
The Active Data Repository

Version 0.9

Chialin Chang, Tahsin Kurc, Alan Sussman, Joel Saltz

Department of Computer Science

University of Maryland

College Park, MD 20742

fchialin,kurc,als,saltzg@cs.umd.edu

February 10, 2001

For additional information and documents on the Active Data Repository

http://www.cs.umd.edu/projects/adr

Contents

1 Introduction 1

2 Overview of the Active Data Repository 4

2.1 Datasets in ADR : 4
2.2 Client : 4
2.3 Front-end : 4
2.4 Back-end : 6

2.4.1 Attribute space service : 7
2.4.2 Dataset service : 7
2.4.3 Indexing service : 7
2.4.4 Data aggregation service : 7
2.4.5 Customizing ADR Back-end : 8

2.5 Query Processing in ADR : 9
2.5.1 Query planning service : 9
2.5.2 The query execution service : 10

3 Customizing ADR: Front-end 11
3.1 Connecting to ADR Front-end : 11
3.2 Querying ADR Front-end : 12
3.3 Formulating an ADR Query : 15

4 Customizing ADR: Backend Services 21
4.1 Overview of ADR Utility Classes : 21
4.2 Indexing Service : 22
4.3 Attribute Space Service : 24
4.4 Dataset Service : 26
4.5 Data Aggregation Service : 28

4.5.1 Accumulator : 28
4.5.2 Aggregation Operations : 32
4.5.3 Final Output : 34

5 Loading Datasets into ADR 36
5.1 Overview : 36
5.2 The ADR Data Loader : 37

6 Installing and Running ADR 44

6.1 Con�guring the ADR Library : 45
6.2 Compiling the ADR Library and Utility Programs : : : : : : : : : : : : : : : : : : : 49
6.3 Compiling the Customization Code : 49
6.4 Registering Constructor Functions : 50
6.5 Linking with ADR Libraries : 52
6.6 Registering Datasets : 53
6.7 Running ADR Front-end and Back-end : 58

A ADR Utility Classes 64

I

B An Example Application 72
B.1 The Simpli�ed Virtual Microscope (SVM) : 72
B.2 SVM Customization Codes : 73

B.2.1 Customization of SVM Front-end : 73
B.2.2 The SVM Helper Classes : 77
B.2.3 Customization of Indexing Service : 80
B.2.4 Customization of Attribute Space Service : 80
B.2.5 Customization of Dataset Service : 84
B.2.6 Customizing Data Aggregation Service : 86

B.3 Running the SVM Application : 98
B.4 Adding Datasets to the SVM Application : 103

II

1 Introduction

Analysis and processing of very large multi-dimensional scienti�c datasets (i.e. where data items
are associated with points in a multi-dimensional attribute space) is an important component of
science and engineering. Examples of very large datasets include long running simulations of time-
dependent phenomena that periodically generate snapshots of their state (e.g. hydrodynamics
and chemical transport simulation for estimating pollution impact on water bodies [4, 7, 14, 13],
magnetohydrodynamics simulation of planetary magnetospheres [20], simulation of a
ame sweeping
through a volume [18], airplane wake simulations [15]), archives of raw and processed remote sensing
data (e.g. AVHRR [17], Thematic Mapper [22], MODIS [16]), and archives of medical images (e.g.,
high resolution light microscopy [2], CT imaging, MRI, sonography). For example, a dataset of
coarse-grained satellite data (with 4.4 km pixels), covering the whole earth surface and captured
over a relatively short period of time (10 days) is about 4.1GB; a �ner-grained version (1.1 km
per pixel) contains about 65 GB of sensor data. In medical imaging, the size of a single digitized
composite slide image at high power from a light microscope is over 7GB (uncompressed), and a
single large hospital can process thousands of slides per day.

An increasing number of applications make use of very large multi-dimensional scienti�c datasets.
These applications have several important characteristics. Both the input and the output are of-
ten disk-resident datasets. Applications may use only a subset of all the data available in input
and output datasets. Access to data items can be described by a range query, namely a multi-
dimensional bounding box in the underlying multi-dimensional attribute space of the dataset. Only
the data items whose associated coordinates fall within the multi-dimensional box are retrieved.
The processing structures of these applications also share common characteristics. Figure 1 shows
high-level pseudo-code for the basic processing loop in these applications. The processing steps con-
sist of retrieving input and output data items that intersect the range query (steps 1{2 and 4{5),
mapping the coordinates of the retrieved input items to the corresponding output items (step 6),
and aggregating, in some way, all retrieved input items that map to the same output data items
(steps 7{8). Correctness of the output usually does not depend on the order input data items are
aggregated. That is, the aggregation operation is an associative and commutative operation{ the
aggregation functions allowed correspond to the distributive and algebraic aggregation functions
de�ned by Gray et. al [11]. The mapping function, Map(ie), maps an input item to a set of output
items. An intermediate data structure, referred to as an accumulator, is used to hold intermediate
results during processing. For example, an accumulator can be used to keep a running sum for
an averaging operation. The aggregation function, Aggregate(ie; ae), aggregates the value of an
input item with the current intermediate result stored in the accumulator element (ae). The output
dataset from a query is usually much smaller than the input dataset, hence steps 4{8 are called
the reduction phase of the processing. Accumulator elements are allocated and initialized (step 3)
before the reduction phase. Note that step 2 is necessary only if the output dataset already exists
and output elements are needed to initialize accumulator elements. The intermediate results stored
in the accumulator are post-processed to produce �nal results (steps 9{11).

Some typical examples of applications that make use of multi-dimensional scienti�c datasets are
satellite data processing applications [1, 6, 19], the Virtual Microscope and analysis of microscopy
data [2, 10], and simulation systems for water contamination studies [13]. In satellite data process-
ing, for example, earth scientists study the earth by processing remotely-sensed data continuously
acquired from satellite-based sensors. Each sensor reading is associated with a position (latitude
and longitude) and the time the reading was recorded. In a typical analysis [1, 19], a range query
de�nes a bounding box that covers a part or all of the earth surface over a period of time. Data

1

O Output Dataset, I Input Dataset
[SI ; SO] Intersect(I; O;Rquery)
(* Initialization *)

1. foreach oe in SO do

2. read oe
3. ae Initialize(oe)

(* Reduction *)
4. foreach ie in SI do
5. read ie
6. SA Map(ie) \ SO
7. foreach ae in SA do

8. ae Aggregate(ie; ae)
(* Output *)

9. foreach ae do
10. oe Output(ae)
11. write oe

Figure 1: The basic processing loop in the target applications. Here, Rquery denotes the range
query, SI is the subset of the input that intersects the range query, and SO is the subset of the
output that intersects the range query.

items retrieved from one or more datasets are processed to generate one or more composite images
of the area under study. Generating a composite image requires projection of the selected area
of the earth onto a two-dimensional grid [23]; each pixel in the composite image is computed by
selecting the \best" sensor value that maps to the associated grid point. Another example is the
Virtual Microscope [2, 10], which supports the ability to interactively view and process digitized
data from tissue specimens. The raw data for such a system can be captured by digitally scan-
ning collections of full microscope slides under high power. The digitized images from a slide are
e�ectively a three-dimensional dataset, since each slide can contain multiple two-dimensional focal
planes. At the basic level, a range query selects a region on a focal plane in a slide. The processing
for the Virtual Microscope requires projecting high resolution data onto a grid of suitable resolu-
tion (governed by the desired magni�cation) and appropriately compositing pixels that map onto
a single grid point, to avoid introducing spurious artifacts into the displayed image.

This document describes the Active Data Repository (ADR) [5], an infrastructure that inte-
grates storage, retrieval and processing of large multi-dimensional datasets on distributed memory
parallel architectures with multiple disks attached to each node. ADR targets applications with
the processing structure shown in Figure 1. ADR is designed as a set of modular services, imple-
mented in C++. Through use of these services, ADR allows customization for application speci�c
processing (i.e. the Initialize, Map, Aggregate, and Output functions), while providing support
for common operations such as memory management, data retrieval, and scheduling of processing
across a parallel machine. The system architecture of ADR consists of a front-end and a paral-
lel back-end. The front-end interacts with clients, and forwards range queries with references to
user-de�ned processing functions to the parallel back-end. During query execution, back-end nodes
retrieve input data and perform user-de�ned operations over the data items retrieved to generate

2

the output products. Output products can be returned from the back-end nodes to the requesting
client, or stored in ADR.

This document is organized as follows. Section 2 presents an overview of the Active Data
Repository, and the services it provides. The ADR front-end services are described in Section 3.
Section 4 describes the ADR back-end, and customizable services in greater detail. The de�nitions
of the base classes for each service are also described in that section. Loading datasets into ADR,
along with a description of the support provided by the ADR, is discussed in Section 5. Section 6
describes how to install ADR, how to register datasets and customized implementations of the
services in ADR. Appendix A describes some of the utility classes provided by ADR that can
be used in the customization of back-end services. Finally, the implementation of an example
application is described in Appendix B.

3

2 Overview of the Active Data Repository

Figure 2 shows the architecture of an application implemented as a customized ADR instance. The
full application suite consists of one or more clients, a front-end, and a back-end. A client program,
implemented for a speci�c application or application domain, generates requests into ADR, and
post-processes the results from the back-end. The front-end translates the requests into ADR
queries, and sends them to the back-end for processing, where the datasets are stored.

2.1 Datasets in ADR

A dataset loaded into ADR is partitioned into a set of chunks, each of which consists of one or
more data items. A chunk is the unit of I/O and communication in ADR. That is a chunk is
retrieved as a whole during query processing. Every data item in a dataset is associated with
a point in the multi-dimensional attribute space underlying the dataset. Similarly, every chunk
is associated with a minimum bounding rectangle (MBR) that encompasses the coordinates (in
the associated attribute space) of all items in the chunk. ADR assumes a distributed-memory
multicomputer or network of workstations with one or more disks attached to each node. Data
chunks are distributed across the disks attached to nodes to achieve I/O parallelism during query
processing. A data chunk is assigned to only one disk, and is stored in a �le on that disk. An index,
constructed from the MBRs of the chunks, is used to �nd the chunks that intersect a query region
during query processing.

Loading a dataset into ADR is accomplished in four steps: (1) partition the dataset into data
chunks, (2) compute placement information, (3) create an index, and (4) move data chunks to
the disks according to placement information, and register the dataset in ADR. The placement
information describes how data chunks are distributed across the disks in the system. After data
chunks are stored in the disk farm, dataset catalogs are updated to register the new dataset in
ADR. To load a dataset into ADR, the user partitions the dataset into chunks and stores the
chunks in a set of �les. ADR provides utility programs to compute the placement, create an index
(i.e. an R-tree index), and move data chunks from user-created �les to the disks in the system. The
user is required to assist the utility programs by providing a set of meta-data �les that describe
the data �le location and meta-data (e.g., minimum bounding rectangle) for the chunks within
the data �les. Optionally, the user can move the data �les to disks manually, if the chunks are
already declustered across the data �les, and use a user-de�ned index. To register a dataset, ADR
provides utility programs that will take a �le that describes meta-data for the dataset such as the
user-de�ned name and a short description of the dataset and index, and will assign an id to the
dataset and update the ADR dataset catalogs.

2.2 Client

A client process is a program, sequential or parallel, which is implemented for a speci�c application.
It generates requests to ADR, and post-processes the output returned by the back-end. For example,
a client process could be a graphical interface for end users to both generate requests and display
the output returned by the back-end.

2.3 Front-end

The front-end consists of one or more application front-ends and a single ADR front-end. The
ADR front-end and application front-ends are separate processes, potentially running on di�erent

4

query planning
service

query execution
service

query submission
service

query interface
service

Front-end

...

client B

client A
application protocol

process

application customization

meta data
app front-end

application front-end

indexing
service

dataset
service

attribute space
service

data aggregation
service

ADR protocol

ADR Back-end

meta data

ADR front-end

ADR Query

ADR front-end

Figure 2: A complete application suite implemented as a customized ADR application. The shaded
portion represents either application-speci�c programs or the part of the ADR services customized
for the application. The arrows represent interaction between di�erent entities: the darker ones
use the protocol or interface de�ned by ADR and the lighter ones follow the protocol de�ned by
the application. The shaded bars attached to the data service, the attribute space service, the data
aggregation service and the indexing service represent functions added to ADR by the application
developer as part of the customization process. Also, client A is shown as a sequential program
while client B is shown as a parallel program.

5

machines.
An application front-end, implemented by the application developer, is responsible for receiving

application client requests and translating each client request into ADR queries. The existence of
the application front-end allows clients to communicate with the front-end using an application-
speci�c protocol, which can be tailored to be e�cient and natural for that application. It also
allows additional application-speci�c meta-data to be stored with the front-end so that simple
client requests that involve only the application meta-data (but not the actual datasets stored at
the back-end) can be answered directly by the application front-end. The query interface service
of ADR provides a set of utility classes that can be used in the application front-end to connect
to the ADR front-end, to query ADR to get information about datasets and user-de�ned functions
registered in ADR, and to create and submit ADR queries.

The ADR front-end interacts with application clients/front-ends and the ADR back-end. Since
clients can connect and generate requests in an asynchronous manner, the existence of a front-end
relieves the back-end from being interrupted by clients during query processing. The ADR front-end
uses the query interface service to interact with application front-ends, and the query submission
service to schedule multiple queries received from one or more application front-ends and to submit
them to the back-end. Upon receiving a query, the query submission service places it into a query
pool, to be forwarded to the back-end. When the back-end signals that it is ready, a scheduling
policy determines which queries from the query pool are sent to the back-end. All queries sent
to the back-end as a group are processed simultaneously. Currently, the query submission service
uses a simple �rst-in-�rst-out policy, and can be instructed at start-up time to either send all the
queries in the query pool to the back-end when requested, or always send a �xed number of queries
from the head of the queue.

An ADR Query consists of:

� references to one or more input datasets, and for each dataset,

{ a range query, de�ned in the underlying multi-dimensional attribute space of the dataset,

{ a reference to an index, for �nding data elements that intersect the range query,

{ a reference to a dataset iterator function, to access individual data elements,

{ a reference to a projection function, to project input data points in the input attribute
space to data points in the output attribute space.

� a reference to an accumulator data structure, to hold the intermediate results,

� a reference to an aggregation function, to aggregate input elements with output/accumulator
elements,

� a speci�cation of how to handle the output (e.g., send the data to the client via sockets or
store the data in �les).

A reference to a dataset or to a user-de�ned function is the id of the dataset or function, which
is assigned when the dataset or the function is registered in ADR. ADR provides utility classes,
which the application front-end can use, to retrieve the id information.

2.4 Back-end

The back-end is responsible for storing the datasets and carrying out the required data retrieval
and application-speci�c data processing for queries. As is shown in Figure 2, the back-end consists

6

of six services, which operate in each back-end process. Two of these services are internal services
used by back-end processes to schedule and process the queries:

� The query planning service, which determines a query plan that can be used to e�ciently
process a set of queries based on resource availability.

� The query execution service, which manages all the resources in the system and carries out
the query plans generated by the query planning service.

The remaining four services are customizable services: attribute space service, dataset service,
indexing service, and data aggregation service. We brie
y describe these services in the following
sections.

2.4.1 Attribute space service

The attribute space service manages the registration and use of multi-dimensional attribute spaces
and projection functions. Currently, an attribute space is speci�ed by the number of dimensions.
Projection functions are used to project points between attribute spaces. They are speci�ed by the
domain and range attribute spaces and an algorithm for the mapping between them.

2.4.2 Dataset service

As was stated previously, ADR expects each of the datasets to be partitioned into data chunks,
each chunk consisting of one or more data items from the same dataset. In the current version, the
user is responsible for partitioning a dataset into data chunks. There is no restriction on the size
and the structure of a chunk. The user may choose any size, possibly optimized for a particular
dataset{ each chunk in the same dataset may have a di�erent size. In addition, the user determines
how the data items in a chunk are organized, which is possibly optimized or natural for a particular
dataset. Therefore, a chunk in one dataset may have a di�erent structure than a chunk in another
dataset{ only restriction is that all chunks in a dataset should have the same structure. The
dataset service manages user-de�ned iterator functions that understand the structure of a chunk
in a speci�c dataset. An iterator function is used to access individual data items in a data chunk.

2.4.3 Indexing service

The indexing service manages various indices for the datasets stored in the ADR back-end. The
key function of an index is that, given a multi-dimensional range query in its underlying attribute
space, it returns the disk locations for the set of data chunks that may contain data items that
fall inside the given range query. To create an index, the indexing service uses the MBR for each
chunk in the dataset and the physical location of each chunk on disk. ADR allows the application
developer to optionally specify an indexing algorithm. This can be done by de�ning an index object
derived from the ADR index class and implementing, among other virtual functions, the search
function. By default, ADR uses a variant of an R-tree [3] index.

2.4.4 Data aggregation service

The data aggregation service manages the user-provided functions to be used in aggregation opera-
tions, and also encapsulates the data types of both the intermediate results used by these functions
and the �nal outputs generated by these functions. An accumulator is used during query processing

7

to hold partial results generated by the aggregation functions. As for input datasets, an accumu-
lator has an underlying attribute space, and each of its elements is associated with a point in the
attribute space. An accumulator data type is de�ned by a user-de�ned class derived from the ADR
accumulator base class. An accumulator data type implements virtual functions to allocate the ac-
cumulator elements under a given memory constraint (imposed by ADR) and to access individual
accumulator elements that fall inside a given region in its underlying attribute space.

An output data type de�nes the data structure of the �nal output generated from processing an
ADR query. Its major tasks are to hold the �nal results at the end of the query and to de�ne the
order in which values are communicated back to the requesting client, which must able to correctly
interpret what it receives. An output data type is de�ned as a user-de�ned class derived from the
ADR output base class.

An aggregation function is encapsulated as a user-de�ned class derived from the ADR aggrega-
tion base class. It implements virtual functions to initialize accumulator elements before aggrega-
tion takes place, merge the values of an input data item with an accumulator element, merge the
values of a set of accumulator elements with another matching set of accumulator elements, and
post-process the accumulator into the desired �nal output after all data aggregation has completed.
Functions to merge corresponding accumulator elements are needed because the query execution
service allows each back-end process to compute partial results into a local accumulator, which are
then merged across back-end processes.

