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Abstract

Image-based rendering takes advantage of the bounded display res-
olution to limit the rendering complexity for very large datasets.
However, image-based rendering also suffers from several draw-
backs that polygon-based rendering does not. These include the in-
ability to change the illumination and material properties of objects,
screen-based querying of object-specific properties in databases,
and unrestricted viewer movement without visual artifacts such as
visibility gaps. View-dependent rendering has emerged as another
solution for hierarchical and interactive rendering of large polygon-
based visualization datasets. In this paper we study the relative ad-
vantages and disadvantages of these approaches to learn how best to
combine these competing techniques towards a hierarchical, robust,
and hybrid rendering system for large data visualization.

1 Introduction

As the complexity of the 3D graphics datasets has increased, dif-
ferent solutions have been proposed to bridge the growing gap be-
tween graphics hardware and the complexity of datasets. Most of
algorithms which effectively reduce the geometric complexity and
overcome hardware limitations fall into the following categories:
visibility determination [7, 9, 2, 1, 8, 6, 10], level-of-detail hierar-
chies [5], and image-based rendering (IBR) [3]. IBR has emerged
as a viable alternative to the conventional 3D geometric rendering,
and has been widely used to navigate in virtual environments. It
has two major advantages over the problem of increasing of com-
plexity of 3D datasets: (1) The cost of interactively displaying an
image is independent of geometric complexity, (2) The display al-
gorithms require minimal computation and deliver real-time perfor-
mance on workstations and personal computers. Nevertheless, use
of IBR raises the following issues:

� Economic and effective sampling of the scene to save storage
without visually perceptible artifacts in virtual environments,

� Computing intermediate frames without visual artifacts such
as visibility gaps,

� Allowing changes in illumination, and

� Achieving high compression of the IBR samples.

To address some of the above issues we have developed a
multi-layer image-based rendering system and a hybrid image- and
polygon-based rendering system. We first present a hierarchical,
progressive, image-based rendering system. In this system progres-
sive refinement is achieved by displaying a scene at varying res-
olutions, depending on how much detail of the scene a user can
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comprehend. Images are stored in a hierarchical manner in a com-
pressed format built on top of the JPEG standard. At run-time, the
appropriate level of detail of the image is constructed on-the-fly us-
ing real-time decompression, texture mapping, and accumulation
buffer. Our hierarchical image compression scheme allows storage
of multiple levels in the image hierarchy with minimal storage over-
head (typically less than 10%) compared to storing a single set of
highest-detail JPEG-encoded images. In addition, our method pro-
vides a significant speedup in rendering for interactive sessions (as
much as a factor of 6) over a basic image-based rendering system.

We also present a hybrid rendering system that takes advantage
of the respective powers of image- and polygon-based rendering for
interactive visualization of large-scale datasets. In our approach we
sample the scene using image-based rendering ideas. However, in-
stead of storing color values, we store the visible triangles. During
pre-processing we analyze per-frame visible triangles and build a
compressed data-structure to rapidly access the appropriate visible
triangles at run-time. We compare this system with pure image-
based, progressive image-based system (outlined above), and pure
polygon-based systems. Our hybrid system provides a render-
ing performance between a pure polygon-based and a multi-level
image-based rendering system discussed above. However, it allows
several features unique to the polygon-based systems, such as direct
querying to the model and changes in lighting and material proper-
ties.

2 Multi-Level Image-Based Rendering

In this section, we present an image-based rendering system. This
system composes a scene in a hierarchical manner to achieve the
progressive refinement by using different resolution images. Pro-
gressive refinement is achieved by taking advantage of the fact that
the human visual system’s ability to perceive details is limited when
the relative speed of the object to the viewer is high. We first discuss
the pre-processing and then the run-time navigation.

2.1 Image Sampling and Collection

Data sampling and collection plays a very important role in an
image-based rendering system. It directly affects the storage space
and the real-time performance of the system including image qual-
ity, rendering speed and user’s visual perception. Different sam-
pling strategies can be applied depending on the purpose of the sys-
tem.

Environment Setting In our system the model is placed at the
center of a virtual sphere.bc 360/ Viewer (camera) is positioned on
the sphere with the viewing direction toward the origin. The viewer
can move around the sphere along longitude and latitude. The cam-
era takes one snapshot every�� degree along longitude and��
degree along latitude. Due to the symmetry of sphere, we will have
360=�� � 180=�� camera positions. The sampling density of
camera positions may be adjusted by changing the values of��
and��. In our implementation,�� = �� = 5Æ, to achieve a
reasonably smooth and continuous motion with2592 images.



