
Using Process Definition and Analysis
Techniques to Reduce Errors

 and Improve Efficiency in the Delivery
of Healthcare

Leon J. Osterweil
(with Lori A. Clarke and George S. Avrunin)

Department of Computer Science
University of Massachusetts Amherst

1 This material is based upon work supported by the National Science
Foundation under Awards CCF-0820198, CCF-0905530 and IIS-0705772, and
by a gift from the Baystate Medical Center, Rays of Hope Foundation.

The Large Issue: Continuous Improvement of
Human-Intensive Systems

  How to deal with systems where the human contributions
◦  Require considerable domain expertise
◦  Have significant impact on the overall success or failure of the outcome

  Involve complex collaborations among large and changing
configurations of humans, software systems, and hardware
devices

  Can’t be specified in detail all at once—maybe not ever
  Examples:
◦  Healthcare: chemotherapy administration, blood transfusion,

emergency department activities
◦  Government activities: elections, dispute resolution, emergency

response, search and rescue
◦  Manufacturing and finance
◦  Engineering and scientific investigation

Our Approach: Analysis Technology Support for
Continuous Improvement

  Model systems to some level of detail
  Evaluate them
◦  Using a wide variety of testing and analysis techniques

  Propose elaborations, modifications
enhancements

  Deploy them: Model-guided support
  Reevaluate in the domain setting and iterate

Shewhart/Deming Cycle

Various Drivers for Iterations
  New understandings of system details
  Defects detected
  Changes or additions
  Clearer understandings of emergent behaviors
  Involvement of new people with new behaviors or

perspectives
  Changed environment or doctrine

Approach: Employ an Integrated Collection of
Technologies Designed to Model and Analyze
Human-Intensive Systems

  Powerful, rigorous, articulate language for modeling systems
◦  Little-JIL system specification language

  Requirements engineering to capture properties
◦  PROPEL (property elucidation system)

  Model checking to detect errors
◦  FLAVERS (Flow Analysis for Verifying Systems)

  Safety analysis to reveal vulnerabilities

  Discrete event simulation to improve efficiency

Modeling Human-Intensive Systems

  Language requirements
◦  Capture complexity of systems clearly, cleanly, in detail
◦  Rich semantics

(e.g. functionality, concurrency, resource utilization, exceptions,
human participation)

◦  Precise semantics to support static analysis, simulations, and
executions

◦  Understandable to the domain experts (facilitate validation that
the definition models reality)

The Little-JIL Process Definition
Language
  Blends proactive and reactive control
  Coordinates human and automated agents

  Emphasizes exception specification, management
  Facilities for abstraction, scoping, hierarchy
  Supports artifact flow
  Concurrency, synchronization with message-passing
  Articulate specification of resources
  Steps have agents that can be humans, software, hardware
  Semantics for aborting steps
  Pre/post condition constructs
  Facilities for human choice

Hierarchy, Scoping, and Abstraction
 in Little-JIL

  Definition is a hierarchical decomposition
  Think of steps as procedure invocations
◦  They define scopes
◦  Copy and restore argument semantics

  Encourages use of abstraction
◦  Eg. system fragment reuse

Exception Handling: A Special
Focus of Little-JIL

  Steps may have one or more exception handlers
  Handlers are steps themselves
◦  With parameter flow

  React to exceptions thrown in descendent steps
◦  By Pre- or Post-requisites
◦  Or by Agents

  Four different continuations

Artifact flow
  Primarily along parent-child edges
◦  As procedure invocation parameters
◦  Passed to exception handlers too
◦  Often omitted from coordination diagrams to

reduce visual clutter
  This is inadequate
◦  Artifacts also need to flow laterally
◦  And subtasks need to communicate with each

other

Resources

  Entities needed in order to perform step
  Step specifies resource needed as a type
◦  Perhaps with attributes, qualifiers

  An EHR is a resource
  Resource instances bound at runtime
  Exception thrown when “resource unavailable”

Agents

  Collection of all entities that can perform a
step
◦  Human or automated

  System definition is orthogonal to
assignments of agents to steps
◦  Path to automation of system model

  Have freedom to execute leaf steps in any
way they want

“Step” is the central Little-JIL abstraction

TheStepName!