2.4.5 Customizing ADR Back-end

To build a version of ADR customized for a particular application, the application developer has
to provide functions:

� to search (via an index) for data chunks that intersect the range query,

� to access the individual input data items in a retrieved chunk,

� to create and manage accumulator data structures,

� to project points between the input and output attribute spaces,

� to aggregate input data items that project to the same output item (by aggregating with the
corresponding accumulator element),

� to create the �nal output from accumulator elements.

Customizing the ADR back-end for a speci�c application involves customizing the attribute
space service, the dataset service, the indexing service, and the data aggregation service, as shown
by the shaded bars attached to those services in Figure 2. Customization in ADR is currently
achieved through C++ class inheritance. That is, for each of these four services, ADR provides a
set of C++ base classes with virtual functions that must be implemented by derived classes. Adding
an application-speci�c entry into a modular service requires the application developer to de�ne a
class derived from an ADR base class for that service and provide the appropriate implementations
of the virtual functions. For example, the indexing service manages indices that allow ADR to
e�ciently locate the data items of datasets speci�ed by a range query in persistent storage. It
includes an index base class that contains a search function, among other virtual functions, that is
expected to implement this functionality. Adding a new index therefore requires the de�nition of
a new index class derived from the ADR base class and the proper implementation of the search
function.

8

In addition to de�ning derived classes from an ADR base classes and providing the appropriate
implementation of the virtual functions, users also need to provide constructor functions for many
of the derived classes. A constructor function for a derived class is a regular C++ function (as
opposed to a class member function) that when invoked, will dynamically create an instance of the
derived class. This is necessary since ADR cannot dynamically create an instance of a derived class
simply through its base class. In most cases, a constructor function simply creates an instance of
the derived class with the C++ new operator and returns the pointer. Note that the C++ new

operator would initialize the instance using the constructor member function of the derived class,
as is de�ned in the C++ language.

ADR provides utility programs to register user-de�ned constructor functions. The registration
process allows ADR to setup function pointers to registered constructor functions, so that the
appropriate constructor function can be called at run-time when needed. Section 6.4 describes
the process of constructor function registration in more details. Not all derived classes require
constructor functions. In Section 4, C++ function signatures for constructor functions are listed
along with the ADR base class de�nitions when constructor functions are required for the derived
classes.

2.5 Query Processing in ADR

As was stated in Section 2.4, the processing of a query is carried out by query planning and query
execution services.

2.5.1 Query planning service

To be able to e�ciently integrate data retrieval and processing on a parallel machine, ADR manages
the allocation and scheduling of all resources, including processor, memory, disk bandwidth and
network bandwidth. The task of the query planning service is to determine a schedule for the
use of the available resources to satisfy a set of queries. Given the nature of the computations
supported by ADR, use of several of these resources is not independent (e.g., it is not possible
to use disk bandwidth without having memory to store the data being transferred from disk).
Note that changing the order input data items are retrieved cannot a�ect he correctness of the
result, which is one of the requirements for an ADR application. Therefore, the associative and
commutative nature of the aggregation operations must be leveraged to form loosely synchronized
schedules { the schedules for individual processors need not proceed in lock-step and only need to
synchronize infrequently. The ADR query planning service creates schedules based on requirements
for memory, processor and network bandwidth. A query plan speci�es how parts of the �nal output
are computed and the order the input data chunks are retrieved for processing.

Planning is carried out in two steps; tiling and workload partitioning. In the tiling step, if
the accumulator is too large to �t entirely into the memory, it is partitioned into tiles. Each tile
contains a distinct subset of the accumulator elements, so that the total size of a tile is less than the
amount of memory available for the accumulator. Tiling of the accumulator implicitly results in a
tiling of the input dataset. Each input tile contains the input chunks that map to the corresponding
accumulator tile. During query processing, each accumulator tile is cached in main memory, and
input chunks from the corresponding input tile are retrieved. In the workload partitioning step, the
workload associated with each tile (i.e. aggregation of data items in input and accumulator chunks)
is partitioned across processors. This is accomplished by assigning each processor the responsibility
for processing a subset of the input and/or accumulator chunks. Currently, ADR implements a
workload partitioning strategy referred to as replicated accumulator. In this strategy, each back-end

9

node is assigned the responsibility to carry out processing associated with its local input chunks.
The accumulator elements in a tile are e�ectively replicated across all nodes.

For each query that an ADR back-end process receives, the query planning service uses the
selected index from the indexing service to locate the set of data items that need to be retrieved
for the given query. Then, it uses the data aggregation service, in conjunction with knowledge
of the amount of resources available, to generate a query plan. The query planning service uses
the user-de�ned functions implemented in data aggregation service to partition the user-de�ned
accumulator into tiles. The output of the planning service consists of a set of ordered lists of input
chunks, one list per disk in the machine con�guration for each accumulator tile.

2.5.2 The query execution service

Execution of a query in ADR is done through the query execution service, which manages all the
resources in the system and carries out the query plan generated by the query planning service. The
query execution service receives the query plan and carries out the data retrieval and processing.
The execution service iterates through accumulator tiles, and processes the query one accumulator
tile at a time. That is an accumulator tile is allocated space in each back-end node and initialized
using user-de�ned methods in the data aggregation service. During the processing, the query
execution service in each back-end node uses (1) the dataset service to navigate through the input
data items in each data chunk retrieved from the local disks, (2) the selected projection function
from the attribute space service to map input data items to output items, (3) the selected aggregation
function from the data aggregation service to combine the values of the input data items that project
to the same output item, with the corresponding accumulator item. Finally, the corresponding
portion of the output is created from the accumulator tile, using the user-de�ned output methods,
and is returned to the client as speci�ed by the query. Therefore, the processing of a query on a
back-end processor progresses through the following phases for each tile:

1. Initialization. Accumulator elements in the current tile are allocated space in memory
and initialized.

2. Local Reduction. Corresponding input data chunks on the local disks of each back-
end processor are retrieved and input elements are aggregated into the accumulator elements
allocated in each processor's memory in phase 1.

3. Global Combine. Partial results computed in each processor in phase 2 are combined
across all processors to compute �nal results.

4. Output Handling. The �nal output for the current tile is computed from the corre-
sponding accumulator elements computed in phase 3.

A query iterates through these phases repeatedly until all tiles have been processed and the entire
output dataset is handled. When multiple queries are processed simultaneously by the ADR back-
end, each query independently progresses through the four query execution phases.

To reduce query execution time, ADR overlaps disk operations, network operations and pro-
cessing as much as possible during query processing. Overlap is achieved by maintaining explicit
queues for each kind of operation (data retrieval, message sends and receives, data processing) and
switching between queued operations as required. Pending asynchronous I/O and communication
operations in the operation queues are polled and, upon their completion, new asynchronous oper-
ations are initiated when more work is expected and memory bu�er space is available. Data chunks
are therefore retrieved and processed in a pipelined fashion.

10

3 Customizing ADR: Front-end

ADR has a set of utility classes, which provide methods to connect to the ADR front-end, to inquire
into ADR to get information about datasets and user-de�ned methods, and to create and submit
ADR queries.

We �rst brie
y describe some of the ADR classes and types that are passed as parameters to or
returned from the methods in ADR utility classes for front-end, which are described in the following
sections. More detailed descriptions of these classes can be found in Appendix A.

� A set of data types for various kinds of identi�cation numbers, currently all are of type
unsigned int:

{ T2 FrontEndError: Error no returned from a call to methods to connect to ADR front-
end.

{ T2 DSID: Dataset id

{ T2 IteratorID: Iterator id

{ T2 IndexID: Index id

� T2 Box: A hyper-box in some multi-dimensional attribute space (e.g., (10,20,50)-(40,100,60));
it consists of two points, a low point and a high point, which specify the lower and upper
bounds of the hyper-rectangle, respectively.

� T2 UsrArg: A class used to represent application-dependent arguments, stored as an array of
bytes. The user code would actually use either one of the following classes derived from class
T2 UsrArg:

{ T2 UsrArgWriter: A class that allows data to be written into its bu�er.

{ T2 UsrArgReader: A class that allows data to be read from its bu�er.

� T2 FEDatasetInquiryResults This class encapsulates the results returned from a call to
inquiry functions for dataset information.

� T2 FEFunctionInquiryResults This class encapsulates the results returned from a call to
inquiry functions for information about user-de�ned methods.

3.1 Connecting to ADR Front-end

The T2 FrontEnd class provides support to connect to the ADR front-end. It also provides
methods to query ADR and create and submit ADR queries. The de�nition of T2 FrontEnd is
shown in Figure 3:

� connectT2FrontEndByHostname is used to connect to the ADR front-end using the hostname
of the machine ADR front-end is running on. It returns true on success, false on error, and
sets the error value to the error no returned by the socket library.

{ hostname is the name of the ADR front-end host.

{ port is the port number, which ADR front-end is listening to for client connections.

� connectT2FrontEndByAddress is used to connect to the ADR front-end using the IP address
of the host ADR front-end is running on. It returns true on success, false on error, and
sets the error value to error no returned by the socket library.

11

{ ipaddr is the IP address of the ADR front-end host.

{ port is the port id, which ADR front-end is listening to for connections.

� disconnectT2FrontEnd closes connection to the ADR front-end.

� getErrorVal returns the error no.

� errorValToString converts error no to a short description of the error.

� getNumberBackEndNodes returns the number of ADR back-end processes.

� getT2FrontEndEndianess returns the endian representation of ADR front-end host machine.
It returns

{ T2 BigEndian if ADR front-end is running on a big-endian machine,

{ T2 LittleEndian if ADR front-end is running on a little-endian machine,

{ T2 UnknownEndian if the endian representation of the machine cannot be determined.

� getMyEndianess returns the endian representation of the machine which the calling process
is running on.

� submitQBatch is used to submit a query batch, which consists of one or more ADR queries, to
the ADR front-end. It returns true on success (i.e. if query batch is submitted successfully),
false otherwise.

{ qbatch is the query batch to be submitted to ADR front-end (see Section 3.3 for a
description of T2 QBatch.)

3.2 Querying ADR Front-end

The T2 FrontEnd class also provides methods to query ADR front-end for information about
datasets and user-de�ned methods:

� inquireDatasetExactMatch is used to retrieve information about datasets. It takes the name
of the dataset as an argument, and retrieves dataset information for the dataset, whose name
matches the argument. It returns true if no error occurs, false otherwise.

{ dataset name The name of the dataset for which the information is to be retrieved.

{ fields encodes which �elds of dataset information should be returned as a result of the
inquiry. The meta-data for datasets contains the following �eld identi�ers, which can be
set in the fields parameter:

� dataset datasetid field should be set to retrieve the id of the dataset as one of
the �elds of the result of the inquiry.

� dataset datasetname field should be set to retrieve the name of the dataset.

� dataset datasetdescription field should be set to retrieve a short description
of the dataset.

� dataset blobobj field should be set to retrieve the user-de�ned binary meta-data
object. User-de�ned binary meta-data object contains application speci�c informa-
tion that can be processed by the application client/front-end. For example, it may
contain a thumbnail image for an image processing application.

12

#include "t2_frontend.h"

class T2_FrontEnd f
public:

// T2_FrontEnd constructor

T2_FrontEnd();

// connect to/disconnect from ADR front-end process

// return true if succeed, false otherwise;

// when return false, sets errno to the errval returned by socket library

bool connectT2FrontEndByHostname(const char* hostname, short port);

bool connectT2FrontEndByAddress(const char* ipaddr, short port);

void disconnectT2FrontEnd();

// get error value

T2_FrontEndError getErrorVal() const;

// convert error value to string, usually for printout

static const char* errorValToString(T2_FrontEndError e);

const char* errorValToString() const;

// number of back-end nodes

u_int getNumberBackEndNodes() const;

// get endianess of the ADR front-end machine and the local machine

int getT2FrontEndEndianess() const;

int getMyEndianess() const;

// submit a query batch

bool submitQBatch(T2_QBatch& qbatch);

// inquiry methods for datasets and functions for exact matching

// or regular expression matching;

bool inquireDatasetExactMatch(const char* dataset_name, const int fields,

const size_t max_totblobsize,

T2_FEDatasetInquiryResults& results);

bool inquireDatasetRegExp(const char* pattern, const int fields,

const size_t max_totblobsize,

T2_FEDatasetInquiryResults& results);

bool inquireFunctionExactMatch(const char* function_name,

const T2_UDFType ftype, const int fields,

T2_FEFunctionInquiryResults& results);

bool inquireFunctionRegExp(const char* pattern, const T2_UDFType ftype,

const int fields,

T2_FEFunctionInquiryResults& results);

g;

Figure 3: The ADR utility class to connect to ADR front-end, inquire into ADR for information
about datasets, user-de�ned methods, and submit queries.

13

� dataset blobsize field should be set to retrieve the size of the user-de�ned binary
meta-data object.

� dataset iteratorname field should be set to retrieve list of the names of the
iterators for the dataset. Note that iterator ids are local to the dataset and the id
of an iterator is its position in the list.

� dataset indexname field should be set to retrieve the name of the dataset index.

� dataset indexid field should be set to retrieve the id of the index. The index ids
are global and unique, because multiple datasets may use the same index method.

Setting multiple �elds in fields parameter is achieved by a bitwise-OR of �eld identi-
�ers. For example, if fields is set as follows

fields = dataset datasetid field j dataset indexid field

Then, only the dataset id and the index id are returned as the result of the inquiry.

{ max totblobsize limits the size of user-de�ned binary meta-data object returned in the
result. If the size of the binary object stored in ADR is larger than max totblobsize,
the binary object is truncated.

{ results holds the results of the query. Note that if there are multiple datasets that
satisfy the query, then results parameter holds an array of results, each entry of which
is the query result for each of the datasets.

� inquireDatasetRegExp is used to retrieve information about datasets. The main di�erence of
this method from inquireDatasetExactMatch is that it takes a regular expression (pattern)
instead of the name of the dataset. It returns true if no error occurs, false otherwise.

� inquireFunctionExactMatch is used to retrieve information about user-de�ned constructor
functions (see Section 4) for various services.

{ function name is the name of the constructor function, for which the information is to
be retrieved.

{ ftype is the type of the function. The valid values are

� T2 UDF Unknown to retrieve information about all constructor functions,

� T2 UDF AccMeta to retrieve information about constructor function for accumulator
meta-data object,

� T2 UDF Aggregation to retrieve information about constructor function for aggre-
gation object,

� T2 UDF Projection to retrieve information about constructor function for projec-
tion object.

{ fields encodes which �elds of function information should be returned as a result of the
inquiry. The meta-data for constructor functions contains the following �eld identi�ers
that can be set in the fields parameter:

� function id field should be set to retrieve the id of the function.

� function name field should be set to retrieve the name of the function.

� function description field should be set to retrieve a short description of the
function.

14

Setting multiple �elds in fields parameter is achieved by a bitwise-OR of �eld identi-
�ers. For example, if fields is set as follows

fields = function id field j function name field

Then, only the id and the name of the constructor function are returned as the result of
the query.

{ results holds the results of the inquiry. Note that if there are more than one function
that satisfy the query, then results parameter holds an array of results, each entry of
which is the query result for each of the functions.

� inquireFunctionRegExp is used to retrieve information about user-de�ned constructor func-
tions (see Section 4) for various services.
The main di�erence of this method from inquireFunctionExactMatch is that it takes a reg-
ular expression as a parameter (pattern), instead of the name of the function. It returns
true on success, false otherwise.

3.3 Formulating an ADR Query

ADR provides utility classes that contain methods to create ADR queries and query batches. An
ADR query consists of:

� a reference to an accumulator data structure,

� a reference to aggregation function,

� references to one or more input datasets, and for each dataset,

{ a reference to dataset iterator function,

{ a reference to index,

{ a reference to projection function,

{ a range query, de�ned in the underlying multi-dimensional attribute space of the dataset.

� a speci�cation of how to handle the output (e.g., send the data to the client via sockets).

The T2 QSpec class provides methods to create an ADR query. Its de�nition is shown in Figure 4:

� getAccID is used to assign/retrieve the accumulator meta-data object id.

� getAccConstructorArg is used to specify user de�ned argument for the constructor function
for the accumulator meta-data object. The de�nition of T2 UsrArg is given in Section A.

� getAggrID is used to assign/retrieve the aggregation function id.

� getAggrConstructorArg is used to specify user de�ned argument for the constructor function
for the aggregation object.

� setNumberDatasets is used to specify the number of input datasets accessed in the query.

� getNumberDatasets returns the number of datasets speci�ed in the query.

15

#include "t2_frontend.h"

class T2_QSpec f
public:

T2_QSpec(const u_int num_input_datasets = 0);

u_int& getAccID();

T2_UsrArg& getAccConstructorArg();

u_int& getAggrID();

T2_UsrArg& getAggrConstructorArg();

void setNumberDatasets(u_int num_input_datasets);

u_int getNumberDatasets() const;

T2_QSpecDataset& getDatasetSpec(u_int dataset_id);

T2_QSpecOutput& getOutputSpec();

g;

Figure 4: The ADR utility class to create a query.

� getDatasetSpec is used to specify query parameters for the dataset, the id of which is given
in dataset id. See Figure 5 for the de�nition of T2 QSpecDataset class.

� getOutputSpec is used to specify how the output should be handled. See Figure 6 for the
de�nition of T2 QSpecOutput class.

The T2 QSpecDataset class provides methods to specify query parameters for datasets accessed
in the ADR query. The de�nition of this class is shown in Figure 5:

� getDatasetID is used to specify the id of the dataset.

� getIteratorID is used to specify the id of the dataset iterator.

� getIndexID is used to specify the id of the index.

� getProjID is used to specify the id of the projection method.

� getIndexConstructorArg is used to specify the user-de�ned argument to the constructor
function for the index object.

� getProjConstructorArg is used to specify the user-de�ned argument to the constructor
function for the projection function object.

� getQueryBox is used to specify the range query. The range query is a multi-dimensional box
of type T2 Box (see Appendix A for the de�nition of T2 Box).

The T2 QSpecOutput provides methods to specify how the output should be handled. Its de�-
nition is shown in Figure 6:

� setOutputHandleType is used to set the output handling type. The valid values for the input
parameter type are:

16

#include "t2_frontend.h"

class T2_QSpecDataset f
public:

T2_QSpecDataset();

T2_DSID& getDatasetID();

T2_IteratorID& getIteratorID();

T2_IndexID& getIndexID();

T2_UsrArg& getIndexConstructorArg();

u_int& getProjID();

T2_UsrArg& getProjConstructorArg();

T2_Box& getQueryBox();

g;

Figure 5: The ADR utility class to specify query parameters for a dataset in an ADR query.