2.2 Multi-Level Image Construction Algorithm

The algorithm computesn different levels of resolutions of images
as the basis for building the system image database. Our algorithm
has the following steps:

Step 1: Decide the numbern of progressive refinement levels in
the system and the resolution of the display window, sayW �W ,
whereW = 2m, andm � n.

Step 2: Dump a Level0 image, sayI0, at the display window
resolution (W �W ).

Step 3: Construct Leveli + 1 image (resolution= W=2i+1 �
W=2i+1), sayIi+1. The RGB values of leveli+ 1 image are con-
structed from the RGB values of leveli image by the following
equations:
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wherei = 0; 1; : : : ; n � 2. For example,Ri+1
00 is computed by
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11g. We repeat this step untilIn�1 image

is computed.

Step 4: ComputeW=2i � W=2i resolution imageTi from
W=2i+1�W=2i+1 resolution imageIi+1 as follows. DisplayIi+1
on aW=2i �W=2i resolution window using texture mapping and
dump the displayed window image asTi. Compute image differ-
enceDi as:
Di = Ii � Ti; i = 0; 1; : : : ; n� 2
Repeat this step untilDn�2 image difference is computed, see

Figure 1.

Step 5: StoreIn�1, Dn�2, Dn�3, . . . , D0 in JPEG format as
the database images.
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Figure 1: Multi-Level Image Construction

This algorithm works well since texture mapping hardware pro-
vides speed and antialiasing capabilities over OpenGL function
glDrawPixels() . Also, image differences compress better
than full images and provide an easy way to generate progres-
sive refinement. For compression and decompression we use the
public-domain JPEG software [4] in our implementation. It sup-
ports sequential and progressive compression modes, and is reli-
able, portable, and fast enough for our purposes. The reason we

take the minimum value in equations 1–3 is so that we can store all
RGB values ofDi as positive values and save a sign bit in storage.

2.3 Progressive Refinement Display Algorithm

Let us defineTex(In�1) as the image by texture mapping image
In�1 onW �W resolution window, and defineTex(Di) as the
image by texture mapping imageDi onW�W resolution window,
wherei = 0; 1; : : : ; n � 2. At run time, leveli image is displayed
by accumulating imagesTex(In�1), Tex(Dn�2), Tex(Dn�3),
: : :, Tex(Di), wherei = 0; 1; : : : ; n � 1. If i = n � 1, we only
display imageTex(In�1), which has the lowest detail. We add
Tex(Di) image ontoTex(In�1), wherei = n� 2; n� 3; : : : ; 0,
to increase the image details. Level0 image, which isTex(In�1)+Pn�2

i=0
Tex(Di), has the highest detail. Notice that all images are

decompressed before texture mapping. The implementation is done
by OpenGL accumulation buffer and texture mapping.

In a real-time environment, the progressive refinement can be
achieved by displaying different levels of images, depending on
how much detail of the scene the user needs to see. If the user
moves with high speed, we can simply display lowest detail. As the
user speed reduces, we can raise the level of detail of the displayed
image in a progressive fashion.

2.4 Our Implementation and Results

In our implementation, we use three different image resolutions,
128� 128, 256� 256, and512� 512, for progressive refinement.
We use sequential mode with quality setting80 for JPEG compres-
sion, which gives us an unnoticeable difference from the highest
quality setting of100. We observed that the composite image qual-
ity in our system is not only affected by the lossy JPEG compres-
sion, but also by the error from image difference and the geometric
error from texture mapping. Table 1 shows the JPEG image reduc-
tion from full imagesI to image differencesD.

P
Ii is the sum of

storage for all theIi (level i) images. Similarly,
P

Di is the sum
of storage for all theDi (level i) images. The total storage is com-
puted as

P
(I2 +D1 +D0). Note that the total storage compares

quite favorably to original (non-progressive) storage requirements
(
P

I0).

Model Level2 Level1 Level0 TotalP
I2

P
I1 !

P
D1

P
I0 !