Interface Badge!
(parameters, resources, agent)!

Prerequisite Badge! Postrequisite Badge!

Substep sequencing!
Handlers!

X

Artifact!
flows!

Exception type"

continuation"

In-Patient Blood Transfusion

*Pre: Physician Prescribes ���
 Blood Transfusion	

In-Patient Blood Transfusion Process

Single-Unit Transfusion Process

Follow Through Check Check for Type and Screen

*Exception: No Patient Consent	

*Pre: Confirm Patient ���
 Consent	

Carry Out Physician Order for Transfusion

Prepare Document for Blood Pick-up

Pick up Blood from Blood Bank

Single-Unit Transfusion Process

Single-Unit Transfusion Process

BedsideChecks Prepare for Infusion

VerifyPatient ID ProductVerification

Assess Patient

Post Transfusion Work

Begin Transfusion Record Infusion Info

Suspected Transfusion Reaction

Discard Transfusion Materials

z	

AdministerUnit Blood Product

Narrative View and ToC

3. Order Test(s)
 3.1 order test(s) on computer

 3.1.1 log into computer
 3.2.1 select patient record

 3.2.1.1 look for patient name
on the alphabetical list

 3.2.1.2 match additional info
as needed (age, gender,
complaint, location...)

•  …

3. Order Test(s)(part of perform Blood Specimen Labeling process)!
 To perform this step the Provider must have the patient-name.!
 The Provider should first order test(s) on computer, !

!and then order test(s) on patient chart.!
 During any of these steps, if the required resources are not available, order

test(s) is considered to have failed.!
 Upon successful completion of this step, !

!continue to perform Blood Specimen Labeling process by proceeding to
the next step in the sequence.!

3.1 Order Test(s) on Computer (part of order test(s))!
 To perform this step the Provider must have the patient-name and the CIS

system. !
 To order test(s) on computer the Provider should perform, in order, each of

the following:!
!log into computer!

 !select patient record in DB!
 !verify the selected patient exactly matches desired patient!
 !select test to order at least once!

!digitally sign the order(s)!
During any of these steps, if the required resources are not available, order

test(s) on computer is considered to have failed.!
Upon successful completion of this step, continue order test(s) by

proceeding to the order test(s) on patient chart step.!

System Modeling Observations

  Systems are not well-understood
◦  Individuals know their own activities, but misunderstand how they relate to others

e.g., Artifacts created but not used

◦  Need abstraction and hierarchical decomposition

  Iteratively add detail based on emerging concerns
◦  Decisions about upper and lower bounds of the scope may change
◦  Decisions about granularity of task decomposition may change

  Features of the language help guide the elicitation
◦  E.g., What exceptions can arise and how are they treated?

  Need to consider specifications of desired behavior

Testing and Analysis of System
Models

  Model checking to find erroneous sequences of events and
system states

  Failures mode and effects analysis (FMEA) to determine
how faults propagate through a system and lead to hazards

  Fault tree analysis (FTA) to find combinations of faulty
events or agents events that lead to a hazardous situation

  Discrete Event Simulation to evaluate resource utilization
and performance

  Requirements generation to automatically determine
requirements for families of components; safe system
composition and substitution

System
model

Properties Model Checker
(FLAVERS)

Dynamic
Analysis

Failure mode
and effects

analyzer

Fault tree
generator

Hazards

Failure
modes

Scenario
specifications

Satisfied properties,
violated properties +

counterexamples

Fault trees, minimal
cut sets

Effects of failure
modes

Simulation runs amd
Test Results

Little-JIL
narrator

Property elicitor
(PROPEL)

Model editor
(Little-JIL editor)

Textual
representation

Iterative Improvement Driven by a
Process Improvement Environment

Requirements
Derivation

Derived
Requirements Device model

Test and Analysis

Improvement Feedback: Defect reports, emergent
understandings, resource and system behaviors, new

and modified system and property details

Subystems,
Resources,

Agents

System
model

Properties Model Checker
(FLAVERS)

Dynamic
Analysis

Failure mode
and effects

analyzer

Fault tree
generator

Hazards

Failure
modes

Scenario
specifications

Satisfied properties,
violated properties +

counterexamples

Fault trees, minimal
cut sets

Effects of failure
modes

Simulation runs and
Test Resuts

Little-JIL
narrator

Property elicitor
(PROPEL)

Model editor
(Little-JIL editor)

Textual
representation

Iterative Improvement Driven by a
Process Improvement Environment

Requirements
Derivation

Derived
Requirements Device model

Test and Analysis

Improvement Feedback: Defect reports, emergent
understandings, resource and system behaviors, new

and modified system and property details

Subystems,
Resources,

Agents

Example Property
The patient’s identification must be verified
prior to transfusing each unit of blood product.