{ t2 oBFile to write the output into a binary �le.

{ t2 oSocket to send the result from back-end nodes to the application client via UNIX
sockets.

{ t2 oMC to send the results from back-end nodes to the application client via Meta-
Chaos library. This option can be useful when the client is a parallel program. Meta-
Chaos library provides functions to exchange distributed data structures between two
parallel programs. The Meta-Chaos interface for ADR will be included in this
document in the future.

� enableT2Protocol is used to enable ADR protocol when sending the output to the client
through sockets.

� disableT2Protocol is used to disable ADR protocol so that application client can use only
the application speci�c header information.

� useT2Protocol returns true if ADR protocol is enabled. It returns false otherwise.

� setHostName is used to specify the name of the machine the client code is running on. If
output handling type is speci�ed as t2 oSocket, then ADR back-end nodes use that name
to open socket connections to send output data.

� setPortNumber is used to specify the port, which the client is listening for connections from
the back-end nodes.

� setFilePrefix is used to specify the pre�x for �les to be created when the output is written
to binary �les. Each processor creates a �le for each tile of the accumulator data structure.
The pre�x value is augmented by processor no, and the tile no.

� setClient is used to specify the user-de�ned name of the client when Meta-Chaos library
is used for sending the data. The client name is used by Meta-Chaos libraries to initiate
connections with the client program. The client should also use Meta-Chaos library calls to
accept Meta-Chaos connections from ADR back-end nodes.

17

� setNumberClients is used to specify the number of processes running in the client program.

� setOffBandTag is used to specify the message tag for o�-band messages to be exchanged
between ADR back-end and the client.

� setDataTag is used to specify the message tag for sending data values from ADR back-end
to the client using Meta-Chaos library.

ADR allows multiple queries to be submitted in a single query batch. The queries in a batch are
processed concurrently in the ADR back-end. The T2 QBatch provides methods to create query
batches. Its de�nition is shown in Figure 7:

� setNumberQueries sets the number of queries in the query batch to the value speci�ed in
num of queries. It e�ectively resizes the query batch and throws away all the existing queries
in the current batch.

� getNumberQueries returns the number of queries in a query batch.

� getQuerySpec returns a reference to the query object speci�ed by query id in the query
batch. The referenced query object can be used to create an ADR query using the query
speci�cation classes and methods presented in the previous sections.

A query batch is submitted from the application client/front-end to the ADR front-end using
submitQBatch method of T2 FrontEnd class (see Section 3.1).

18

#include "t2_frontend.h"

enum T2_OutputHandleType f
t2_oUnknown = 0, // unknown

t2_oBFile, // output to a binary file

t2_oSocket, // send to client over sockets

t2_oMC // send to client using Meta-Chaos library

g;

class T2_QSpecOutput f
public:

T2_QSpecOutput();

// accessing output handle type

T2_OutputHandleType setOutputHandleType(const T2_OutputHandleType& type);

// enabling/disabling T2 protocol (default is enabled)

void enableT2Protocol();

void disableT2Protocol();

bool useT2Protocol() const;

// access methods for outputing to a socket

const char* setHostName(const char* hostname);

int setPortNumber(int port_id);

// access methods for outputing to a binary file

const char* setFilePrefix(const char* file_prefix);

// access methods for outputing through meta-chaos

const char* setClient(const char* client);

u_int setNumberClients(u_int num_of_clients);

int setOffBandTag(int off_tag);

int setDataTag(int data_tag);

g;

Figure 6: The ADR utility class to create speci�cation of the output in an ADR query.

19

#include "t2_frontend.h"

class T2_QBatch f
public:

T2_QBatch(u_int num_of_queries = 0);

// access methods

u_int getNumberQueries() const;

T2_QSpec& getQuerySpec(u_int query_id);

// resize the batch and throw away all the existing query specs

void setNumberQueries(u_int num_of_queries);

g;

Figure 7: The ADR utility class to create a query batch.

20

4 Customizing ADR: Backend Services

In this section we describe the interface for customizing ADR backend services. The current imple-
mentation of ADR services is based on C++ classes. Customization of these services relies on C++
class inheritance and implementation of virtual functions. That is user de�ned indexes, accumula-
tor objects, projection and aggregation operations are implemented as classes and methods derived
from appropriate base classes provided by ADR. Users are also required to implement a constructor
function for each derived class because a user-de�ned object cannot be instantiated by invoking
the constructor of its base class. A constructor function receives arguments stored in the ADR
query, and is expected to create an object of the user-de�ned class. The user-de�ned constructor
functions for classes derived from the same ADR base class are all stored in a constructor function
list, accessed by ADR during query processing. The location of a constructor function in the list
de�nes the id of the corresponding user-de�ned derived class. An ADR query speci�es the ids of
user-de�ned objects to be used during query processing. Note that ADR infrastructure should be
recompiled every time a new user-de�ned class is added.

In the following sections we describe the de�nitions of base classes and their virtual methods
for implementing customized ADR services.

4.1 Overview of ADR Utility Classes

In this section we brie
y describe some of the ADR utility classes that are passed as parameters to
the methods in ADR base classes. More detailed descriptions of these utility classes can be found
in Appendix A.

� A set of data types for various kinds of identi�cation numbers, currently all are of type
unsigned int:

{ T2 ProcID: Processor id

{ T2 DSID: Dataset id

{ T2 IteratorID: Iterator id

{ T2 IndexID: Index id

{ T2 ChunkID: Chunk id used in ADR indexing service

{ T2 UDFRet: Error value returned from a user-de�ned method in a derived class. Cur-
rently, there are only two values; T2 UDFRet OK indicates that the method returned
successfully, and T2 UDFRet ERROR indicates that an error occured.

� T2 System: An object that provides system information such as the number of processors
and the local processor id.

� T2 Point: A point in some multi-dimensional attribute space (e.g., (3, 50, 29) in a 3-
dimensional space); each coordinate of the point is a stored as a float.

� T2 Box: A hyper-box in some multi-dimensional attribute space (e.g., (10,20,50)-(40,100,60));
it consists of two points, a low point and a high point, which specify the lower and upper
bounds of the hyper-rectangle, respectively.

� T2 Region: an unordered list of T2 Box'es in some multi-dimensional attribute space (e.g.,
f(1,5)-(2,7), (10,4)-(11,5)g represents the following points: (1,5), (1,6), (1,7), (2,5), (2,6),
(2,7), (10,4), (10,5), (11,4), (11,5))

21

� T2 Cluster: A set of (void*, size t) pairs, each of which represents a pointer to a con-
tiguous data block and its size.

� T2 UsrArg: A class used to represent application-dependent arguments, stored as an array of
bytes. This class is usually used in user-de�ned constructor functions of derived classes; the
callee that receives an object of this class is responsible for parsing the arguments correctly.
The user code would actually see either one of the following classes associated with class
T2 UsrArg:

{ T2 UsrArgWriter: A class that allows data to be written into its bu�er.

{ T2 UsrArgReader: A class that allows data to be read from its bu�er.

� T2 Array<Type>: A template for an array of objects of class Type.

� T2 VArray<Type>: A template for a variable-size array of objects of class Type. The size of
the array expands as new objects of class Type are appended.

� T2 BlockRequest: An object to store a file id, an offset and a size for a data chunk.

� T2 AccMsgBuffer: A bu�er for communicating the accumulator elements during the global
combine phase. It consists of a void* pointer and a size.

� T2 OutputBuffer: A bu�er that the �nal output uses for
attening out its data into contigu-
ous space when necessary. It consists of a void* pointer and a size.

� T2 OutputDataPtrList: An ordered list of pairs of char* pointers and data sizes.

� T2 ClusterInfoList: It contains information for a list of input data chunks of all datasets
accessed by a given query. Each entry corresponds to a single chunk.

� T2 ClusterAuxInfoWriter: allows the user-de�ned meta-data for a chunk, retrieved during
index search, to be written into a bu�er.

� T2 ClusterAuxInfoRead is used to read the user-de�ned meta-data for a chunk from the
bu�er encapsulated by T2 ClusterAuxInfoWriter.

4.2 Indexing Service

An index is used to e�ciently �nd all data chunks that intersect with a given query box. ADR
provides a base class (T2 Index) for implementing user-de�ned index methods. The de�nition of
the base class and the constructor function are shown in Figure 8:

� fetchInit This method initiates the search. ADR �rst calls this method, before subsequent
calls to fetch method. This method may create a state for the current query that can be
used in calls to fetch to retrieve meta-data information for data chunks that intersect with
the query box. fetchInit method returns T2 UDFRet OK on success or T2 UDFRet ERROR if
there is an error.

{ system This input parameter can be used to query system information such as number
of processors and local processor id.

{ query box This input parameter holds the hyper-box of the range query submitted by
the application. The hyper-box is de�ned in the input attribute space.

22

#include "t2_index.h"

class T2_Index f
public:

virtual T2_UDFRet fetchInit(const T2_System& system,

const T2_Box& query_box);

virtual T2_UDFRet fetch(const T2_System& system, const T2_Box& query_box,

bool& end_of_data, T2_Box& chunk_mbr,

T2_ClusterAuxInfoWriter& chunk_meta,

T2_VArray<T2_BlockRequest>& chunk_info);

g;

// Constructor function for T2_Index object

typedef T2_UDFRet

(T2_IndexConstructor)(const T2_System& system, T2_UsrArgReader& user_arg,

const T2_Array<int>& index_fid, T2_Index*& index_obj);

Figure 8: The ADR base class for indexing service.

� fetch This method retrieves the meta-data information about the data chunks that intersect
with the query bounding box. The system and query box arguments are also passed to fetch
so that if no state is created in fetchInit (i.e., it is an empty function), values of system and
query box need not be saved in fetchInit. fetch method returns T2 UDFRet OK on success
or T2 UDFRet ERROR if there is an error.

{ end of data This output parameter is used to mark the end of search operation. It
should be set to true in fetch if there are more entries to be returned from the search.
It should be set to false if no more entries return from a call to fetch.

{ chunk mbr This output parameter holds the minimum bounding rectangle of the data
chunk in the input attribute space. Note that each data item in a multi-dimensional
dataset is associated with point in the corresponding multi-dimensional attribute space.
A chunk composed of such data items therefore is associated with a minimum bounding
rectangle in the input attribute space.

{ chunk meta This output parameter holds additional user-de�ned meta-data information
associated with a chunk.

{ chunk info This output parameter holds a list of block requests (T2 BlockRequest) for
a chunk. A block is a physically contiguous segment in a data �le. A chunk may be
composed of one or more such segments from one or more data �les. A block request
(see Appendix A for de�nition of T2 BlockRequest) has three �elds, which correspond
to the logical �le id (as is assigned in the dataset catalogs created when dataset is loaded
into ADR), an o�set into the corresponding data �le, and the size of the �le block.

The user-de�ned object derived from T2 Index is instantiated in the constructor function imple-
mented by the application developer. The signature of the constructor function T2 IndexConstructor
is given in Figure 8. The constructor function returns T2 UDFRet OK on success or T2 UDFRet ERROR

on error:

� system This input parameter can be used to query the system information such as number
of nodes and local node id.

23

#include "t2_prj.h"

class T2_ProjectFuncObj f
public:

virtual T2_UDFRet project(const T2_System& system,

const T2_Box& query_box,

const T2_Region& accum_rgn,

const T2_Point& input_coord,

bool& succeed, T2_Region& output_rgn);

virtual u_int getNumberInputDimensions();

virtual u_int getNumberOutputDimensions();

virtual T2_UDFRet projectBox(const T2_System& system, const T2_Box& inbox,

bool& succeed, T2_Box& outbox);

g;

// Constructor function for T2_ProjectFuncObj object

typedef T2_UDFRet

(T2_ProjectFuncConstructor)(const T2_System& system, T2_UsrArgReader& user_arg,

T2_ProjectFuncObj*& proj_obj);

Figure 9: The ADR base class for attribute space service.

� user arg This input parameter holds the user-de�ned argument to the constructor function.
The value of user arg is passed from application to the constructor function via the ADR
query.

� index fid This input parameter is an array of physical �le descriptors of the local index �les.
The index �les are opened by ADR so that constructor function can access the contents of
the �les by UNIX read call.

� index obj This output parameter should point to the instance of the user-de�ned index
object instantiated in the constructor function.

4.3 Attribute Space Service

This service provides a base class for implementing user-de�ned projection operations. Attribute
spaces of input and output datasets in an application are currently de�ned only by the number of
dimensions of each attribute space. A projection function is used to project points in the input
attribute space to points in the output attribute space.

A user-de�ned attribute space object and projection function are implemented by a class derived
from the T2 ProjectFuncObj base class. Figure 9 shows the de�nition of the base class and its
constructor function. The application developer is required to implement the following virtual
methods:

� project This method computes the projection of a point in input attribute space to one
or more points in the output attribute space. The projected points are de�ned by a region

(of type T2 Region), which is a list of hyper-boxes, in the output attribute space. project

returns T2 UDFRet OK on success or T2 UDFRet ERROR on error.

24

{ system This input parameter can be used to query system information such as the
number of processors and local processor id.

{ query box This input parameter holds the hyper-box of the range query submitted by
the application. The hyper-box is de�ned in the input attribute space.

{ accum rgn This input parameter is a list of hyper-boxes, de�ned in the output attribute
space, for the current accumulator tile. An accumulator may be a sparse data structure,
and its pieces may be sparsely located in the output attribute space. Each hyper-box in
accum rgn corresponds to the minimum bounding rectangle of each such accumulator
piece in the current accumulator tile.

{ input coord This input parameter holds the coordinates of input point to be projected.
The coordinates are de�ned in the input attribute space.

{ output rgn This output parameter is the list of boxes and points the input point
(input coord) projects to.

{ succeed This output parameter is set to true if the coordinates of the input point is
inside query box and some of output points it projects to fall inside accum rgn. It is
set to false if the input point is not inside query box and/or all of the output points
it projects to fall outside accum rgn. In that case the value of output rgn is unde�ned.

� getNumberInputDimensions This method returns the number of dimensions in the input
attribute space.

� getNumberOutputDimensions This method returns the number of dimensions in the output
attribute space.

� projectBox This method projects a hyper-box in the input attribute space to a hyper-box
in the output attribute space. ADR provides a default implementation for this method using
the project method. The default implementation uses the end points of the input box to
compute the end points of the output box. The application developer is required to provide
an implementation if the end points of the input box does not project to the end points of
the output box.

{ inbox This input parameter holds the coordinates of the input box in the input attribute
space.

{ outbox This output parameter holds the coordinates of the output box in the output
attribute space.

The constructor function T2 ProjectFuncConstructor is used by ADR to create an instance
of user-de�ned class object. Application developer should implement a constructor function con-
forming to the signature de�nition given in Figure 9. The constructor function should return
T2 UDFRet OK on success or T2 UDFRet ERROR on error:

� system This input parameter can be used to query the system information such as the number
of nodes and the local node id.

� user arg This input parameter holds the user-de�ned argument to the constructor function.
The value of user arg is passed from application to the constructor function in the ADR
query.

� proj obj This output parameter points to the instance of the user-de�ned class instantiated
in the constructor function.

25

#include "t2_dataset.h"

class T2_Dataset f
public:

virtual T2_UDFRet genIterator(const T2_System& system,

T2_IteratorID iterator_id,

const T2_Cluster& chunk,

T2_ClusterAuxInfoReader& chunk_meta,

const T2_Box& chunk_mbr,

const T2_Box& query_box,

const T2_Region& accum_rgn,

T2_ProjectFuncObj& proj_obj,

T2_Iterator*& iter_obj);

g;

// Base class for dataset iterators.

class T2_Iterator f
public:

virtual T2_UDFRet getNextElement(const T2_System& system,

const T2_Cluster& chunk,

bool& end_of_data,

const void*& input_data,

T2_Point& input_coord);

g;

// Constructor function for dataset object

typedef T2_UDFRet

(T2_DatasetConstructor)(const T2_System& system, const T2_Array<int>& data_fid,

const T2_Array<int>& meta_fid, T2_Dataset*& dataset_obj);

Figure 10: The ADR base classes for dataset service.

4.4 Dataset Service

The major customization task to be carried out by the application developer for the dataset service
is to de�ne one or more iterators for the dataset. An iterator is used to iterate through the
data elements of a data chunk retrieved during query processing. The user-de�ned iterator should
understand the structure of data chunks, and should output the value and the coordinates of each
data element in the data chunk. ADR provides two base classes, T2 Dataset and T2 Iterator,
for application developer to implement iterators for a dataset. The de�nitions of these classes are
given in Figure 10.

The T2 Dataset class has to be customized to instantiate an iterator object (derived from
T2 Iterator) for each input dataset accessed during query processing:

� genIterator This method instantiates a user-de�ned iterator object for a chunk. It is called
every time a chunk is retrieved into the memory from the local disks and is ready to be
processed. genIterator returns T2 UDFRet OK on success, or T2 UDFRet ERROR on error.

{ system This input parameter can be used to query system information such as number

26

of processors and local processor id.

{ iterator id This input parameter contains the id of the iterator to be instantiated. A
dataset is allowed to have more than one iterator. The iterator id is a �eld of the ADR
query submitted by the application client/front-end.

{ chunk This input parameter contains the data chunk retrieved from a data �le stored
on a local disk. Note that ADR uses customized indexing service (see Section 4.2) to
generate the list of data chunks to be retrieved for processing the query.

{ chunk meta This input parameter holds additional user-de�ned meta-data information
associated with a chunk. This meta-data is retrieved in indexing service (see Section 4.2).

{ chunk mbr This input parameter holds the minimum bounding rectangle of the retrieved
data chunk.

{ query box This input parameter holds the hyper-box of the range query submitted by
the application. The hyper-box is de�ned in the input attribute space. The query box
is created by the application client/front-end to de�ne the range query and is passed to
dataset service via the ADR query.

{ accum rgn This input parameter is a list of hyper-boxes, de�ned in output attribute
space, for the current accumulator tile. An accumulator may be a sparse data structure,
and its pieces may be sparsely located in the output attribute space. Each hyper-box in
accum rgn corresponds to the minimum bounding rectangle of each such accumulator
piece in the current accumulator tile.

{ proj obj This input parameter is a reference to the customized projection object in-
stantiated by the indexing service (see Section 4.2).