P
D0 (MB)

Bunny 10.70 21.39 10.70 53.11 31.34 52.74
Submar. 19.35 40.54 29.63 112.53 70.13 119.11
EHydr. 21.29 37.88 21.31 107.34 46.26 88.86
Dragon 12.19 25.73 21.15 64.70 42.61 75.95
Buddha 10.70 20.15 14.22 47.22 30.86 55.78

Table 1: Storage forIi,Di and the total system

Image
Level

Decompression Rendering Speed Image
Time (msec) Time (msec) (fps) Error

I2 +D1 +D0 98.6 23.8 7.99 0.435
I2 +D0 25.4 16.6 23.80 0.077

I2 6.3 9.4 63.96 0.079
I1 20.9 10.1 32.31 0.025
I0 78.9 17.4 10.37 0.0

Table 2: Multi-Level Image Rendering Comparison

Table 2 shows the decompression time, rendering time, and
frame rate on different image levels. All numbers in this table are
the average numbers over different models.Ii, i = 0; 1; 2 are full
images of512 � 512, 256 � 256, and128 � 128 resolutions, re-
spectively.Di, i = 0; 1 are the image differences we discussed in



Section 2.2. Theimage erroris the root-mean-squared difference
between the two images. The errors reported are with respect to the
I0 image.

3 Hybrid Rendering

Image-based rendering is a two-stage process. The first stage is off-
line preprocessing that includes sampling of the necessary scene
information and setting up data structures, possibly with hierarchy
and compression, to reduce access times. The second stage deals
with real-time rendering of pre-processed image data which may
include image interpolation and warping. Like conventional image-
based method, our hybrid method also has two stages and the key
difference is that, instead of using three- or four-channel color val-
ues for each image, we compute the exact visibility of each triangle
for each viewpoint, and only the visible (displayed) triangles are
stored for each viewpoint.

3.1 Preprocessing

We adopt the same environment settings as we did in the JPEG
image-based rendering system, see section 2.1.

3.1.1 Encoding Triangle IDs

In order to compute the visibility for each triangle, we assign each
triangle a unique id when we load the dataset. We then decompose
the number, in binary format, into three consecutive bytes and as-
sign them to R, G, and B in order. During the dumping process,
we render the whole dataset with the given RGB value for each
triangle as its color. Notice here that in order to render all col-
ors correctly, the illumination and antialiasing function in OpenGL
should be turned off. We then read the color buffer of this image
to get the color for each pixel and compose the R, G, B back to
the id. We currently use unsigned char for each single color value,
which means, with a one-pass encoding process, we can encode as
many as(28)3 = 16 million triangles. For larger datasets, multiple-
pass encoding processes may be needed. In our method we dump
triangles for each camera position(�; �) by using the dumping pro-
cess we discussed in Section 2.1 into a occupancy bit-vector, say
TriMap(�; �).

3.1.2 Compression Process

Two types of compression are relevant in an image-based naviga-
tion of virtual environments: single-frame compression and frame-
to-frame compression. We have only worked with single frame
compression at this stage; the multiple frame compression, which
needs more analysis and work, will be dealt with in future. For rep-
resenting the visible triangles in a single frame we use an occupancy
bit vector (an unsigned char array) in which each bit represents the
triangle id corresponding to its position in the vector. The bit is1 is
the triangle is visible in that frame,0 otherwise.

As the size of 3D datasets increases and the resolution of image
space remains fixed, the number of dumped triangles will saturate
around the display resolution. In our results, the million triangle
Buddha model has on an average only5 � 6% visible triangles
for a 512 � 512 resolution window. It means that most bits in a
bit vector would be0 and consecutive-0-bit-segment cases occur
frequently. This result inspires us to use run-length encoding and
Huffman compression.

3.2 Run-time Navigation

At run time the 3D dataset and precomputed information in com-
pressed format is loaded first. The precomputed information not

only includes the visible primitives for each frame but also includes
the viewing parameters including viewing angle, distance, and so
forth. The run-time viewing parameters should be exactly the same
as those used in the dumping process. In the system, each camera
position has a frame pointer pointing to the corresponding frame in
compressed format. A Huffman tree, which is used for decompres-
sion, is also constructed for each frame.

At run time the viewer moves around in a virtual environment
following discrete camera positions at��, �� increments which
were used in the dumping process. For a given viewer positon, we
can locate the corresponding frame by following its frame pointer
and decompress the frame by retracing the Huffman tree.

The rendering speed of system highly depends on the number
of visible triangles and the decompression time. In our implemen-
tation, the decompression function doesn’t have to go through a
whole data frame, it breaks the decompression loop immediately
whenever it detects that all dumped triangles have been found and
sends them to the graphics engine. However, the decompression
time still depends on the size of the frame (the size of object model)
and the number of visible triangles in the frame.

4 Results

We have tested five different polygonal models on SGI Challenge
and Onyx2. All models are tested on512� 512 resolution window
with 2592 images. We describe our results in this section.