A Specific, Detailed Elaboration

transfuse-blood cannot occur unless verify-patient-ID has already occurred.

It is acceptable for verify-patient-ID to not occur, but if it does not occur then transfuse-blood can
never occur. Even if verify-patient-ID does occur, transfuse-blood is not required to occur.

Before the first verify-patient-ID occurs, the events in this property, other than transfuse-blood,
can occur any number of times.

After verify-patient-ID occurs and before the first subsequent transfuse-blood occurs:
• the events in this property, including verify-patient-ID but not transfuse-blood, can occur any

number of times.

After the first subsequent transfuse-blood occurs:
• the events in this property, other than verify-patient-ID or transfuse-blood, could occur any

number of times;
• neither verify-patient-ID nor transfuse-blood can occur again.

verify-patient-ID

Model Checking

System
definition

Properties Finite-state
verifier

(FLAVERS)

Satisfied
properties,

violated
properties +

counterexamples

Property
elicitor

(PROPEL)

• Are there any traces through the system model that will violate a property?
• e.g., is it possible for a required event to ever be missed or done out
of order?
• If so, provides counterexample traces

• Example errors
• Deadlock - nurse waiting for bloodbank, bloodbank waiting for nurse
• Missed event - no update on height on weight

System editor
(Little-JIL

editor)

Observations about Verifying Models

  Just doing the modeling helped uncover errors in the
systems

  Initially mostly found errors in models and properties
  After fixing the modeling errors, we found errors in the

real systems
◦  Stale height and weight
◦  Deadlock

  Fixing the errors often led to other errors
  If systems are complex enough to be modeled, the

models must be carefully validated!

System
Model

Properties Model Checker
(FLAVERS)

Dynamic
Testing

Failure mode
and effects

analyzer

Fault tree
generator

Hazards

Failure
modes

Scenario
specifications

Satisfied properties,
violated properties +

counterexamples

Fault trees, minimal
cut sets

Effects of failure
modes

Simulation runs and
Test Resuts

Little-JIL
narrator

Property elicitor
(PROPEL)

Model editor
(Little-JIL editor)

Textual
representation

Iterative Improvement Driven by a
Process Improvement Environment

Requirements
Derivation

Derived
Requirements Device model

Test and Analysis

Improvement Feedback: Defect reports, emergent
understandings, resource and system behaviors, new

and modified system and property details

Subystems,
Resources,

Agents

Faults versus Vulnerabilities
  Model checking assumes that the stated tasks are done

correctly, but tries to determine if the tasks are always done in
the right order with the right values

  Safety analysis tries to determine what harm might be done if
the tasks are not done correctly
◦  Failure mode and effects analysis

  What hazards might arise, if there is a failure in the system?
◦  Fault tree analysis

  What are the ways in which a particular hazard might occur

Fault Tree Analysis (FTA)
  A well accepted and widely practiced safety analysis

technique that identifies all possible combinations of
events that could lead to a given hazard
◦  Hazard: A condition in which loss of life or serious loss of

property becomes possible
  Approach
◦  Specify a hazard that is of concern
◦  Create a fault tree for that hazard
◦  Derive Minimal Cut Sets (MCSs)--minimal event combinations that

can cause the hazard

Our Approach: Generate Fault Tree
from the System Model
  Specify a hazard
◦  Consider hazards created by the delivery of an incorrect artifact to

a Little-JIL step
◦  Generation based on templates for the semantics of the language