{ iter obj This output parameter points to the user-de�ned iterator object instantiated
by a call to genIterator method.

The proj obj, accum rgn, and query box parameters can be used to clip a data chunk. Using
these parameters, the iterator can quickly throw away the set of data elements that do not intersect
with the query box and the accumulator bounding box, and therefore that need not be processed.
The application developer has to implement a derived class of T2 Iterator base class for a user-
de�ned iterator:

� getNextElement This method is used to iterate through the elements of a data chunk. It
outputs the data element, and its coordinates in the input attribute space. This method is
called by ADR until no more elements are output. getNextElement returns T2 UDFRet OK

on success, or T2 UDFRet ERROR on error.

{ end of data This output parameter is used to mark the end of iteration. It should be
set to true in the method if there are data elements to be output, and should be set to
false otherwise.

{ input data This output parameter is a pointer to the input data element extracted
from the data chunk. The memory space to store the data element may be allocated in
the method. However, if the data elements are regularly laid out in the data chunk, the
input data can simply point to a location in the data chunk. Thus, to prevent a memory
deallocation error, ADR does not delete the object pointed by a pointer returned from
a user-de�ned method. As a result, if memory space is allocated for a data element
extracted from the data chunk, it must be deallocated in the destructor method of the
iterator object.

27

{ input coord This output parameter holds the coordinates of the point, with which the
input data element is associated, in the input attribute space.

The genIteratormethod of T2 Datasetmay create a state when the iterator object is instanti-
ated. The state information can be passed to the iterator object, and can be used to iterate through
data elements at each call to the getNextElement method. There may be cases where no state
information needs to be created. In those cases, the getNextElement method can use the system
and chunk parameters (which are the same as corresponding parameters passed to genIterator

method) to iterate through data elements.
The user-de�ned dataset object is instantiated in the constructor function implemented by

the application developer. The signature of the constructor function is shown in Figure 10. The
constructor function returns T2 UDFRet OK on success or T2 UDFRet ERROR on error.

� system This input parameter can be used to query system information such as number of
processors and local processor id.

� data fid This input parameter is an array of �le descriptors for the data �les of the dataset,
stored on local disks.

� meta fid This input parameter is an array of �le descriptors for meta-data �les on local disks.

� dataset obj This output parameter is a pointer to the instance of the user-de�ned dataset
object instantiated in the constructor function.

The iterator object may need the following information to function correctly: how many ele-
ments are there in a chunk?, what is the size of each element in bytes?, what is the data structure
of an element and/or a data chunk? This information can be stored in di�erent ways; along with
each chunk, hard-coded into the dataset/iterator object, as a header information in data �les, or in
separate meta-data �les. The data fid and meta fid parameters can be used to access data and
meta-data �les to extract the information needed by the dataset/iterator objects.

4.5 Data Aggregation Service

This service provides base classes to create and manipulate accumulator data structures, implement
aggregation operations, and to convert accumulator values to the �nal output values.

4.5.1 Accumulator

An accumulator is a user-de�ned data structure to hold intermediate results during query process-
ing. For example, an accumulator can be used to keep a running sum to compute an average as
the output. Each accumulator is associated with a constructor function and two objects:

� Accumulator meta-data object . This object holds the accumulator meta-data. It also provides
methods to strip mine the accumulator, i.e., partition the accumulator into tiles, so that each
accumulator tile �ts into the memory reserved for the accumulator on each processor.

� Accumulator object . This object encapsulates the data structures for an accumulator tile. It
also provides methods to access individual accumulator elements.

� Constructor function for accumulator meta-data object . This function is used to instantiate
an instance of user-de�ne accumulator meta-data object.

28

An ADR query speci�es an accumulator, and ADR invokes the constructor function, with
arguments from the query speci�cation, to create the accumulator meta-data object. The query
planning service uses the methods of accumulator meta-data object to strip mine the accumulator so
that each accumulator tile �ts into the memory. Query execution service iterates through the query
processing phases (see Section 2.5.2) one tile at a time, until all of the tiles have been processed. At
the beginning of each iteration, ADR uses accumulator meta-data object methods to instantiate an
accumulator object, which corresponds to the current tile. The ADR base classes for accumulator
are shown in Figure 11.

The T2 AccMetaObj is the base class for accumulator meta-data objects. It provides the
following virtual methods to be implemented by the application developer:

� stripMine This method is used to partition an accumulator into a set of tiles, so that each
tile �ts into the memory. It returns T2 UDFRet OK on success or T2 UDFRet ERROR if there is
an error.

{ query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

{ mem size This input parameter holds the amount of the memory (in bytes) available for
an accumulator tile. The size of each accumulator tile should be less than or equal to
the value of mem size.

{ chunk info list This input parameter is a list of meta-data (e.g., minimum bounding
rectangle) for data chunks that intersect with the query. The chunk meta-data can be
used to partition accumulator more e�ciently. The coordinates of a minimum bounding
rectangle (MBR) stored in chunk info list are de�ned in the output attribute space,
not in the input attribute space. The MBR information for data chunks is generated
using user-de�ned index (see Section 4.2) in the indexing service. The coordinates of each
MBR is then projected to the output attribute space using the user-de�ned projection
methods (projectBox) of the attribute space service (see Section 4.3).

{ accum rgn list This output parameter is a list of regions in the output attribute space.
Each accumulator tile may be sparse data structure, and its pieces may be sparsely
located in the output attribute space. Hence, each entry of accum rgn list is a list of
bounding boxes of accumulator pieces in the corresponding accumulator tile.

� allocAcc This method is used to instantiate a user-de�ned accumulator object for the current
accumulator tile. It returns T2 UDFRet OK on success or T2 UDFRet ERROR if there is an error.

{ query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

{ tile id This input parameter is the id of the accumulator tile to be created. If there
are N accumulator tiles, the value of tile id runs from 0 to N � 1, and is consistent
with the order of entries in accum rgn list. The accumulator meta-data object may
store internal meta-data for each accumulator tile, the tile id can be used to access
the appropriate meta-data for the current accumulator tile.

{ accum rgn This input parameter holds the MBR of the accumulator tile to be instanti-
ated. The value of accum rgn is calculated in stripMine and stored in the accum rgn list

array.

29

#include "t2_acc.h"

// Accumulator meta-data object

class T2_AccMetaObj f
public:

virtual T2_UDFRet stripMine(const T2_QueryInfo& query_info, size_t mem_size,

const T2_ClusterInfoList& chunk_info_list,

T2_VArray<T2_Region>& accum_rgn_list);

virtual T2_UDFRet allocAcc(const T2_QueryInfo& query_info,

T2_Iteration tile_id, const T2_Region& accum_rgn,

T2_Accumulator*& acc_obj);

g;

// Accumulator definition

class T2_Accumulator f
public:

virtual T2_UDFRet navigateAll(const T2_QueryInfo& query_info,

T2_AccIterator*& accIter_obj);

virtual T2_UDFRet navigate(const T2_QueryInfo& query_info,

T2_IteratorID accIter_id,

const T2_Region& output_rgn,

T2_AccIterator*& accIter_obj);

g;

// Accumulator iterator

class T2_AccIterator f
public:

virtual T2_UDFRet getNextElement(const T2_QueryInfo& query_info,

T2_Accumulator& acc_obj,

bool& end_of_data,

void*& accum_data);

g;

// Accumulator constructor function

typedef T2_UDFRet

(T2_AccMetaConstructor) (const T2_QueryInfo& query_info,

const T2_Box& output_box,

T2_UsrArgReader& user_arg,

T2_AccMetaObj*& accMeta_obj);

Figure 11: The ADR base classes to implement an accumulator.

30

{ acc obj This output parameter points to the instantiated accumulator data structure.

The user-de�ned accumulator objects are derived from T2 Accumulator class. This class
encapsulates the data structures of an accumulator tile, and provides methods to construct iterators
to access accumulator elements.

� navigateAll This method constructs an accumulator iterator object that can be used to
access all the elements of the accumulator tile. This iterator is used to initialize accumulator
elements using the aifElem method of T2 AggregateFuncObj, described in the next section.
It returns T2 UDFRet OK on success or T2 UDFRet ERROR if there is an error.

{ query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

{ accIter obj This output parameter points to the accumulator object instantiated in
this method.

� navigate This method constructs an accumulator iterator object that can be used to access
accumulator elements whose coordinates fall inside the region de�ned by output rgn. It
returns T2 UDFRet OK on success or T2 UDFRet ERROR if there is an error.

{ query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

{ accIter id This input parameter holds the id of the iterator. An accumulator object
is allowed to have more than one iterator. The ADR query speci�es which iterator is to
be used for the given query.

{ output rgn This input parameter can be used to construct an iterator that will access
only the accumulator elements whose coordinates fall inside this region. The value of
the output rgn is computed in project method of the T2 ProjectFuncObj in attribute
space service (see Section 4.3). It corresponds to the region in output attribute space to
which an input point projects.

{ accIter obj This output parameter points to the accumulator object instantiated in
this method.

ADR uses the constructor function implemented by the application developer, to instantiate
an instance of accumulator meta-data object. The signature of the constructor function is shown
in Figure 11. The constructor function returns T2 UDFRet OK on success or T2 UDFRet ERROR on
error.

� query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

� user arg This input parameter is the user-de�ned argument to the constructor function. It
is passed from the application to the constructor function via the ADR query.

� accMeta obj This output parameter points to the user-de�ned accumulator meta-data object
instantiated in the constructor function.

31

4.5.2 Aggregation Operations

The aggregation functions are responsible for carrying out user-de�ned aggregation operations.
ADR computes the output in four steps (see Section 2.5.2):

� Initialization. Once the accumulator object for the current accumulator tile is instantiated in
each back-end node by the accumulator meta-data object, accumulator elements are initialized
using methods in the aggregation object.

� Local Reduction. Data chunks are retrieved from the local disks. When a data chunk is in
the memory and ready for processing, the input elements are projected to the corresponding
accumulator elements, using project method in T2 ProjectFuncObj, and navigate method
in T2 Accumulator classes. The input element is aggregated with the current values at the
corresponding accumulator elements.

� Global Combine. After all of the input data chunks are processed, the accumulator elements in
each processor is exchanged, and partial results stored in an accumulator element in one node
is merged with partial results stored in the same accumulator element in other nodes. Note
that at the end of this step, each back-end node may have a distinct subset of accumulator
elements that contain the full intermediate values.

� Output Handling. The �nal output values are computed from the values in the accumulator
elements.

ADR provides the T2 AggregateFuncObj base class for application developer to implement
the processing carried out in these four steps. The declaration of the base class is shown in Figure 12.

� aifElem This method initializes an individual accumulator element. It returns T2 UDFRet OK

on success or T2 UDFRet ERROR on error.

{ query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

{ accum data This parameter points to the accumulator element to be initialized.

� aifAcc This method initializes the entire accumulator object. It returns T2 UDFRet OK on
success or T2 UDFRet ERROR on error.

� dafElemThis method aggregates the input element to the corresponding accumulator element.
It is called for all of the accumulator elements in the current accumulator tile, to which the
input element projects. The iterator instantiated by navigate method of T2 Accumulator

class is used to iterate through the accumulator elements. dafElem returns T2 UDFRet OK on
success or T2 UDFRet ERROR on error.

{ dataset id This input parameter is the id of the dataset from which the input element
is accessed.

{ elem data This input element points to the input data element. This pointer is set
in getNextElement method of T2 Iterator object in attribute space service (see Sec-
tion 4.3).

{ accum data This parameter points to the accumulator element. The value of the accu-
mulator element is updated in the method.

32

#include "t2_aggr.h"

class T2_AggregateFuncObj f
public:

// virtual methods for accumulator initialization

// initializing accumulator element

virtual T2_UDFRet aifElem(const T2_QueryInfo& query_info, void *accum_data);

// initializing entire accumulator

virtual T2_UDFRet aifAcc(const T2_QueryInfo& query_info, T2_Accumulator& acc_obj);

// virtual methods for local reduction phase

virtual T2_UDFRet dafElem(const T2_QueryInfo& query_info, T2_DSID dataset_id,

const void* elem_data, void* accum_data);

virtual T2_UDFRet dafAcc(const T2_QueryInfo& query_info,

const T2_Cluster& chunk,

const T2_Box& chunk_mbr,

T2_ClusterAuxInfoReader& chunk_meta,

const T2_Region& accum_rgn,

T2_Dataset& dataset_obj,

T2_DSID dataset_id,

T2_IteratorID dataset_iterID,

const T2_Box& query_box,

T2_ProjectFuncObj& proj_obj,

u_int acc_iterID, T2_Accumulator& acc_obj);

// virtual methods for global combine phase

virtual bool needGlobalCombine(const T2_QueryInfo& query_info,

T2_Accumulator& acc_obj);

virtual T2_UDFRet fillAccMsgBuffer(const T2_QueryInfo& query_info,

T2_Accumulator& acc_obj,

T2_Array<T2_AccMsgBufferWriter>& msgbuf);

virtual T2_UDFRet processAccMsg(const T2_QueryInfo& query_info, T2_ProcID sender,

T2_AccMsgBufferReader& msgbuf,

T2_Accumulator& acc_obj);

// virtual method for creating the output (output handling phase)

virtual T2_UDFRet finalize(const T2_QueryInfo& query_info,

T2_Accumulator& acc_obj, T2_Output*& output_obj);

g;

// Constructor function

typedef T2_UDFRet

(T2_AggregateFuncConstructor) (const T2_QueryInfo& query_info,

T2_UsrArgReader& user_arg, T2_AggregateFuncObj*& aggr_obj);

Figure 12: The ADR base class for aggregation operation.

33

� dafAcc This method takes the entire input data chunk and the accumulator object, and ag-
gregates the values of input elements in the data chunk with the values in the accumulator el-
ements. ADR provides a default implementation for this method using methods implemented
in various services{ note that the corresponding objects are passed as parameters to dafAcc

method. However, user can override the ADR implementation with a more e�cient, applica-
tion speci�c implementation. dafAcc returns T2 UDFRet OK on success or T2 UDFRet ERROR

on error.

� needGlobalCombine This method returns true if the global combine step is required to
compute �nal accumulator values. It returns false otherwise.

� fillAccMsgBuffer This method stores the accumulator elements in a node into message
bu�ers destined for other nodes. It returns T2 UDFRet OK on success or T2 UDFRet ERROR on
error.

{ msgbuf This output parameter encapsulates a list of message bu�ers. Each entry cor-
responds to a message bu�er destined for a back-end node (the local node itself is also
included). The set of accumulator elements to be sent from the local node to another
back-end node is written into the corresponding message bu�er.

� processAccMsgThis method processes a message bu�er received from another back-end node.
The data values in the message bu�er are unpacked and aggregated with the corresponding
accumulator elements stored in the local node. processAccMsg returns T2 UDFRet OK on
success or T2 UDFRet ERROR on error.

{ sender This input parameter holds the id of the back-end node that has sent the message
bu�er.

{ msgbuf This input parameter encapsulates the data values received from the sender

node.

{ acc obj This parameter is a reference to the accumulator object in the local node.

� finalize This method constructs an output object from the accumulator object after global
combine phase is completed.

{ acc obj This input parameter is a reference to the accumulator object. The values of
the accumulator elements in this accumulator object is used to create the output data
values.

{ output obj This output parameter points to the output object instantiated in this
method.

4.5.3 Final Output

The output is a data structure that is expected as a result of the query. It is generated from the
accumulator. A single output object on a back-end node usually represents one part of a distributed
data structure partitioned across all of the back-end nodes. Therefore, the necessary information
should be stored with the output object so that application client can reassemble the output. ADR
provides the T2 Output base class that encapsulates the output data structure and has methods
to write output into an ordered list of contiguous bu�ers. ADR sends these bu�ers to the receiving
client in the order speci�ed in the list. The de�nition of the ADR base class is shown in Figure 13.

34

#include "t2_output.h"

class T2_Output f
public:

virtual size_t getOutputBufferSize(const T2_QueryInfo& query_info);

virtual T2_UDFRet flushOutput(const T2_QueryInfo& query_info, T2_OutputBuffer& buf,

T2_OutputDataPtrList& ptr_list);

g;

Figure 13: The ADR base class for creating the �nal output to be sent to the client.

� getOutputBufferSize This method returns the amount in bytes of additional bu�er space
needed to pack a part of the output.

� flushOutput This method creates an ordered list of (void*, size) tuples, each of which
points to a contiguous bu�er and stores its size. The contiguous bu�ers are sent to the client.

{ query info This input object encapsulates information about the query and the machine
ADR is running on, and can be used to get the query bounding box and to get system
information such as the number of back-end nodes and local node id.

{ buf This parameter is a reference to a contiguous bu�er space allocated by ADR to pack
some output data. The size of this bu�er is returned from getOutputBufferSize.

{ ptr list This parameter is an ordered list of pointers to contiguous bu�ers and their
sizes. The bu�ers, which are pointed to in this list, are sent to the client.

T2 OutputDataPtrList is a list of pairs of data pointers and data sizes, and allows new pairs
to be appended to the end of the list. ADR is responsible for sending the bu�ers in the speci�ed
order back to the requesting client. The additional bu�er space speci�ed by getOutputBufferSize

is used by method flushOutput to put the output into contiguous memory locations. For example,
an output implemented as an array often carries some additional information for the entire array,
such as the starting position of the starting pixel in an image array. It may also be convenient if
some kind of encoding needs to be performed before sending the output data back to the client. If
all information that needs to be sent to the client is already in contiguous space, the output can
decline any additional memory space and simply return a list of pointers pointing to the real data.

Having a data type for the output data separate from the accumulator allows a cleaner interface.
Without an explicit de�nition of the �nal output, all the functions needed for the output will be
pushed into the aggregation function. Having an explicit function, however, allows a clean interface
for the aggregation function, as well as a clean interface between the query and the client that is
expecting the �nal output. The querying client just needs to know that it is able to parse whatever
the output data type sends across the wire. For aggregation functions, such as an average, that
actually generates a di�erent data structure from that of the accumulator, this is necessary. For
aggregation functions that can reuse the space of the accumulator to store the �nal output, such
as taking the min or max, no additional copy is needed as long as the accumulator supports the
interface that the output data type (i.e. T2 Output) requires.