Bunny, Dragon, and Buddha are scanned models from range im-
ages from the Stanford Computer Graphics Lab. Submarine model
is a representation of a notional submarine from the Electric Boat
Division of General Dynamics. The E. Hydratase Molecule (Enoyl-
CoA Hydratase) is from the Protein Data Bank. All models have the
vertex coordinates(x; y; z) in floating-point format, and all trian-
gles are represented by their three vertex indices (integer). Sub-
marine has RGB color for values (unsigned char) for each triangle.
The E. Hydratase Molecule has a normal vector for each vertex. All
models are stored in OFF binary format.

Table 3 has the average compression ratios on all models. The
average dumped tris %is the average percentage of dumped trian-
gles over2592 images.

Model
Avg Dumped Run Length Huffman Total

Tris % Ratio Ratio Ratio
Bunny 35.68 % 1.47 1.29 1.82
Submarine 2.83 % 6.27 1.46 9.16
E. Hydratase 11.21 % 3.54 1.24 4.38
Dragon 7.79 % 1.68 1.60 2.69
Buddha 4.04 % 2.32 1.75 4.07

Table 3: Compression Ratios for the Hybrid Method

In Table 4,P refers to conventionalPolygonalrendering,H refers
to theHybrid rendering system discussed in Section 3,I refers to
theMulti-level Image-basedrendering system discussed in Section
2. TheImage Error is the root-mean square error with respect to
the images rendered from the conventional polygonal rendering.
Dcmprsis the time for decompression. As can be seen, theHybrid
method has consistently low image errors. Multi-level image-based
rendering has the highest image error amongst these methods, since
JPEG compression, image differences, and texture mapping all con-
tribute to the final image error. For theHybrid method, all visible
triangles are stored in a bit vector and compressed by two steps:
run length encoding and Huffman compression. The decompres-
sion and rendering speeds are highly dependent on the displayed
frame size and the number of dumped triangles in that frame. The
rendering speed on the Submarine is much slower than other models



because we do the coloring for each rendered triangle. Without col-
oring, thePolygonalmethod has the average rendering speed about
7� 9 frames/sec and theHybrid method is over10 frame/sec.

The traditional polygon rendering has the best quality amongst
all methods and least storage, but it has the lowest rendering speed.
The hybrid method which only renders visible triangles has very
good rendering speeds, but needs much more storage than tradi-
tional polygon rendering. Multi-level JPEG provides progressive
refinement and has the lowest rendering complexity, but needs a lot
of storage. Figure 2 shows the images displayed by these methods
on various models.

(a) Polygonal: 376,436 tris (b) Hybrid: 5,201 tris

(c) JPEG Level 0 (d) JPEG Level 2

Figure 2: Different Rendering Methods on the Submarine

Time and Speed
Model System Storage Dcmprs Render Speed Image

MB (msec) (msec) (fps) Error

Bunny
69K tris

P 1.54 0.0 61.3 16.39 0.0
H 12.35 10.8 81.7 10.79 2.02E-4
I 52:74 83.6 28.2 8.94 2.66E-2

Submarine
376K tris

P 12.85 0.0 3549.0 0.28 0.0
H 13.32 11.1 118.1 7.73 7.29E-3
I 136.20 107.8 27.1 7.40 1.42E-1

EnoylCOA
Hydratase
717K tris

P 14.95 0.0 777.4 1.28 0.0
H 37.93 32.1 177.8 4.76 4.15E-4
I 88.86 108.6 28.9 7.26 2.69E-2

Dragon
871K tris

P 19.19 0.0 1306.9 0.76 0.0
H 104.98 87.8 223.45 3.10 4.82E-4
I 75.95 102.2 28.7 7.63 2.45E-3

Buddha
1087K tris

P 23.92 0.0 1638.3 0.61 0.0
H 86.56 69.4 191.9 3.82 5.14E-4
I 55.78 95.9 27.9 8.07 9.60E-2

Table 4: Comparison Results for Different Methods

5 Conclusions

In this paper we have presented a hybrid method as well as a pro-
gressive refinement image-difference-based rendering method for
high-complexity rendering. Our hybrid method takes advantage of
both conventional polygon-based rendering and image-based ren-
dering. The hybrid rendering method can provide rendering quality
comparable to the conventional polygonal rendering at a fraction
of the computational cost and has storage that is comparable to the
image-based rendering methods. The drawback is that it does not
permit full navigation capability to the user as in the conventional
polygonal method. However, it still retains several other useful fea-
tures of the polygonal methods such as direct querying to the un-
derlying database and ability to change illumination and material
properties. In future we plan to further explore compression issues
for the hybrid method by taking advantage of frame-to-frame co-
herence in image space and view-dependent geometric hierarchical
structures.
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