  Use Fault Tree Analysis to develop all Minimal Cut
Sets
◦  Automatically calculated from the fault tree using Boolean

algebra

Simple Blood Transfusion Process

Patient ID

Patie
nt ID

Blood
 Typ

e P atient ID
B

lood Type

Blood Type Blood Unit

Handle Exception :
Patient’s Blood Type Unavailable

Artifact Flow

Example Fault Tree
Blood Unit to “Perform Transfusion” is wrong

Blood Unit from “Pick up Blood from Blood Bank” is wrong

1

Blood Type to “Pick up Blood from Blood Bank” is wrong

2

Blood Type from “Contact Lab for Patient 's Blood Type” is wrong Blood Type from “Test Patient 's Blood Type ” is wrong

“Contact Lab for Patient 's Blood Type”
produces wrong Blood Type

Patient
ID to “ Blood

Transfusion Process”
Is wrong

Exception is
not thrown by “Contact
Lab for Patient 's Blood

Type”

4

E9E8

E10E11E11

E4

5

Exception is
thrown by “Contact
Lab for Patient 's

Blood Type”

E13

3

6

E1

E2

E3

E5 E6

E7

E12

Input Blood
Type is correct , but

“Pick up Blood from Blood
Bank” produces wrong

Blood Unit

Input patient
ID is correct, but “Contact
Lab for Patient 's Blood
Type” produces wrong

Blood Type

Patient
ID to “ Blood

Transfusion Process”
is wrong

Input patient
ID is correct, but “Test
Patient 's Blood Type”

produces wrong
Blood Type

7

“Test Patient 's Blood Type ”
produces wrong Blood Type

Calculate MCSs

Each gate corresponds to an equation "
 1: E1 = E2 2: E2 = E3 + E4 3: E3 = E5 + E6 4: E5 = E7 • E8"
 5: E6 = E9 • E13 6: E7 = E11 + E12 7: E9 = E11 + E10"

Blood Unit to “Perform Transfusion” is wrong

Blood Unit from “Pick up Blood from Blood Bank” is wrong

1

Blood Type to “Pick up Blood from Blood Bank” is wrong

2

Blood Type from “Contact Lab for Patient 's Blood Type” is wrong Blood Type from “Test Patient 's Blood Type ” is wrong

“Contact Lab for Patient 's Blood Type”
produces wrong Blood Type

Patient
ID to “ Blood

Transfusion Process”
Is wrong

Exception is
not thrown by “Contact
Lab for Patient 's Blood

Type”

4

E9E8

E10E11E11

E4

5

Exception is
thrown by “Contact
Lab for Patient 's

Blood Type”

E13

3

6

E1

E2

E3

E5 E6

E7

E12

Input Blood
Type is correct , but

“Pick up Blood from Blood
Bank” produces wrong

Blood Unit

Input patient
ID is correct, but “Contact
Lab for Patient 's Blood
Type” produces wrong

Blood Type

Patient
ID to “ Blood

Transfusion Process”
is wrong

Input patient
ID is correct, but “Test
Patient 's Blood Type”

produces wrong
Blood Type

7

“Test Patient 's Blood Type ”
produces wrong Blood Type

Calculate MCSs
Blood Unit to “Perform Transfusion” is wrong

Blood Unit from “Pick up Blood from Blood Bank” is wrong

1

Blood Type to “Pick up Blood from Blood Bank” is wrong

2

Blood Type from “Contact Lab for Patient 's Blood Type” is wrong Blood Type from “Test Patient 's Blood Type ” is wrong

“Contact Lab for Patient 's Blood Type”
produces wrong Blood Type

Patient
ID to “ Blood

Transfusion Process”
Is wrong

Exception is
not thrown by “Contact
Lab for Patient 's Blood

Type”

4

E9E8

E10E11E11

E4

5

Exception is
thrown by “Contact
Lab for Patient 's

Blood Type”

E13

3

6

E1

E2

E3

E5 E6

E7

E12

Input Blood
Type is correct , but

“Pick up Blood from Blood
Bank” produces wrong

Blood Unit

Input patient
ID is correct, but “Contact
Lab for Patient 's Blood
Type” produces wrong

Blood Type

Patient
ID to “ Blood

Transfusion Process”
is wrong

Input patient
ID is correct, but “Test
Patient 's Blood Type”

produces wrong
Blood Type

7

“Test Patient 's Blood Type ”
produces wrong Blood Type

Derive an equation for E1 by eliminating and substituting the other
intermediate events: "