35

5 Loading Datasets into ADR

5.1 Overview

The data loading service manages the process of loading new datasets into ADR. To achieve low
latency retrieval of data, a dataset is partitioned into a set of chunks, each of which consists of one
or more data items. A chunk is the unit of I/O and communication in ADR. That is, a chunk is
retrieved as a whole during query processing. As every data item is associated with a point in a
multi-dimensional attribute space, every chunk is associated with a minimum bounding rectangle
(MBR) that encompasses the coordinates (in the associated attribute space) of all the items in the
chunk. Since data is accessed through range queries, it is desirable to have data items that are close
to each other in the multi-dimensional space in the same data chunk. Data chunks are declustered
across the disks attached to back-end nodes to achieve I/O parallelism during query processing.
Data chunks on a single disk are clustered to obtain high bandwidth from each disk. An ADR
index, constructed from the MBRs of the chunks, is used to �nd the chunks that intersect a query
window during query processing.

Loading a dataset into ADR is accomplished in four steps:

1. partition the dataset into data chunks,

2. compute placement information for the data chunks,

3. create an ADR index,

4. move data chunks to the disks according to placement information,

5. update the dataset and index catalogs of the ADR back-end.

The placement information describes how data chunks are declustered and clustered across the disk
farm. The result of the loading process is an ADR dataset, which consists of a set of ADR dataset
�les and a set of index �les. Each ADR dataset �le contains a set of data chunks, each of which
has a corresponding entry in one of the index �les. The entry records the MBR and the size of the
data chunk, the dataset �le that contains the data chunk, and the o�set into the dataset �le for the
data chunk. After data chunks are stored in the disk farm, a dataset registration process is used to
update the dataset and index catalogs, after which the new dataset becomes available to the ADR
back-end. Section 6.6 describes in details the dataset registration process.

A dataset to be loaded into ADR is referred to as a source dataset. It is speci�ed as a set of
source data �les that contain the data items, along with meta-data information. For the purpose
of dataset loading, we categorize source datasets into three classes.

1. A fully cooked source dataset is already partitioned into data chunks, and the chunks have
been declustered across a set of dataset �les. That is, the source data �les associated with the
dataset to be loaded contain data chunks, and therefore can be used directly as ADR dataset
�les. A corresponding index (e.g., an R-tree [12]) has also been created. Only step 4 and 5
must be executed for fully cooked datasets. A user can load a fully cooked source dataset by
�rst moving the source dataset �les and index �les to the disks accessed by ADR back-end,
and then registering the dataset using the ADR dataset registration program described in
Section 6.6.

2. A half cooked source dataset is already partitioned into data chunks as for a fully cooked
dataset. However, no e�ort has been made to layout the data chunks across the source data

36

�les for better I/O performance. One or more meta-data �les are used to store for every
data chunk its MBR, the half cooked �le that contains the data chunk, and a start and
end position for the data chunk in the half cooked �le. The ADR data loading service uses
MBRs from the meta-data �les to compute new placement information for the data chunks
so that better I/O performance can be achieved at query processing time. It then moves the
data chunks according to the newly computed placement information, and builds an R-tree
index. The ADR data loading service also generates a summary �le, which together with
other information is used during the dataset registration process.

3. For a raw source dataset, no placement information is pre-computed, and the dataset has not
been partitioned into data chunks. Loading a raw source dataset requires going through all
�ve steps listed above.

The data loading service currently provides support for half cooked source datasets. We plan to
design an interface for raw source datasets in the future. This new interface will allow users of raw
source datasets to]incorporate user-de�ned partitioning methods into the data loading service.

5.2 The ADR Data Loader

The ADR data loader utility program loads a half-cooked source dataset into ADR. It consists of a
master manager and data movers. The master manager reads the meta-data for the source dataset,
and computes placement information for the data chunks. ADR uses a declustering method based
on Hilbert curve [9] to enable fast declustering and clustering of large datasets. A fast placement
method is especially useful when datasets are permanently stored in archival (i.e. tertiary) storage
devices, so that ADR must use its local disks as a cache to load datasets on demand.

Data movers are responsible for actually copying the data chunks onto disks in the ADR back-
end. The data mover running on each of the back-end nodes is responsible for storing the data
chunks to the disks attached to that node. After the master manager computes the placement
information, it broadcasts the information to the data movers. Each data mover extracts placement
information for data chunks that must be placed on its local disks. Each mover accesses the source
data �les for the source dataset and copies the required data chunks onto its local disks. After all
data chunks are copied, each data mover builds an ADR index on its local data chunks. The ADR
index is used by the back-end process running on that node during query execution. The ADR
indexing service uses an R-tree implementation based on the Gist C++ library [21] developed at
the University of California, Berkeley.

The current implementation of the data loading service requires that each mover be able to
access all the source data �les of the dataset to be loaded. In addition, the data loader does not
perform subsetting of a large dataset so that only a portion of the dataset is loaded into ADR.

To load a half cooked dataset into ADR, the user has to provide a back-end con�guration �le
and a loader command �le.

A back-end con�guration �le is an ASCII �le that describes the set of back-end nodes, the disk
farm of the parallel machine that the ADR back-end runs on, and the connectivity information
between the ADR back-end nodes and disks. ADR considers the disk farm of the parallel machine
it runs on as a set of logical disks. The back-end con�guration �le assigns each logical disk to a
back-end node, and during query processing time, a back-end node is responsible for reading data
chunks from all dataset �les assigned to its assigned logical disks. The back-end con�guration also
assigns each logical disk to a physical disk in the disk farm, while a physical disk can be assigned
multiple logical disks. As to be seen later, dataset �les for loaded ADR datasets are assigned to

37

logical disks. The abstraction through logical disks is helpful when dataset �les stored on the same
physical disk must be assigned at run-time to two or more back-end nodes to achieve better load
balance. A back-end con�guration �le consists of a list of entries, one per back-end node. The
format for such an entry is given in Figure 14. See Section 6.6 for more details. Note that in the
back-end con�guration, each back-end node is given a unique logical processor id, each physical
disk is given a unique physical disk id, and each logical disk is given a unique logical disk id.

A loader command �le is an ASCII �le, which contains a set of data loader commands, one for
loading a half cooked source dataset. A data loader command speci�es the following information.

1. A data loader command speci�es a dataset name, which will be used in the output summary
�le as the dataset name for the loaded ADR dataset. This name can also be used as the
dataset name during the dataset registration process.

2. A data loader command also speci�es the set of logical disks over which the data chunks of
the half cooked source dataset are declustered over, along with the pre�xes to be used for the
dataset �les and the index �les over those logical disks. The ADR data loader generates one
dataset �le for each of the speci�ed logical disk, and the �le would be named using the given
dataset �le pre�x and the logical disk id. The ADR data loader also generates an index �le
for each dataset �le on the same logical disk that the dataset �le is assigned to, and the index
�le would be named using the given index �le pre�x and the logical disk id.

3. A data loader command speci�es a list of name �le/linear index �le pairs. A name �le contains
a list of source data �les for the source dataset being loaded. These �les contain the data
chunks to be loaded into ADR. A linear index �le contains for each data chunks to be loaded
its MBR and its location in one of the source data �les listed in the corresponding name �le.
It can also contain application-dependent data, referred to as user data, for each data chunk.
User data of a data chunk is inserted into the ADR index as user de�ned meta-data for a
data chunk, and is retrieved during query processing for all data chunks that intersect the
given query. The linear index �le can be an ASCII or a binary �le. In an ASCII format, user
data for a data chunk cannot exceed a single line. In a binary format, user data is preceded
by the number of bytes for the user data.

Note that there is one-to-one correspondence between name �les and linear index �les. That
is, one linear index �le contains information for data chunks stored in source data �les listed
only in one name �le. Figure 15 and Figure~reflinear-index-�g show the formats for a name
�le and a linear index �le, respectively.

Figure 17 shows the format for a data loader command.
Figure 18 illustrates the process of loading half cooked source datasets into ADR. Loading of

a set of source datasets is accomplished in the following steps: First, all movers read back-end
con�guration �le to extract information about the back-end nodes and the disks. Second, the
master manager reads a command from the loader command �le to retrieve information about
the source dataset to be loaded. Third, the master manager reads the linear index �les listed in
the command �le and computes placement information for the data chunks of the source dataset.
Fourth, it broadcasts placement information and source dataset information to the mover processes.
In the current implementation, one of the mover processes also functions as a master manager, i.e.,
there is no separate master manager process. Finally, after receiving placement and source dataset
information, each mover process accesses source data �les, copies data chunks onto the local disks
according to the computed placement information, and builds an ADR index for data chunks on
local disks.

38

The back-end configuration file.

#

There is one entry per back-end node, and each entry has the following

format.

char[] hostname: hostname for the back-end node

u_int logical_proc_id: the logical processor id for the back-end node

<information for disk 1>

<information for disk 2>

:

=== : end of entry mark

#

<information for disk x> can be a record in the following format

for a local disk connected directly to the back-end node,

'l' : the label for a local disk record

u_int physical_disk id

<a list of disk id ranges>: the set of logical disks assigned to this

physical disk

-1

or in the following format for a set of remote disk that is

cross-mounted on this back-end node,

'r' : the label for a remote disk record

<a list of disk id ranges>: the set of physical disks cross-mounted

on this back-end node

-1

where <a list of disk id ranges> consists of a list of ranges,

each of which is in one of the two following formats.

u_int n: a single disk id

n-m: all disk id's from n up to m

host1 0 # hostname and logical processor id

l 0 0 -1 # physical disk 0 is a local disk, assigned logical disk 0

r 1-3 -1 # local host can access remote physical disk 1,2,3

===

Figure 14: The back-end con�guration �le format. The text after a # is considered a comment.

39

The name file.

#

char filename1[]

char filename2[]

...

#

path/data-file.1 # name of the data file

path/data-file.2

.

.

.

path/data-file.N # name of the data file

Figure 15: The name �le format. Text after a # is considered a comment.

40

The linear index file.

#

<header information>

<information for entry 1>

...

<information for entry N>

#

< header information>:

char format: format of the linear index file, 'a' for ASCII, 'b' for binary

unsigned int ndims: number of dimensions of the underlying

multi-dimensional attribute space

unsigned int nentries: number of entries in the file

< information for entry x>:

float low[ndims]: coordinates of minimum point of the minimum bounding

box of the data chunk

float high[ndims]: coordinates of maximum point of the minimum bounding

box of the data chunk

unsigned int nblocks: number of physical file blocks that constitute a

data chunk.

<information for block 1 of entry 1>: information about physical block

<information for block 2 of entry 2>: information about physical block

...

<user data> : user-defined data

< information for block y of entry x>:

unsigned int file_id: line number of data file listed in the name file.

off_t offset: offset into the data file

size_t size: size of the physical block in bytes

< user data>:

size_t nbytes: length of the user-defined data

char usrdata[nbytes]: user-defined data. Length of usrdata array cannot

exceed a single line for ASCII index file.

#

format ndims nentries # <header information>

low[0] low[1] ... low[ndims-1] # <information for entry 1>

high[0] high[1] ... high[ndims-1]

nblocks

file_id offset size # <info for physical block 1 of entry 1>

file_id offset size # <info for physical block 2 of entry 1>

...

nbytes # <user data for entry 1>

usrdata[nbytes]

low[0] low[1] ... low[ndims-1] # <information for entry 2>

high[0] high[1] ... high[ndims-1]

nblocks

file_id offset size # <info for physical block 1 of entry 2>

file_id offset size # <info for physical block 2 of entry 2>

...

nbytes # <user data for entry 2>

usrdata[nbytes]

...

Figure 16: The linear index �le format. In an ASCII linear index �le, text after a # is considered
a comment.

41

The loader command file contains a set of data loader commands,

one per source dataset to be loaded, and each data loader command

has the following format.

char[] dataset_name: name of the dataset after being loaded

<disk and file prefixes 1>

<disk and file prefixes 2>

:

-1

<name file and index file 1>

<name file and index file 2>

:

=== - end of command mark

#

where <disk and file prefixes x> has the following format.

<logical disk id range> -- one range of logical disk id's

char[] dataset_file_prefix -- prefix for the dataset files

assigned to the logical disk id's

listed in the logical disk id range

char[] index_file_prefix -- prefix for the index files

assigned to the logical disk id's

listed in the logical disk id range

#

and <logical disk id range> is in one of the following formats:

n - a single logical disk id

n-m - a set of logical disk id's from n upto m

#

and <name file and index file> is in the following format:

char[] name_file - filename of a name file

char[] index_file - filename of an index file

#

dataset-name-1

0 disk-0/data-file disk-0/index-file # data file and index file

1 disk-1/data-file disk-1/index-file # data file and index file

2 disk-2/data-file disk-2/index-file # data file and index file

3 disk-3/data-file disk-3/index-file # data file and index file

-1

sample.name # name file for data subset 1 on tapes

sample.idx # index file for data subset 1 on tapes

more name files and index files can be added here

===

...

Figure 17: The loader command �le format. The text after a # is considered a comment.

42

Data File1

Data File2

Name File
Linear

Index File

Dataset 1
Data File1

Data File2

Name File1

Data File3

Linear
Index File1

Linear
Index File2Name File2

Dataset 2

Master
Manager

Loader Command

File

Mover Configuration

File

Mover 1 Mover 2

Figure 18: Loading half cooked datasets into ADR.

43

6 Installing and Running ADR

The ADR source distribution contains the following �les and directories.

� COPYRIGHT.TXT, which describes the copyright information regarding the ADR source distri-
bution,

� README, which describes the �les and directories in this distribution, and steps to install ADR,

� Version, which contains the date for this release,

� arch/, which contains the machine con�guration �les created by the ADR system con�gura-
tion utility program,

� back-end/, which contains the source code for the parallel ADR back-end,

� bin/, which contains the executables for ADR utility programs and the ADR front-end,

� common/, which contains the source code for classes shared by the ADR back-end and the
ADR front-end,

� doc/, which contains documentation of ADR, including this document,

� example/, which contains the customization code for example applications implemented with
ADR,

� front-end/, which contains the source code for the ADR front-end,

� lib/, which contains the ADR libraries and object �les generated after compilation,

� meta-chaos/, which contains the source code for implementing the interface that uses Meta-
Chaos [8] to transfer the query results to a parallel program (documentation on this interface
will be included in the future),

� rtree/, which contains the source code for an R-tree implementation based on the Gist C++
library [21] developed at the University of California, Berkeley,

� sback-end/, which contains the source code for a sequential version of the ADR back-end,
which can be used for debugging customization code,

� utility/, which contains the source code for ADR utility programs.

Installing ADR consists of the following steps.

1. Con�gure the ADR library (Section 6.1).

2. Compile the ADR library and various ADR utility programs (Section 6.2).

At the end of a successful installation process, machine con�guration �les are generated in the
arch/ directory, ADR libraries are generated in the lib/ directory, and executables for the ADR
front-end and various utility programs are generated in the bin/ directory. Once the installation
process completes, customization code for the ADR back-end can be implemented, as described in
Section 4. Compiling a complete parallel ADR back-end executable with the customization code is
done through the following steps.

44

1. Compile customization code (Section 6.3).

2. Register user-de�ned constructor functions with ADR (Section 6.4).

3. Link ADR libraries with the customization code (Section 6.5).

As a result of a successful compilation process, an executable for the customized parallel ADR
back-end is generated. After datasets are loaded (see Section 5) and registered (see Section 6.6)
with ADR, the full application with the ADR front-end and the customized parallel ADR back-end
can be started, as described in Section 6.7.

The ADR installation process relies on macro substitution in the following form,

MACRO1 = $(MACRO2:op%os=np%ns)

If the utility program \make" on the target machine does not support such substitution, then
\gmake" from GNU can be used instead. In the remaining of this section, we will assume that the
utility program \make" on the target machine does support the desired macro substitution.

6.1 Con�guring the ADR Library

The purpose of the con�guration process is to correctly set certain architecture-dependent compi-
lation options, and to locate certain supporting libraries (such as MPI) so that the ADR library
can be correctly compiled on the target machine. Many of these options have default values, and
the ADR con�guration program uses default values for many of these options. However, if desired,
a user can provide the appropriate con�guration option values to override the ADR default values
by editing the user con�guration �le, config.in in the ADR root directory. This �le contains
the set of valid options for con�guring the ADR installation. These options a�ect how the ADR
codes are compiled. Many options have default values, so a user only needs to include in this �le
the options whose default values are to be overridden. Note that the ADR distribution consists of
both sequential executables and parallel executables. Some of the options listed in this �le a�ect
the compilation of both the sequential and the parallel codes, whereas other options only a�ect
either the sequential or the parallel codes. Each line in �le config.in speci�es the value for a
con�guration option, and it has the following format.

<option name>[= <option value> [<option value> ...]]

For those options that require values, their values must be given in one line. Texts after \#" in the
�le are considered as comments and are ignored. Figure 19, 20, 21 list the valid ADR con�guration
options and their default values. Some of these options are brie
y explained below.

� comm de�nes the inter-processor communication interface to be used by the back-end nodes;
the current implementation only uses the MPI interface, therefore mpi is the only valid value
for this option,

� mpidir, mpiinclude and mpilib specify paths to the MPI include directory and the MPI
libraries,

� aio de�nes the asynchronous I/O interface that the ADR back-end uses to retrieve data
chunks from disks,

45

option name option value default value
comm mpi mpi

mpidir <path to MPI root directory>
aix:
others: $MPI ROOT

mpiinclude <MPI include directory>
aix:
others: <mpidir>/include

mpilib <MPI libraries>
aix:
others: -L<mpidir>/lib/<mpiarch>/ch p4 -lmpi

aio <asynchronous I/O interface>
aix: aix
sunos: sunos
others: posix

mc (Meta-Chaos interface disabled)

pvmdir <path to PVM root directory> $PVM ROOT
pvmarch <PVM architecture> `<pvmdir>/lib/pvmgetarch`

pvminclude <PVM include directory> <pvmdir>/include
pvmlib <PVM libraries> -L<pvmdir>/lib/<pvmarch> -lgpvm3 -lpvm3 -lfpvm3

dclockname <a timing function> (default ADR timing function)
dclockpath <.o �le for <dclockname>>

Figure 19: Con�guration options for specifying communication interface, asynchronous I/O inter-
face, and timing function for ADR compilation. MPI ROOT and PVM ROOT are shell environ-
ment variables.

