper, we evaluate our software for the more realistic OpenGL cost
model where every swap costs one vertex.

2 Constructing Triangle Strips

The best previous public-domain code for constructing triangle strips
which we are aware of is from SGI [1], and works only on triangulated models.
The SGI algorithm begins its construction of a triangle strip by starting from
an arbitrary triangle with the lowest adjacency count, which is the number of
triangles that share an edge with it, and extends the strip in both directions
as far as possible without overlapping any previously constructed strips. The
algorithm seeks to create triangle strips that tend to minimize leaving isolated
triangles. There is no reluctance to generate swaps, and understandably so,
since this algorithm was aimed at generating triangle strips for Iris GL.

We first partition the model into regions that have collections of m X n
quadrilaterals arranged in m rows and n columns, which we refer to as a
patch. Each patch whose number of quadrilaterals, mn, is greater than a
specified cutoff, is converted into one strip, at a cost of three swaps per
turn. Further, every such strip is extended backwards from the starting
quadrilateral and forwards from the ending quadrilateral of the patch to
the extent possible. For extension, we use an algorithm similar to the SGI
algorithm. However, we triangulate our faces “on the fly”, which gives us
more freedom in producing triangle strips.

3 Experimental Results and Conclusions

Our approach of constructing triangle strips that we have outlined above
is the best out of 20 different heuristics that we have exhaustively tested
on several datasets and is the one that we have selected as the method of
choice in our tool, Stripe. Table 1 compares the results for our tool, Stripe,
versus the SGI algorithm [1]. The cost columns show the total number
of vertices required to represent the dataset in a generalized triangle strip
representation under the OpenGL cost model (where each swap costs one
vertex). We observe that our results are just 10% more than the theoretical
lower bound of the number of triangles + 2, so there is only limited potential
for better algorithms.

As can be seen from the results of Table 1, under the OpenGL cost
model, we are able to outperform the SGI's public-domain code significantly.
Although the SGI algorithm does have a slightly better running time, we do
not believe this to be a serious drawback of our approach since the triangle-
strip generation phase is typically done off-line before interactive visualiza-
tion. Keeping this in mind we have not yet done any serious performance
tuning of our code and there is some scope for further improving our run-
times.

A visual comparison of the triangle strips produced by Stripe versus
the SGI algorithm appears in Figure 1 where every triangle strip is col-
ored by a different color and constant shading is used. Our software is
in public-domain and more information about its release is available at:
http://www.cs.sunysb.edu/"evans.

Authors’ address : evans|skiena|varshney@cs.sunysb.edu

Steven Skiena

Amitabh Varshney

Data File Verts Tris Cost % Savings
SGI Stripe
plane 1508 2992 4005 3388 15%
skyscraper 2022 3692 5621 4731 16%
triceratops 2832 5660 8267 5981 28%
power lines 4091 8966 12147 10268 15%
porsche 5247 10425 14227 11065 22%
honda 7106 13594 16599 14780 11%
bell ranger 7105 14168 19941 15011 25%
dodge 8477 16646 20561 17963 13%
general 11361 22262 31652 25912 18%
Table 1: Comparison of triangle strip algorithms.

(a) Stripe Output

(b) SGI algorithm output

Figure 1: Comparison of triangle strip outputs

Acknowledgements

We would like to acknowledge several valuable discussions with Joe
Mitchell, Martin Held, Estie Arkin, Jarek Rossignac, Josh Mittleman, and
Jim Helman. The datasets that we have used are from Viewpoint DataLabs.
Francine Evans is supported in part by a NSF Graduate Fellowship and a
Northrop Grumman Fellowship. Steven Skiena is supported by ONR award
400x116yip01l. Amitabh Varshney is supported in part by NSF Career Award
CCR-9502239.

References

[1] K. Akeley, P. Haeberli, and D. Burns. tomesh.c :
Developer’s Toolbox CD, 1990.

C Program on SGI

[2] J. Helman. Personal Communication.

[3] Open GL Architecture Review Board. OpenGL Reference Manual.
Addison-Wesley Publishing Company, Reading, MA, 1993.

[4] Open GL Architecture Review Board, J. Neider, T. Davis, and M. Woo.
OpenGL Programming Guide. Addison-Wesley Publishing Company,
Reading, MA, 1993.

[5] Silicon Graphics, Inc. Graphics Library Programming Guide, 1991.

Department of Computer Science, SUNY Stony Brook, NY 11794-4400