"E1 = (E4) + (E11) + (E12 • E8) + (E10 •E13)"

Observations about FTA and FMEA
  Usually fault trees and FMEA tables are created

manually by safety engineers
◦  Requires a deep understanding of the systems
◦  Error prone and time consuming

  Using system models, we automatically derive fault
trees and FMEA tables for multiple hazards/faults
◦  Can easily be re-derived when the systems (and their models)

are changed

Blood Transfusion Example: Generated
Fault Tree

System
Model

Properties Model Checker
(FLAVERS)

Discrete event
simulator

Failure mode
and effects

analyzer

Fault tree
generator

Hazards

Failure
modes

Scenario
specifications

Satisfied properties,
violated properties +

counterexamples

Fault trees, minimal
cut sets

Effects of failure
modes

Discrete event
simulation runs

Little-JIL
narrator

Property elicitor
(PROPEL)

Model editor
(Little-JIL editor)

Textual
representation

Iterative Improvement Driven by a
Process Improvement Environment

Requirements
Derivation

Derived
Requirements Device model

Test and Analysis

Improvement Feedback: Defect reports, emergent
understandings, resource and system behaviors, new

and modified system and property details

Subystems,
Resources,

Agents

What is a “resource”?

  A resource is an entity that is characterized by
◦  Ability to provide one or more “capabilities”
  Capability: The ability to support doing some task/activity/work
◦  A set of descriptive attributes
  Attribute: a (name, value) pair

  Capability set changes with context, circumstances
◦  Attribute values do too

  A resource is a set of
◦  Guarded capabilities
◦  Guarded attributes

Example Resource Specifications
from the Medical Domain

"Name: John Smith"
"Job Title: Physician"
"Location: ED"
"Experience Level: 10"
"Cost: 100"
"Capacity: 8"
"Offered Capabilities:"
" "(MDInitialAssessment, .true., 10, 2)"
" "(MDProcedure, .true., 10, 5)"
" "(MDFinalAssessmentandDecision, .true., 10, 3)"
" "(RNPaperwork, [availability.nurse = 0 ∧ crowding > 100], 3, 1)"

"Name: Ellen Masterson"
"Job Title: Physician"
"Location: ED"
"Experience Level: 4"
"Cost: 80"
"Capacity: 8"
"Offered Capabilities:"
" "(MDInitialAssessment, .true., 10, 2)"
" "(MDProcedure, .true., 9, 5)"
" "(MDFinalAssessmentandDecision, .true., 10, 3)"
" "(RNPaperwork, [availability.nurse = 0 ∧ crowding > 100], 3, 1)"

Agenda 	

Manager	

ROMEO	

Who 	

does it?	

Agendas	

Simulated Human Agents	

Parameter	

 Manager	

What is it	

done to?	

Which step	

 next?	

Non-Simulated Simulated	

Non-Human Agents	

Agent
Behaviors	

Step	

Sequencer	

Event 	

Arrivals	

Outputs	

Simulation Results	

User	

Arrival	

Distribution	

Specification	

TimeLine	

Agent	

Behaviors	

Specification	

Events	

Next	

Event	

Agenda Item	

JSim: The Little JIL Simulator

The “SimpleED” Process

The “SimpleED” Process With a
Policy Change

Triage Nurse can place patient in bed

Elapsed time (in simulation time units)	

Effect of process detail on scheduling
effectiveness

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

42000

11 12 13 14 15 16 17 18 19 20 21 22
Execution time of Assessment

To
ta

l p
at

ie
nt

 w
ai

tin
g

tim
e

Using the process
from Figure 4 for
scheduling and
simulation

Using the process
from Figure 4 for
scheduling, and
using Figure 2 for
running simulation

Using the process
from Figure 2 for
scheduling and
simulation

Elaborate Assessment step	

with nurse and doctor doing 	

assessments in parallel with	

each taking 11 time units	

Observations about Simulations
  A number of simulation systems are commercially

available
◦  Usually based on queuing models

  System-based models more easily provide finer-
grain control

  Initial studies seem to indicate that finer-grain
control can increase simulation accuracy