� mc enables the interface that sends query output to (parallel) programs through the Meta-
Chaos interface; this interface is disabled by default,

� pvmdir, pvmarch, pvminclude and pvmlib specify paths to the PVM include directory and
PVM libraries, which are used only when the Meta-Chaos output-handling interface is en-
abled,

� dclockname and dclockpath allow a user to override the default function that ADR uses to
measure wall-clock time; dclockname provides the function name for the user-de�ned timing
function (a mangled function name if implemented in C++), and dclockpath speci�es the
.o �le that contains the implementation for the user-de�ned timing function,

� frontenddef, pbackenddef and sbackenddef a�ect the behaviors of the ADR front-end, the
ADR parallel back-end, and the ADR sequential back-end through the following values:

-DT2 ASSERTION enables various assertion tests during execution,

-DT2 VERBOSE[=n] enables output messages being printed to the screen during execution,

-DT2 LABEL IO makes each ADR parallel back-end node to precede its output message
printed to the screen with its MPI processor rank,

-DT2 GETRUSAGE makes the ADR parallel back-end to report information obtained from the
system call getrusage after query execution,

-DT2 TIME PLANNING[=n] enables the ADR parallel back-end to report for each received
batch of queries the amount of time spent in the query planning service ,

-DT2 TIME EXECUTE[=n] enables the ADR parallel back-end to report for each received batch
of queries the amount of time spent as a group in the query execution service ,

46

option name option value default value

ag <compilation
ags>

hline include <include directories>

cc <sequential C compiler>
aix: xlc
others: gcc

cc
ag <C compilation
ags>
ccinclude <C include directories>

cpp <sequential C++ compiler>
aix: xlC
others: g++

cpp
ag <C++ compilation
ags>
cppinclude <C++ include directories>

pcc <parallel C compiler>
aix: mpcc
others: gcc

pcc
ag <C compilation
ags>
ccinclude <C include directories>

pcpp <parallel C++ compiler>
aix: mpCC
others: g++

pcpp
ag <C++ compilation
ags>
pcppinclude <C++ include directories>

ld <linker for sequential code> <cpp>
ld
ag <C++ compilation
ags>

lib <libraries to link with sequential code>

aix:
sunos: -laio -lsocket -lnsl -lresolv -lbind
linux: -lrt
others:

pld <linker for parallel code> <pcpp>
pld
ag <C++ compilation
ags>

plib <libraries to link with parallel code>

aix:
sunos: -laio -lsocket -lnsl -lresolv -lbind
linux: -lrt
others:

ar <archiver> ar
ar
ag <archiver
ags> ruv

ranlib <archive randomizer>
aix: ranlib
others:

Figure 20: Con�guration options for compiling the ADR code.

47

option name option value

frontenddef
-DT2 ASSERTION
-DT2 VERBOSE[=n]

pbackenddef

-DT2 ASSERTION
-DT2 VERBOSE[=n]
-T2 LABEL IO
-DT2 GETRUSAGE
-DT2 TIME PLANNING[=n]
-DT2 TIME EXECUTE[=n]
-DT2 TIME QUERY[=n]

sbackenddef
-DT2 ASSERTION
-DT2 VERBOSE[=n]

Figure 21: Con�guration options for a�ecting the behaviors of the ADR front-end, the ADR parallel
back-end, and the ADR sequential back-end.

-DT2 TIME QUERY[=n] enables the ADR parallel back-end to report for each received query
the amount of time spent in the query execution service .

For an option that can be assigned a value n, we have 1 � n � 5. The larger n is, the more
detailed information is printed.

Figure 22 shows an example of the �le config.in. The default values for all options can be restored
using the following command.

% make default

config.in

mpiinclude= -I/usr/local/mpi/include

mpilib= -L/usr/local/mpi/lib -lmpi

flag= -O2

pbackenddef= -DT2_ASSERTION -DT2_LABEL_IO -DT2_VERBOSE=1

Figure 22: An ADR con�guration �le example.

To start the con�guration process, use the following command at the system prompt.

% make config

The result of the con�guration process will be stored in several �les in the arch/ subdirectory.

48

6.2 Compiling the ADR Library and Utility Programs

To compile the ADR library and various utility programs, simply use \make install" in the ADR
root directory after performing the ADR con�guration process as described in Section 6.1. This
will create the following �les in the lib/ directory.

� pbe.o : the main program for the parallel ADR back-end program.

� libt2be.a : the library to link with when compiling the parallel ADR back-end program.

� libt2fe.a : the library to link with when compiling the application front-end.

� sbe.o : the main program for the sequential ADR back-end program.

� libt2sbe.a : the library to link with when compiling the sequential ADR back-end program.

The compilation process also creates the following executables in the bin/ directory.

� t2fe, the ADR front-end program,

� register-constructors, the utility program to register user-de�ned constructor functions
with ADR (see Section 6.4),

� register-datasets, the utility program to register datasets with ADR (see Section 6.6),

Section 6.7 describes how to run the ADR front-end program.

6.3 Compiling the Customization Code

To compile the customization code, one needs to include the appropriate ADR header �les. To
compile the customization code for the parallel ADR back-end, add the directory common/include/
and back-end/include/ to the list of directories searched for header �les during compilation. To
compile the customization code for the application front-end, add the directory common/include/

and front-end/include/ to the list of directories searched for header �les during compilation.
Figure 23 summarizes the compilation options to use when compiling the customization code,
assuming that the variable ADR DIR contains the path to the ADR root directory. To compile
customization code that uses the ADR R-tree implementation, Add the directory rtree/ to the
list of directories for header �les.

customization code for compilation options
parallel ADR back-end -I$(ADR DIR)/common/include -I$(ADR DIR)/back-end/include
application front-end -I$(ADR DIR)/common/include -I$(ADR DIR)/front-end/include

uses R-tree -I$(ADR DIR)/rtree

Figure 23: Compilation options when compiling the customization code. The options here assume
that the variable ADR DIR stores the path to the ADR root directory.

49

6.4 Registering Constructor Functions

The ADR internal services interact with the user-de�ned customization Classes through the inter-
face de�ned by the various ADR base classes. However, creating an instance of a customization
class, in many cases, is done through the invocation of a user-de�ned \constructor function". In
particular, the customization classes for dataset objects, index objects, projection function objects,
accumulator meta-data objects, and aggregation function objects must be accompanied by their
constructor functions. These functions will be called by the ADR internal services at run-time to
create instances of the appropriate customization classes as needs arise.

Constructor functions must be registered with ADR before they can be used by the ADR
services. The purposes of registration are two-fold:

1. ADR creates a code segment to keep function pointers to all the constructor functions. At
run-time, ADR services would invoke these constructor functions through these function
pointers.

2. ADR assigns ids to constructor functions, and the id's are used to \name" the appropriate
constructor functions when formulating ADR queries.

Registration of constructor functions is done through an ADR utility program, register-constructors,
which is generated during the ADR installation process. This utility program reads from a construc-
tor registration �le, and generates two output �les: a C++ code segment that sets function pointers
to the registered constructor functions, and a constructor catalog �le. register-constructors

takes three command-line arguments.

% register-constructors <constructor registration file> \

<C++ code segment file> <constructor catalog file>

The generated C++ code segment must be compiled and linked with when generating the parallel
ADR back-end executable, pbe. The generated constructor catalog is used by the ADR front-end
to answer inquiries about the constructor functions. Figure 24 shows an example of the constructor
catalog with �ve entries. Each entry in the constructor catalog �le contains a function type, a
function id, a function name, and a one-line description of the function. An entries for a constructor
function of a dataset object also contain the number of dataset iterators provided by the datset
object, and the names of those dataset iterators. Functions of the same type cannot share the same
name, and cannot be assigned the same function id. The utility program register-constructors

would complain if violation is detected.
A constructor registration �le, which is created by the user, contains the necessary information

for all constructor functions to create the C++ code segment �le and the constructor catalog.
Figure 25 shows an example of the constructor registration �le. An entry in the constructor
registration function contains the following �elds, listed in the order they appear in the �le.

1. a function type: this can be one of the following:

� accumulator (or ac in short) for accumulator meta-data object constructor function

� aggregation (or ag in short) for aggregation function object constructor function

� projection (or pr in short) for projection function object constructor function

� dataset (or da in short) for dataset object constructor function

50

constructor catalog

accumulator 0

t2-svm-example:image-accumulator-meta-constructor

This is the accumulator meta constructor for T2's svm example.

aggregation 0

t2-svm-example:aggregation-function-max-constructor

The aggregation function that keeps the max-val pixel for T2's svm example.

projection 0

t2-svm-example:projection-function-constructor

The projection function for T2's svm example.

dataset 0

t2-svm-example:image-dataset-constructor

The image dataset for T2's svm example.

1 iterator-1 # iterators

index 0

t2-svm-example:image-dataset-index-constructor

The index for an image dataset for T2's svm example.

Figure 24: An ADR constructor catalog �le example.

� index (or in in short) for index object constructor function

2. a function name: a unique name for the function

3. the actual C++ function name: this is the name of the C++ function that implements the
constructor function

4. a one-line description of the function: where an empty line right the C++ function name
means no description

5. for a function of a dataset object, the entry also contains the number of dataset iterators
provided by the datset object, and the names of those dataset iterators.

Text in a line preceded by \#" is considered comment and will be ignored by register-constructors.
Each constructor function is expected to be given a unique name. The utility program register-constructors

fails if it sees names that are not unique. Names are used by application front-ends to inquire of the
ADR front-end for their function id's, which are used when formulating ADR queries. In the case
where an ADR instance is customized for multiple applications and each application has its own
set of constructor functions that are not applicable for another application, users are encouraged to
assign unique names to the applications, and use the application names as pre�xes for the names
of their constructor functions in a format such as the following.

<application name>:<function name>

51

This not only avoids name clashing between functions from di�erent applications, it also allows an
application front-end to quickly inquire for the constructor functions implemented for its application
using the ADR front-end inquiry interface that uses pattern matching over regular expressions. For
example, the function names in Figure 25 are functions for the SVM application that is available
with the ADR code distribution. The SVM front-end can �nd out all the SVM constructor functions
simply by inquiring for functions with names that start with \t2-svm-example:".

Note that since multiple datasets can share the same dataset constructor function, datasets are
not accessed by their dataset constructor function id's. Therefore, an application front-end almost
never needs to know the function id for a dataset constructor function. This is also the case for
indexes. Therefore, the ADR front-end inquiry interface does not return information about dataset
constructor functions and index constructor functions. Access to datasets and their associated
indexes are done through dataset id's and index id's, which are assigned by the dataset registration
process to be discussed in the next section.

constructor registration file

accumulator

t2-svm-example:image-accumulator-meta-constructor

svmImageAccMetaConstructor

This is the accumulator meta constructor for T2's svm example.

aggregation

t2-svm-example:aggregation-function-max-constructor

svm_aggregationMaxConstructor

The aggregation function that keeps the max-val pixel for T2's svm example.

projection

t2-svm-example:projection-function-constructor

svm_ImgPrjConstructor

The projection function for T2's svm example.

dataset

t2-svm-example:image-dataset-constructor

svm_ImageDatasetConstructor

The image dataset for T2's svm example.

1 iterator-1

index

t2-svm-example:image-dataset-index-constructor

svm_ImageIndexConstructor

The index for an image dataset for T2's svm example.

Figure 25: An ADR constructor function registration �le example.

6.5 Linking with ADR Libraries

The executable for the ADR front-end, bin/t2fe, is generated when the ADR libraries are compiled
(see Section 6.2). To generate an executable for the application front-end, the application code must

52

link with the library lib/libt2fe.a, which provides implementation of the ADR services described
in Section 3.

Generating the executable for the parallel ADR back-end loaded with the customization code
requires the linkage of lib/pbe.o, which provides the main program for the parallel back-end,
all the object �les obtained by compiling the customization code, and the library lib/t2be.a.
Generating the executable for the sequential ADR back-end loaded with the customization code
requires the linkage of lib/sbe.o, which provides the main program for the sequential back-end,
all the object �les obtained by compiling the customization code, and the library lib/t2sbe.a.
Section 6.7 describes how to run the ADR back-end.

6.6 Registering Datasets

Just like constructor functions need to be registered with ADR, datasets also need to be registered
with ADR. Registration of a dataset informs ADR of the dataset �les of the dataset, and the index
�les of the ADR indexes associated with the dataset. It also describes how dataset �les are assigned
to the back-end nodes. The parallel ADR back-end considers the parallel machine that it runs on
consists of a number of logical disks. A logical disk is assigned to a physical disk of the parallel
machine, and a physical disk can be assigned multiple logical disks. This abstraction is helpful when
dataset �les stored on the same physical disk are assigned at run-time to two or more back-end
nodes to achieve, for example, better load balance. A back-end con�guration �le is used by ADR
to describe the relationship between back-end nodes and disks. Figure 26 shows an example of the
back-end con�guration �le. Section 5.2 has described how the back-end con�guration �le is used
by the ADR data loader. The same back-end con�guration �le is used by the dataset registration
utility program. In a back-end con�guration �le, each host has an entry which contains the following
information.

1. a hostname,

2. a unique logical processor id,

3. a set of local disk speci�cation records, where each corresponds to a local disk,

4. a set of remote disk speci�cation records, where each corresponds to a remote physical disk
that is mounted onto the local �le system.

A local disk speci�cation record consists of the following �elds:

1. the label \l",

2. a physical disk id that is unique in the entire back-end con�guration �le,

3. a list of logical disk id ranges, separated by blanks, assigned to this physical disk, where each
range is in one of the following format (n and m are two non-negative integers):

(a) n : this corresponds to a single logical disk id,

(b) n-m : this corresponds to a set of logical disk id's from n up to m (n � m),

4. a terminating value \-1".

A physical disk id and a logical disk id can only appear once in exactly one local disk speci�cation
record throughout the entire back-end con�guration �le. A remote disk speci�cation record consists
of the following �elds:

53

back-end configuration file

host1 # hostname

0 # logical processor id

l 0 0 -1 # physical disk 0 is a local disk, assigned logical disk 0

r 1-2 -1 # host1 can only access remote physical disk 1-2

===

host2

1 # logical processor id

l 1 1-2 -1 # physical disk 1 is a local disk, assigned logical disk 1,2

l 2 3 -1 # physical disk 2 is a local disk, assigned logical disk 3

r 0 -1 # host2 can access remote physical disk 0

===

Figure 26: An ADR back-end con�guration �le example.

1. the label \r",

2. a list of logical disk id ranges, separated by blanks, assigned to this physical disk, where each
range is in one of the following format (n and m are two non-negative integers):

(a) n : this corresponds to a single physical disk id,

(b) n-m : this corresponds to a set of physical disk id's from n up to m (must have n � m),

3. a terminating value \-1".

A physical disk id may appear in multiple remote disk speci�cation records in the back-end con�g-
uration �le. Each entry in the back-end con�guration �le is terminated by an end-of-entry string,
\===".

For example, the back-end con�guration �le in Figure 26 speci�es that there are two ADR
back-end nodes, where host1 has one local disk with physical disk id 0, and host2 has two local
disks with physical disk id 1 and 2. The local disk of host1 is cross-mounted on host2, and the
two local disks of host2 are also cross-mounted on host1. For better I/O bandwidth, the parallel
ADR back-end by default assigns to each back-end node its local disks. As will be described later,
dataset �les are assigned to logical disks. The default assignment therefore assigns a dataset �le
to the back-end node, the local physical disk of which contains the corresponding logical disk. For
example, given the back-end con�guration �le in Figure 26, all dataset �les assigned to the logical
disk id 1 would be assigned to host2. As is described in Section 6.7, this default assignment can be
overridden at run-time by a command-line parameter to the parallel ADR back-end program.

Registration of datasets is done with an ADR utility program, called register-datasets.

% register-datasets <dataset registration file> \

<back-end configuration file> <constructor catalog file> \

<dataset information file> \

<dataset catalog file> <index catalog file>

54

This utility program reads a dataset registration �le, consults the back-end con�guration �le de-
scribed earlier and the constructor catalog �le, which is generated by another utility program,
called register-constructors, as was described in Section 6.4. register-datasets generates
the following three output �les.

� a dataset information �le, which will be used by the ADR front-end to answer dataset inquiries
from application front-ends,

� a dataset catalog, which contains information about all datasets registered with ADR, and

� an index catalog, which contains information about all indexes for datasets registered with
ADR.

Each dataset has an entry in the dataset registration �le, and each entry has the following
format.

1. a unique dataset name,

2. the name of the dataset constructor function for this dataset,

3. an optional �lename for the blob object of the dataset (an empty line means no blob object),

4. an optional one-line description for the dataset (an empty line means no description),

5. a list of dataset �lenames and the logical disk id's the �les are assigned to, with each dataset
�lename preceded by the label \d",

6. an optional list of auxiliary dataset �lenames, with each �lename preceded by the label \a",

7. a list of index records, with each record in the following format:

(a) a unique index name,

(b) the name of the index constructor function for this index,

(c) an optional one-line description for the index (an empty line means no description)

(d) a list of index �le records, each of which is in the following format.

i. the label \i"

ii. the index �lename

iii. a list of dataset �le id ranges, with each range in one of the following formats.

� n, which corresponds to a single dataset �le id,

� n-m, which corresponds to a set of dataset �le id's from n upto m (n � m)

(e) the number \-1" to terminate the index �le record

8. the string \===" to terminate the entry.

Figure 27 shows an example of a dataset registration �le. Dataset names are expected to be unique.
The utility program register-datasets fails if it sees dataset names that are not unique.