  Can leverage the investment in the model
◦  Provides a basis for studying resource allocation using

scheduling and planning

One Early Clinical Result
  Defined part of breast cancer chemotherapy

process
◦  Up to and including the first day of chemo

  Number of errors reaching the patient declined by
~70%
◦  Due to errors found and/or heightened process awareness

  To appear in Joint Commission Journal of Quality
and Patient Safety

Future Vision
  Environment for evidence-based, systematic system

improvement

Editing	

 and 	

depictions	

Static ���
Analysis	

System
Models	
 Monitoring���

 and���
 Guidance	

Validated
Models	

Operational Profiles	

Accumulated
historical assessments	

Improvement
recommendations	

The DDG Project (Work being led
by Barbara Lerner and Xiang
Zhao)
  Defined templates for translating Little-JIL step

executions into DAG fragments
  Gluing software for building DDGs from them
  Incorporates scoping, nesting, hierarchy information
  Links to previous values of artifacts
  Detailed history is inferrable
  Can generate DDGs dynamically while process is

executing

Example

DDG	

Little-JIL	

Legend	

Actual Generated DDG (From
Ecology Process Definition)

Enlargement of a Piece

Overall Observations
  Found important errors and inefficiencies in the systems that

we modeled
◦  Sequence errors
◦  Deadlocks
◦  Single points of failure
◦  Resource allocation bottlenecks

  Mostly found errors in the system models and properties
◦  But, correcting these is important if the other analysis results are

to be trusted
◦  Unable to do experimental before and after studies

  Testimonials
◦  Medical colleagues, ecology researchers, claim that this approach

has changed the way they view their systems and processes, the
terms they use, and how they teach their disciplines

Conclusions
  Current approach
◦  Analysis-driven approach to iterative improvement of

human intensive systems of systems
◦  Effective for identifying errors, vulnerabilities, emergent

properties and behaviors in these systems
◦  Indicating improvement directions

  Future work: monitoring and guidance based on
validated system models
◦  Basis for deviation detection
◦  Framework for accumulating operational data, applying

probabilistic analysis, and proposing evidence-based
improvements
◦ 

Questions?

Backup Slides

Four different continuations
on exception handlers

  Complete
◦  Handler was a “fixup”; substep is completed

  Continue
◦  Handler cleaned up; parent step is completed

  Restart
◦  Handler cleaned up; repeat substep (deprecated)

  Rethrow
◦  Rethrow to parent step

Channels and Lateral flow

  Channel supports message passing
  Multiple steps can add artifacts
  And multiple steps that can take them
  Use for synchronization and passing artifacts

Pre- and Post-requisites
  Steps guarded by (optional) pre- and post-

requisites
  Are steps themselves
  Can throw exceptions
  May be executed by different agents
◦  From each other
◦  From the main step

LIP6, Paris, June 2010

Another Resource Specification

"Name: Bed 12"
"Job Title: Bed"
"Location: ED"
"Experience Level: 12"
"Cost: 250"
"Capacity: 1"
"Offered Capabilities:"
" "(PatientInsideED, .true. , 10, 1)"

PROPEL Templates

  Provides templates that explicitly indicate the options
associated with each Property Pattern (Dwyer, Avrunin, and Corbett)

  Three coordinated representations
◦  Question Tree

  Helps select the appropriate pattern
  Guides in the selection of options

◦  Disciplined Natural Language (DNL)
  Specifier selects from given optional phrases
  Fully instantiated template is a sequence of English sentences

◦  Extended Finite-State Automaton
  Graphical FSA with optional transitions, labels, and accepting states
  Fully instantiated template is a FSA defining a language of desirable sequences of events;

basis for Model Checking

Question Tree View
How many events of primary interest are there?

  One: event verify-patient-ID

  Two: events verify-patient-ID and transfuse-blood

  After verify-patient-ID occurs, transfuse-blood is
required to occur

  transfuse-blood cannot occur until after verify-patient-
ID has occurred

Precedence FSA Template

verify-patient-ID

Precedence FSA Template

verify-patient-ID

Precedence DNL Template

Precedence DNL Template

Precedence DNL Template

Observations about Specifying
Properties

  Specifying the properties helped determine the
scope/granularity of the system model

  Added the ability to specify properties in the
context of exceptions
◦  PropA is true unless exception X1 or X2 occurs

Identify Effect (s) for Each Failure Mode

  Shows two potential hazards:
  “Patient Bed Location” is

wrong =>
wrong patient receives blood

  “Blood Type” is wrong =>
patient receives wrong blood

FMEA Table	

LIP6, Paris, June 2010

Agenda 	

Manager	

Resource	

 Manager	

Who 	

does it?	

Agendas	

Parameter	

 Manager	

What is it	

done to?	

Which step	

 next?	

Step	

Sequencer	

Outputs	

Agenda Item	

Executing Little-JIL Process Definitions

LIP6, Paris, June 2010

Agenda 	

Manager	

ROMEO	

Who 	

does it?	

Agendas	

Parameter	

 Manager	

What is it	

done to?	

Which step	

 next?	

Step	

Sequencer	

Outputs	

Agenda Item	

Executing Little-JIL Process Definitions

LIP6, Paris, June 2010

ROMEO approach to defining and
managing resources
  Store resource entities as database relations
  Turn resource requests into queries
  Group sets of attributes into predefined queries
◦  Serves some of the purposes of a type structure

  Add and delete resource instances dynamically as
data base modifications

  Change attribute values and guards dynamically
as DB modifications too

LIP6, Paris, June 2010

The ROMEO architecture

LIP6, Paris, June 2010

Incremental Resource Scheduling
  First-come-first-served is myopic
  End-to-end static scheduling breaks down in a

dynamic environment
◦  Unexpected events can negate entire schedule
◦  Unanticipatable paths through the process can too

  Intermediate approach: Incremental scheduling
◦  Define a window of upcoming events
◦  Schedule over that window
◦  Reschedule when scheduled tasks have been completed

or when disruption negates schedule

LIP6, Paris, June 2010

Effect of process detail on scheduling
effectiveness

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

42000

11 12 13 14 15 16 17 18 19 20 21 22
Execution time of Assessment

To
ta

l p
at

ie
nt

 w
ai

tin
g

tim
e

Using the process
from Figure 4 for
scheduling and
simulation

Using the process
from Figure 4 for
scheduling, and
using Figure 2 for
running simulation

Using the process
from Figure 2 for
scheduling and
simulation

Elaborate Assessment step	

with nurse and doctor doing 	

assessments in parallel with	

each taking 11 time units	

Both resources allocated 	

for entire step	

Each resource allocated 	

only when needed for	

substep	

Allocation based on lack of	

substep detail, but assigned 	

only when needed for substep	

LIP6, Paris, June 2010

The TWINS Incremental Resource
Scheduling Framework

Process
Execution

System

Scheduler

Execution State FeedbackNew Requirement

Resources Change

Rush Order

Exceptions

Rescheduling
Indicator

Resource
Repository

Process
Asset

Scheduling
Result

Scheduling
Activity Set
Constructor

Scheduling Window

Activities
Needed
to be

Scheduled

Un-executed Activities

Scheduling
Parameters

Time Line

LIP6, Paris, June 2010

Resource utilization rate as
number of doctors increases

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5
Number of Doctor

U
sa

ge
 P

er
ce

nt
ag

e

Dcotor

Nurse

Triage
Nurse
Clerk

Auto
Agent

LIP6, Paris, June 2010

Effect of resource specification detail
on scheduling effectiveness

100

2100

4100

6100

8100

10100

12100

14100

16100

18100

25 26 27 28 29 30 31 32 33 34
Patient arrival interval (time unit)

To
ta

l p
at

ie
nt

 w
ai

tin
g

tim
e Schedule with

complete and
precise resource
availability and
capability
information

Schedule with less
complete resource
availability and
capability
information

How to communicate system information and
provide guidance to humans?

  Visualization of current, historical, and prospective views
◦  Warn of impending events

  Mock-up of process progress for a blood transfusion

How to gather, display, and exploit:
Historical Execution Information

  Gather and display historical information
◦  Present relevant contextual information
◦  Summarize historical performance
◦  Identify situations that tend to cause errors, exceptional

circumstances, bottlenecks
  Gather probabilities that can sharpen the static analysis
◦  More accurate projection of vulnerabilities

  Basis for process comparisons
◦  Fine-grained assessment of differences, not just in terms of

outcomes
  Basis for system and process improvement
◦  In collaboration with domain experts