For a dataset with multiple dataset iterators, the id of a dataset iterator is implicitly de�ned
by the order it appears in the dataset entry, with the �rst iterator starting with id equal to zero.
Similarly, each dataset �le is also associated with a dataset �le id, de�ned by the order the dataset
�le appears in the dataset entry. The �rst dataset �le has its dataset �le id equal to zero. The

55

dataset �le id's are used by the index records to associate the index �les with the dataset �les. If an
index �le contains information about one or more clusters for a given dataset �le, then this index
�le is associated with that dataset �le, whose dataset �le id should appear in the index record that
corresponds to the given index �le. Therefore, for a given dataset, each of its dataset �le id's should
be associated with at least one index �le. For example, given the example in Figure 27, the index
�le datasets/dataset-1-index.1 keeps the information about all clusters stored in the dataset
�le datasets/dataset-1-file.1, and datasets/dataset-1-file.2. Naturally, this association
also implies that an index �le should be assigned to all the logical disk id's that its associated
dataset �les are assigned to.

dataset registration file

t2-svm-example:image-dataset-1 # dataset name

t2-svm-example:image-dataset-constructor # constructor name

image-dataset-thumbnail # filename for blob object

description for dataset-1

d datasets/dataset-1-file.0 0 # data file assigned to logical disk 0

d datasets/dataset-1-file.1 1 # data file assigned to logical disk 1

d datasets/dataset-1-file.2 2 # data file assigned to logical disk 2

d datasets/dataset-1-file.3 3 # data file assigned to logical disk 3

d datasets/dataset-1-file.4 0 # data file assigned to logical disk 0

a datasets/dataset-1-aux-file # auxiliary dataset file for all nodes

t2-svm-example:image-dataset-1-index # index name

t2-svm-example:image-dataset-index-constructor # constructor name

description for index-1

i datasets/dataset-1-index.0 0 -1 # index file for dataset file 0

i datasets/dataset-1-index.1 1-2 -1 # index file for dataset file 1-2

i datasets/dataset-1-index.2 3 -1 # index file for dataset file 3

=== # end-of-record

entry 2 starts here ...

Figure 27: An ADR dataset registration �le example.

A dataset catalog �le maintains information about datasets registered through the dataset
registration process. A dataset catalog has a header to summarize information obtained from the
back-end con�guration �le. After the header, it keeps an entry for every dataset available in the
dataset registration �le. Figure 29 shows an example of a dataset catalog.

The dataset catalog header stores the number of logical processor id's and the number of logical
disk id's, obtained from the back-end con�guration �le. It then keeps a list of entries, one per
hostname listed in the back-end con�guration �le, with each entry in the following format.

1. a hostname,

2. the assigned logical processor id,

3. a list of assigned logical disk id's.

Recall that by default, a back-end node is responsible for accessing all dataset �les that are assigned
to the logical disk id's assigned to the back-end node.

56

dataset information file

1 # total number of datasets

t2-svm-example:image-dataset-1 # dataset name

0 # dataset id

description for dataset-1 # dataset description

image-dataset-thumbnail # blob filename

1 # number of iterators

iterator-1 # name for iterator 0

1 # number of indexes

t2-svm-example:image-dataset-1-index # name for index 0

0 # index id

description for index-1 # index description

Figure 28: An ADR dataset information �le example.

After the header, the dataset catalog keeps the number of datasets registered with ADR, and
has an entry for each of those datasets, with each entry in the following format.

1. a unique dataset id,

2. the id of its constructor function, obtained by looking up the constructor catalog,

3. the number of dataset �les for this dataset,

4. a list of <dataset �le, assigned logical disk id> pairs, with one pair per dataset �le,

5. the number of auxiliary dataset �le for this dataset,

6. a list of paths for the auxiliary dataset �les.

An index catalog �le maintains information about indexes registered through the dataset reg-
istration process. Figure 30 shows an example of an index catalog. Each entry in the catalog is in
the following format.

1. a unique index id,

2. the id of its constructor function, obtained by looking up the constructor catalog,

3. the number of index �les for this index,

4. a list of index �le records, with each of which in the following format.

(a) a path to the index �le,

(b) the number of dataset �le id ranges,

(c) a list of dataset �le id ranges, where each can be in one of the following formats:

� n: represent a single dataset �le id,

� n-m: represent a set of dataset �le id's from n to m (must have n � m).

57

dataset catalog

header

2 4 # number of logical proc id's and logical disk ids

host1 0 # host1 is assigned logical proc id 0

0 -1 # and logical disk id 0

host2 1 # host2 is assigned logical proc id 1

1 2 3 -1 # and logical disk id 1,2,3

dataset entry 1

1 # number of datasets in the catalog

0 # dataset id 0

0 # uses dataset constructor function id 0

5 # number of dataset files

datasets/dataset-1-file.0 0 # dataset file 0 assigned to logical disk id

0

datasets/dataset-1-file.1 1 # dataset file 1 assigned to logical disk id

1

datasets/dataset-1-file.2 2 # dataset file 2 assigned to logical disk id

2

datasets/dataset-1-file.3 3 # dataset file 3 assigned to logical disk id

3

datasets/dataset-1-file.4 0 # dataset file 4 assigned to logical disk id

0

1 # number of auxiliary dataset files

datasets/dataset-1-aux-file # aux dataset file 0

Figure 29: An ADR dataset catalog �le example.

Recall that the dataset registration �le records the association between index �les and the
dataset �les. The dataset �le id ranges in the index �le records also keep the speci�ed
association.

6.7 Running ADR Front-end and Back-end

Running the ADR system is achieved by running �rst the ADR front-end program, t2fe, and then
the parallel ADR back-end program, pbe.

The ADR front-end t2fe is started with the following command-line arguments.

� -d <dataset information �le>, to specify the path to the dataset information �le generated
by the utility program register-datasets, as described in Section 6.6,

� -f <constructor catalog �le>, to specify the path to the constructor catalog �le generated by
the utility program register-constructors, as described in Section 6.4,

� -b <back-end port number>, to specify the port number that the parallel ADR back-end
nodes should connect to,

58

index catalog

1 # number of entries in this catalog

0 # index id 0

0 # uses index constructor function id 1

3 # number of index files

datasets/dataset-1-index.0 # index file 0

1 0 # associated with one dataset file id range (0)

datasets/dataset-1-index.1 # index file 1

1 1-2 # associated with one dataset file id range (1-2)

datasets/dataset-1-index.2 # index file 2

1 3 # associated with one dataset file id range (3)

Figure 30: An ADR index catalog �le example.

� -p <application front-end port number>, to specify the port number that the application
front-ends should connect to.

In addition, t2fe also allows the following optional command-line arguments, often used for de-
bugging purposes.

� -h, to print out the list of valid command-line arguments,

� -a <maximum number of simultaneously connected application front-ends>, to specify the
maximum number of application front-ends that can connect to the ADR front-end at any
given time; application front-ends that attempt to connect after the given maximum number
of application front-ends have been reached will get a denial message indicating that the ADR
front-end is busy,

� -c<number of application front-ends to serve>, to make t2fe terminates as soon as it becomes
idle after the given number of application front-ends have connected and disconnected,

� -t <number of seconds to wait for ADR back-end nodes>, to specify the number of seconds
to wait before any ADR back-end node connects to t2fe; if no ADR back-end node connects
to this ADR front-end within the given time, the ADR front-end runs in test mode, in which
case the ADR front-end only honors all inquiries from the application front-ends for datasets
and constructor functions, but discard all queries that it receives,

� -q <query batch �le>, to start the ADR front-end in debugging mode, in which case the
ADR front-end does not accept connections from any application front-end, but simply reads
an ADR query from the given �le and forwards it to the parallel ADR back-end nodes some
�xed number of times, which is speci�ed by the \-n" option described below,

� -n <number of times>, which specify in the debugging mode, the number of times the ADR
query that the ADR front-end repeatedly sends the query it reads from the �le speci�ed by
the \-q" option to the parallel ADR back-end.

59

Note that the \-c" option e�ectively speci�es the minimum number of application front-ends that
the ADR front-end should serve before exiting. Even after the speci�ed number of application
front-ends have connected to and disconnected from the ADR front-end, the ADR front-end would
not exit and would still accept new connections from application front-ends as long as there is
always at least one application front-end connected or the ADR back-end nodes have not processed
all the queries submitted to the ADR front-end. To keep the ADR front-end running without
exiting, use \-c 0".

Figure 31 summarizes the command-line arguments for the ADR front-end program. Once the
ADR front-end runs, it waits for the ADR back-end nodes to connect. After the back-end nodes
connect or time expires if the option \-t" was speci�ed, the ADR front-end waits for the application
front-ends to connect.

t2fe -d <dataset information file>

-f <constructor catalog file>

-b <back-end port number>

-p <application front-end port number>

[-h]

[-a <maximum number of simultaneously connected application front-ends>]

[-c <number of application front-ends to serve>]

[-t <number of seconds to wait for ADR back-end nodes>]

[-q <query batch file>]

[-n <number of times to repeatedly send a query to ADR back-end>]

Figure 31: Summary of the command-line arguments for the ADR front-end program. Arguments
enclosed in brackets \[]" are optional.

The parallel ADR back-end, pbe, can be started using whatever utility the target parallel ma-
chine provides for loading and executing MPI programs. For example, the IBM SP uses its Parallel
Operating Environment (POE) to load and execute MPI programs compiled by its mpcc/mpCC
compilers. However, MPICH uses a utility program, mpirun, to load and execute MPI programs
compiled on the platforms that MPICH supports.

When the parallel ADR back-end, pbe, is started, it requires the following command-line argu-
ments.

� -d <dataset catalog �le>, to specify the path to the dataset catalog �le generated by the
utility program register-datasets, as described in Section 6.6,

� -i <index catalog �le>, to specify the path to the index catalog �le generated by the utility
program register-datasets, as described in Section 6.6,

� -m <memory size (bytes) for accumulator>, to specify the amount of memory that should
be used on each back-end node for accumulators,

� -f <ADR front-end hostname> <ADR front-end port number>, to specify the host and the
port number that each back-end node should connect to; note that this port number should
be equal to the port number speci�ed by the \-b" option when the ADR front-end is started.

In addition, there are a number of options that are mainly used for debugging purpose.

� -h, to print out the list of valid command-line arguments,

60

� -q <query batch �le>, to start the parallel ADR back-end in debugging mode, in which case
the back-end nodes do not connect to the ADR front-end, but simply read a query from the
given �le, process the query and exit,

� -o <output �le name>, to force the ADR back-end to ignore the output-handling methods
speci�ed in the queries and write the output generated from processing ADR queries to �les
using the given �le name as a pre�x; the complete �le name has the following format:

<output file name>-<output tile number>.<back-end node MPI rank>

The ADR back-end program also has a couple of options to override the assignment between
dataset �les and the ADR back-end nodes. Recall that by default, each back-end node is assigned
a logical processor id and a number of logical disk id's, as speci�ed by the back-end con�guration
�le. This e�ectively de�nes a mapping from the logical processor id's to the logical disk id's. On
the other hand, the dataset registration �le de�nes a mapping from the dataset �les to the logical
disk id's. This two mapping therefore gives us the default assignment between dataset �les and
back-end nodes. Speci�cally, each back-end node is responsible for accessing the dataset �les that
are assigned to the logical disk id's assigned to that back-end node. This assignment is stored in the
dataset catalog. At startup time, the ADR back-end program allows users to override the default
assignment between back-end nodes and logical disk id's through one of the following command-line
arguments.

� -r, this command-line argument ignores the logical processor id's and simply assigns logical
disk id's to back-end nodes in a round-robin order, based on the MPI ranks of the back-end
nodes; that is, logical disk id 0 is assigned to the back-end node with MPI rank equal to 0,
logical disk id 1 is assigned to the back-end node with MPI rank equal to 1, and so on.

� -a <disk-assignment �le>, this command-line argument assigns logical disk id's to back-end
nodes according to the mapping speci�ed by the disk-assignment �le.

The disk-assignment �le allows more
exible assignment between the logical disk id's and the
back-end nodes. Users can explicitly assign logical disk id's to back-end nodes, based on the
hostnames or the MPI ranks of the back-end nodes. The dataset �les are then assigned to the
back-end nodes in an obvious way. Alternatively, users can explicitly assign logical processor id's
to back-end nodes, based on the hostnames or the MPI ranks of the back-end nodes, and then
reuse the mapping between the logical processor id's and the logical disk id's stored in the dataset
catalog to assign dataset �les to the back-end nodes. This allows users to easily substitute a host
listed in the back-end registration �le with another host.

Figure 32 and 33 show two disk-assignment �les that assign logical disk id's to back-end nodes
according to hostnames or MPI ranks, respectively. The two-letter key words at the beginning
of those two �les specify whether the mapping is from hostname (\h") to logical disk id's (\d")
or from MPI ranks (\r") to logical disk id's (\d"). Each back-end node would scan through the
given disk-assignment �le and look for the assigned logical disk id's assigned either to its hostname
(Figure 32) or to its MPI ranks ((Figure 33). The value \-1" on each line marks the end of the list
of logical disk id ranges.

Figure 34 and 35 show two disk-assignment �les that assign logical processor id's to back-end
nodes according to hostnames or MPI ranks, respectively. The two-letter key words at the beginning
of those two �les specify whether the mapping is from hostname (\h") to logical processor id's (\p")

61

disk assignment file

hd # map hostnames to logical disk ids

4 # number of valid logical disk ids starting from 0

host3 0-1 -1 # host3 is assigned logical disk id 0 and 1

host4 2-3 -1 # host4 is assigned logical disk id 2 and 3

Figure 32: An example of a disk-assignment �le that assigns logical disk id's according to back-end
hostnames.

disk assignment file

rd # map processor rank to logical disk ids

4 # number of valid logical disk ids starting from 0

0 0-2 -1 # MPI rank 0 is assigned logical disk id 0, 1, 2

1 3 -1 # MPI rank 1 is assigned logical disk id 3

Figure 33: An example of a disk-assignment �le that assigns logical disk id's according to MPI
ranks of back-end nodes.

or from MPI ranks (\r") to logical processor id's (\p"). Each back-end node would scan through
the given disk-assignment �le and look for the assigned logical processor id's assigned either to its
hostname (Figure 32) or to its MPI ranks ((Figure 33). It then uses the dataset catalog to �nd
out the logical disk id's assigned to the set of logical processor id's it assumes. The value \-1"
on each line marks the end of the list of logical processor id ranges. Figure 36 summarizes the
command-line arguments for the ADR back-end program.

disk assignment file

hp # map hostnames to logical proc ids

2 # number of valid logical processor ids starting from 0

host3 0 -1 # host3 is assigned logical processor id 0

host4 1 -1 # host4 is assigned logical processor id 1

Figure 34: An example of a disk-assignment �le that assigns logical processor id's according to
back-end hostnames.

62

disk assignment file

rp # map processor rank to logical proc ids

2 # number of valid logical processor ids starting from 0

0 1 -1 # MPI rank 0 is assigned logical processor id 1

1 0 -1 # MPI rank 1 is assigned logical processor id 0

Figure 35: An example of a disk-assignment �le that assigns logical processor id's to back-end MPI
ranks.

pbe -d <dataset catalog file>

-i <index catalog file>

-m <memory size (bytes) per back-end node for accumulator>

-f <ADR front-end hostname> <ADR front-end port number>

[-h]

[-q <query batch file>]

[-o <output file name>]

[-r]

[-a <disk-assignment file>]

Figure 36: Summary of the command-line arguments for the ADR back-end program. Arguments
enclosed in brackets \[]" are optional.

63

A ADR Utility Classes

This section lists the methods provided by ADR utility classes. These classes are intented to be
used in customization of ADR services.

� T2 AccMsgBuffer: an bu�er for communicating the accumulator elements during the global
combine phase; it is typedef'ed to class T2 UsrArg, and is always presented to the user either
as class T2 AccMsgBufferWriter, which is typedef'ed to class T2 UsrArgWriter, and class
T2 AccMsgBufferReader, which is typedef'ed to class T2 UsrArgReader.

� T2 Array<type>: a template for an array of object of class type; the class has three access
methods:

{ u int getNumberElements(): returns the size of the array in terms of the number of
elements

{ const type* getElements() const: returns the pointer to the actual element array

{ type* getElements(): returns the pointer to the actual element array

{ const type& operator[] (u int i) const: returns an immutable reference to the i-th
element

{ type& operator[] (u int i): returns a mutable reference to the i-th element

{ void resize(u int newsz): resize the array and keep the old elements whenever pos-
sible; if the new array is shorter, elements from the old array are truncated

{ void clear(u int newsz): resize the array and discard all elements

� T2 BlockRequest: an object to store a �le id, an o�set and a block size; it has the following
methods:

{ T2 DSFileID getFileID() const: returns the �le id of a chunk request (which is not
the �le descriptor)

{ T2 DSFileID& getFileID(): returns a reference to the �le id of a chunk request (which
is not the �le descriptor)

{ off t getOffset() const: returns the o�set into the data �le for the chunk request

{ off t& getOffset(): returns a reference to the o�set into the data �le for the chunk
request

{ size t getNumberBytes() const: returns the size of the chunk in terms of bytes

{ size t& getNumberBytes(): returns a reference to the size of the chunk in terms of
bytes

� T2 Box: a hyper-rectangle in some multi-dimensional attribute space (e.g., (10,20,50)-(40,100,60));
it consists of two points, a low point and a high point, which specify the lower and upper
bounds of the hyper-rectangle respectively; it has the following methods

{ T2 Box(u int ndim=0): a constructor that speci�es the number of dimension of the box

{ T2 Box(const T2 Point& low, const T2 Point& high): a constructor that speci�es
the lower and upper bounds of the hyper-box; the two points must have the same number
of dimensions

64

{ T2 Box(const T2 Box& b): a copy constructor

{ T2 Box(const T2 Point& p): to construct a box with both its lower and upper bounds
set to the same point, p

{ u int getNumberDimensions() const: returns the number of dimensions of the box
(i.e., the cardinality of the coordinates)

{ void setNumberDimensions(u int d): set the number of dimensions

{ const T2 Point& getLow() const: get the low point of the box

{ const T2 Point& getHigh() const: get the high point of the box

{ T2 Point& getLow(): get a reference to the low point of the box

{ T2 Point& getHigh(): get a reference to the high point of the box

{ bool contains(const T2 Box& box) const: returns true if the argument is wholly
contained by the owner box of the method

{ a set of operators between two boxes, which only work if the two boxes have the same
number of dimensions (the assignment operator also works if the box on the left-hand-
side has its number of dimensions equal to zero)

� T2 Box& operator = (const T2 Point &p): assignment from another point

� T2 Box& operator = (const T2 Box &b): assignment from another box

� bool operator == (const T2 Box& p) const: equality test

� bool operator != (const T2 Box& p) const: inequality test

� bool operator ^ (const T2 Point& p) const: returns true if the argument point
is contained within the box

� bool operator ^ (const T2 Box& p) const: intersection test

� T2 Cluster: a set of (void*, size t) pairs, each of which represents a pointer to a contigu-
ous data block and its size; it has the following methods:

{ u int getNumberBlocks() const: returns the number of blocks retrieved from disks

{ const char* getDataPointer(u int i) const: returns the pointer to the i-th block

{ size t getDataSize(u int i) const: returns the number of bytes of the i-th block

� T2 ClusterAuxInfoWriter: allows user-de�ned meta-data for a chunk, retrieved during index
search, to be written into a bu�er. It is a subclass of T2 UsrArgWriter, and implements the
same methods. The de�nition of T2 UsrArgWriter is given in this section.

� T2 ClusterAuxInfoRead is used to read the user-de�ned meta-data for a chunk from the
bu�er encapsulated by T2 ClusterAuxInfoWriter. It is a subclass of T2 UsrArgReader, and
implements the same methods. The de�nition of T2 UsrArgReader is given in this section.

� T2 ClusterInfoList: contains information for a list of input data chunks of all datasets
accessed by a given query, one entry per data chunk; it has the following methods

{ u int getNumberDatasets(): which returns the number of datasets accessed by the
query

{ T2 DSID getDatasetID(u int d): which returns the dataset ID of the d-th dataset
speci�ed in the query

65

{ u int getNumberClusters(u int d): which returns the number of clusters to be read
by the d-th dataset speci�ed in the query; note that this is not the same as the dataset
ID, which is returned by method getDatasetID

{ const T2 Box& getBoundingBox(u int d, u int i) const: which returns the bound-
ing box of the i-th input data chunk of the d-th dataset; note that i is just used to specify
the i-th input data chunk on the list among all the data chunks of a particular dataset
and the execution does not promise to read the data chunks by the order they are listed
on the list

{ bool getMetaData(u int d, u int i, T2 UsrArgReader& reader) const: which re-
turns the per-cluster meta-data provided by the index when it is looked up; note that
the caller must provide an object of T2 UsrArgReader as the third argument, which
could be used to read the meta-data after the method returns; returns true if d and i

is within the appropriate range, false otherwise

{ bool getClusterInfo(u int d, u int i, T2 Box& box, T2 UsrArgReader& reader):
which gets both the bounding box and the meta data of a particular data chunk with
one function call

� T2 FEDatasetEntry: a class to hold the information for a dataset as a result that the ADR
front-end returns in response to a dataset inquiry

{ T2 DSID getDatasetID() const: returns the unique dataset id

{ const char* getDatasetName() const: returns the dataset's unique name

{ const char* getDatasetDescription() const: returns the dataset one-line descrip-
tion, if any

{ size t getBlobDataSize() const: returns the size of the dataset blob object, if any

{ const char* getBlobObject() const: returns the content of the dataset blob object,
if any

{ u int getNumberIterators() const: returns the number of iterators for this dataset

{ const char* getIteratorName(u int i) const: returns the name of the i-th iterator

{ u int getNumberIndexes() const: returns the number of indexes for this dataset

{ const T2 IndexInfoEntry& getIndex(u int i) const: returns the information of the
i-th index

� T2 FEDatasetInquiryResults: a class to hold the results for all datasets returned by the T2
front-end in response to a dataset inquiry; this is e�ectively an array of T2 FEDatasetEntry

objects

{ T2 FEInquiry::inquiry result tag getStatus() const: return the status of the in-
quiry, which could be one of the following constants:

� T2 FEInquiry::results ok: the results are complete and correct

� T2 FEInquiry::bad socket error: the results are not valid due to some socket
error occurs during the inquiry

� T2 FEInquiry::invalid inquiry: the inquiry was invalid

� T2 FEInquiry::t2 frontend not ready: the ADR front-end is not ready to answer
inquiries for datasets

66

{ u int getNumberEntries() const: returns the number of T2 FEDatasetEntry entries
in this object

{ const T2 FEDatasetEntry& operator [] (u int i) const: returns a reference to the
i-th entry in this object

� T2 FEFunctionEntry: a class to hold the information for a constructor function as a result
that the ADR front-end returns in response to a constructor function inquiry

{ T2 UDFType getFunctionType() const: return the function type, which could be one
of the following constants:

� T2 UDF Unknown: an unknown/invalid type

� T2 UDF AccMeta: a constructor function for an accumulator meta-data object

� T2 UDF Aggregation: a constructor function for an aggregation function object

� T2 UDF Projection: a constructor function for a projection function object

{ u int getFunctionID() const: returns the constructor function id

{ const char* getFunctionName() const: returns the constructor function name

{ const char* getFunctionDescription() const: returns a one-line description for
the constructor function, if any

� T2 FEFunctionInquiryResults: a class to hold the results for all constructor functions re-
turned by the T2 front-end in response to a constructor function inquiry; this is e�ectively
an array of T2 FEFunctionEntry objects

{ T2 FEInquiry::inquiry result tag getStatus() const: return the function type,
which could be one of the following constants:

� T2 UDF Unknown: an unknown/invalid type

� T2 UDF AccMeta: a constructor function for an accumulator meta-data object

� T2 UDF Aggregation: a constructor function for an aggregation function object

� T2 UDF Projection: a constructor function for a projection function object

{ u int getNumberEntries() const: return the number of T2 FEFunctionEntry objets

{ const T2 FEFunctionEntry& operator [] (u int i) const: return a reference to
the i-th entry in this object

� T2 IndexInfoEntry: a class to hold the information for a user-de�ned index

{ T2 IndexID getIndexID() const: returns the unique index id

{ const char* getIndexName() const: returns the index name

{ const char* getIndexDescription() const: returns the index one-line description,
if any

� T2 OutputBuffer: a bu�er that the �nal output uses for
attening out its data into contiguous
space when necessary; it provides the same set of methods provided by T2 UsrArgWriter with
the addition of the following method.

{ const char* getCurrentPosition() const: returns the position currently pointed to
by the bu�er pointer

67

� T2 OutputDataPtrList: an ordered list of pairs of char* pointers and data sizes; it has the
following methods

{ void insertDataPointer(const char* p, size t s): which allows pointer-size pairs
to be appended to the list

� T2 Point: a point in some multi-dimensional attribute space (e.g., (3, 50, 29)); currently each
coordinate of the point is a float; has the following methods,

{ T2 Point(u int ndim=0): a constructor that speci�es the number of dimension of the
point

{ T2 Point(u int ndim, const float* c): a constructor that takes an array of ndim

oating point numbers to initialize the coordinates of the point

{ T2 Point(const T2 Array<float>&): a constructor that takes an array of
oating point
numbers to initialize the coordinates of the point

{ u int getNumberDimensions() const: returns the number of dimensions of the point
(i.e., the cardinality of the coordinates)

{ void setNumberDimensions(u int d): set the number of dimensions

{ const float& operator[](const u int i) const: returns the i-th coordinate

{ float& operator[](const u int i): returns a reference to the i-th coordinate

{ T2 Point& offset(const T2 Point& p): updates the point by adding the argument p
to the point coordinate-wise

{ a set of operators between two points, which only work if the two points have the same
number of dimensions (the assignment operator also works if the point on the left-hand-
side has its number of dimensions equal to zero)

� T2 Point& operator = (const T2 Point &p): assignment from another point

� bool operator == (const T2 Point& p) const: equality test

� bool operator != (const T2 Point& p) const: inequality test

� bool operator ^ (const T2 Point& p) const: intersection test

� T2 QueryInfo: a class that provides information about the back-end system (see the descrip-
tion about T2 System) and the query being processed

{ u int getNumberNodes() const: returns the number of back-end nodes,

{ T2 ProcID getMyNode() const: returns the local processor id

{ u int getBackEndEndian() const: returns either the constant T2 BigEndian or the
constant T2 LittleEndian to show which endian is used on the back-end nodes

{ u int getExpectedQueryOutputEndian() const: returns either the constant T2 BigEndian

or the constant T2 LittleEndian to show which endian should be used for the query
output

{ T2 Iteration getNumberTiles() const: return the number of output tiles

{ T2 Iteration getCurrentTileNumber() const: return the number of the tile that the
ADR back-end is currently working on

68

� T2 Region: a list of T2 Box'es in some multi-dimensional attribute space (e.g., f(1,5)-(2,7),
(10,4)-(11,5)g represents the following points: (1,5), (1,6), (1,7), (2,5), (2,6), (2,7), (10,4),
(10,5), (11,4), (11,5))

{ T2 Region(u int ndim=0, u int maxnboxes=0): a constructor that speci�es the num-
ber of dimensions (ndim) and the maximum number of boxes that can be stored in the
region (maxnboxes)

{ T2 Region(const u int n, const T2 Box* b): a constructor that initializes the re-
gion with an array of n T2 Box's pointed to by the pointer b

{ T2 Region(const T2 Region& r): a copy constructor

{ T2 Box(const T2 Box& b): to construct a region as a set of a single box b

{ T2 Box(const T2 Point& p): to construct a region as a set of a single box whose lower
and upper bounds are both set to the same point, p

{ u int getNumberDimensions() const: returns the number of dimensions of the point
(i.e., the cardinality of the coordinates)

{ void setNumberDimensions(u int d): set the number of dimensions

{ u int getNumberBoxes() const: returns the number of T2 Box'es in the region

{ u int getMaxSetSize() const: returns the maximum number of T2 Box'es that can
be stored with the region

{ void growMaxSetSize(u int l): grow the maximum number of T2 Box'es that can be
stored with the region to the give argument

{ T2 Region& operator += (const T2 Box& box): add a box to the region

{ T2 Region& operator << (const T2 Box& box): add a box to the region

{ const T2 Box& operator[](const u int i) const: returns the i-th box

{ T2 Box& operator[](const u int i): returns a reference to the i-th box

{ bool contains(const T2 Box& box) const: returns true if the argument is wholly
contained in the region

{ bool contains(const T2 Region& reg) const: returns true if the argument is wholly
contained in the region

{ void getMBR(T2 Box& box) const: returns a bounding box of the entire region

{ a set of overloaded assignment operators

� T2 Region& operator = (const T2 Point& pt): make the region a region that
contains only one point, which is the given argument

� T2 Region& operator = (const T2 Box& box): make the region a region that
contains only one box, which is the given argument

� T2 Region& operator = (const T2 Region &r): assignment from another region

{ a set of operators between two regions, which only work if the two points have the
same number of dimensions (the assignment operator also works if the region on the
left-hand-side has its number of dimensions equal to zero)

� bool operator == (const T2 Region& p) const: equality test

� bool operator != (const T2 Region& p) const: inequality test

� bool operator ^ (const T2 Box& b) const: intersection test

69

� T2 System: an object that provides system information such as the number of processors and
the local processor id; has the following methods,

{ u int getNumberNodes() const: returns the number of back-end nodes,

{ T2 ProcID getMyNode() const: returns the local processor id

{ u int getBackEndEndian() const: returns either the constant T2 BigEndian or the
constant T2 LittleEndian to show which endian is used on the back-end nodes

� T2 UsrArg: a class used to represent application-dependent arguments; the callee that receives
this class is responsible for parsing the arguments correctly; this class actually is presented
to the users in two forms, a writer form (T2 UsrArgWriter), which allows data to be written
into the bu�er, and a reader form (T2 UsrArgReader), which allows data written into the
bu�er earlier to be read from the bu�er;
The T2 UsrArgWriter class has the following methods:

{ bool isFull() const: returns true if the bu�er is already full, false otherwise

{ size t getBufferSize() const: returns the bu�er size in bytes

{ size t getNumberBytesWritten() const: returns the number bytes that has been
written into the bu�er

{ T2 UsrArgWriter& write(const char* c, size t n): allows n bytes pointed by c to
be written into the bu�er

{ T2 UsrArgWriter& operator << (type b): allows values of various primitive types
(type can be char, int,
oat, double, etc.) to be written into the bu�er

The T2 UsrArgReader class provides similar methods:

{ size t getDataSize() const: returns the number of bytes of data that can be read
from the bu�er

{ void rewind(): which allows the bu�er pointer to be reset to the beginning of the bu�er

{ T2 UsrArgWriter& read(char* c, size t n): allows n bytes to be read from the
bu�er into the user-bu�er

{ const char* read(size t n, size t& actual): returns the address that the current
pointer points to and advance the current pointer by n bytes if possible; if less than n

bytes are available in the bu�er, the current pointer is advanced pass the end of bu�er,
and actual gives the actual number of bytes the current pointer is forwarded; this
function is e�ectively the same as the other read method, except it avoids the memory
copy made by the other read method

{ T2 UsrArgWriter& operator >> (type b): allows values of various primitive types
(type can be char, int,
oat, double, etc.) to be read from the bu�er

� T2 VArray<type>: a template for a variable-size array of object of class type;

{ u int getNumberElements(): returns the size of the array in terms of the number of
elements

{ const type& operator[] (u int i) const: returns an immutable reference to the i-th
element

{ type& operator[] (u int i): returns a mutable reference to the i-th element

70

{ T2 VArray<type>& operator << (const type& e): appends an element of type to the
array

71

B An Example Application

B.1 The Simpli�ed Virtual Microscope (SVM)

In this section we describe an example application, called simple virtual microscope (SVM), to
illustrate the customization of ADR services. The SVM is a simpli�ed version of the Virtual
Microscope [2, 10], and is based on a subset of the functionality of the Virtual Microscope. The
input datasets for the SVM are 2-dimensional PPM images. The output is also a 2-dimensional
image, which corresponds to a region of the original input image, viewed at a lower-resolution,
speci�ed by a zoom factor. The complete SVM application consists of a SVM client, a SVM
front-end, the ADR front-end, and a customized ADR back-end.

The full-resolution images are partitioned into regular rectangular chunks, and stored in the
ADR. The index for an image dataset is an array. Each entry of this array corresponds to a
rectangular chunk in the original image, and holds the bounding box and location of the chunk in
the data �les.

The ADR back-end is customized to process queries submitted by the SVM client. A query
speci�es a rectangular region in the selected image dataset, and a zoom factor to create a lower-
resolution image. The customization implements codes to �nd and access the image chunks that
intersect the query region, iterate through the pixels in an image chunk, carry out sub-sampling
to create an image at the speci�ed zoom factor, and return the lower-resolution image back to the
SVM client.

The ADR front-end maintains information about the datasets available at the ADR back-end,
and the registered user-de�ned functions (e.g., projection, aggregation) that have been implemented
as part of the customization. In particular, for each registered SVM image dataset, the ADR front-
end stores the user-de�ned name and the resolution of the image, and a thumbnail for the image.
It interacts with one or more SVM front-ends to receive inquiries for dataset and user-de�ned
methods, and to receive ADR queries to be processed by the back-end.

At the start-up, the SVM front-end connects to the ADR front-end and downloads the names,
resolutions, and thumbnails of all of the registered SVM datasets, along with the information on
the user-de�ned functions, from the ADR front-end. Each thumbnail image is written to the local
disk, to be accessed later for queries from the SVM client. This design has been chosen simply for
the ease of implementation. In general, downloading all thumbnail images can be a prohibitively
expensive operation. In that case, one could choose to dynamically download the thumbnails as
they are needed, and keep a cache of thumbnail images. After downloading meta-data for datasets
and user-de�ned methods, the SVM front-end listens for a connection from a SVM client. Unlike
the Virtual Microscope front-end, the SVM front-end currently can only serve one SVM client at a
time. Upon accepting a connection, it can receive queries from the client, convert them into ADR
queries and submit to the ADR front-end.

The SVM client implements a graphical user interface for a user to select an image dataset, and
request a region of the image at a zoom factor. Figure 37 shows the client user interface for the
example application. The SVM client �rst interacts with the SVM front-end to retrieve the names
of all SVM datasets registered in ADR. Then, the user can choose a particular image dataset for
browsing. The client downloads the size and the thumbnail image of the dataset chosen by the user,
and displays the thumbnail image so that user can choose a region in the image. After the user
selects a zoom value and a rectangular portion of the image to be displayed, the SVM client sends
the selected zoom value and the rectangular region as a request to the SVM front-end, and awaits
for the result from the ADR back-end nodes. After processing the query, each ADR back-end node
makes a socket connection to the SVM client and sends a portion of the result, i.e., a sub-image of

72

Figure 37: The client interface for the example application.

the entire lower-resolution image back to the SVM client, along with a header information for each
sub-image. The SVM client stitches the sub-images back into one output image and displays the
image in its display panel.

Section B.2 brie
y discusses how ADR is customized for the SVM application. Section B.3
describes how to compile and run the SVM application codes. Section B.4 describes how new
datasets (ie images) can be added to the SVM application.

B.2 SVM Customization Codes

In this section, we describe the customization codes for the SVM application. The SVM client is
implemented in Java, and is used to select images, the zoom factor, and rectangular regions in an
image. Since the client does not use any ADR customization interface, it is not described in this
document.

B.2.1 Customization of SVM Front-end

The SVM front-end interacts with both the SVM client and the ADR front-end. In this section,
we only focus on its interaction with the ADR front-end.

The SVM front-end interacts with the ADR front-end in the following way.

1. It connects to the ADR front-end to start a session.

73

2. It inquires the ADR front-end for information about the SVM datasets and functions.

3. It submits ADR queries to the ADR front-end.

4. It disconnects from the ADR front-end to end the session.

Figure 38 shows the SVM front-end implementation{ some of the details have been omitted
in the �gure for the sake of brevity and clarity. The SVM front-end �rst connects to the ADR
front-end using the T2 FrontEnd::connectT2FrontEndByHostname method. The two arguments
specify the hostname of the machine that the ADR front-end runs on, and the port number that
the ADR front-end is listening to. The SVM front-end then calls svm inquire functions to �nd
out the id of the customized projection function, the id of the customized accumulator meta-data
object constructor, and the id of the customized aggregation function for subsampling. It uses the
keyword \t2-svm-example", which is the name assigned by the user when functions are registered,
to search for the functions. The variables pid, accid, and aggid are used to store projection
function id, accumulator meta-data object id, and aggregation function id, respectively. The SVM
front-end calls svm inquire datasets to retrieve the information about the available datasets. The
retrieved information is stored in the svm ImageInfoCollection object. The user-de�ned binary
objects for SVM applications are the thumbnails of the images loaded in the ADR. The thumbnail
images retrieved as a result of the inquiry are written to the directory speci�ed by the variable
thumbnail dir so that the front-end can send the thumbnail image to the client when the client
selects the corresponding dataset.

After the information about functions and datasets is retrieved, the front-end can interact with
an SVM client. Assume the client selects an image, and requests a rectangular portion of the
image, starting at pixel (x,y) with w pixels wide and h pixels high, at a zoom factor z, which means
every pixel in the output image corresponds to z�z pixels in the input image. Upon receiving the
request, the SVM front-end calls GenerateQuery to create an ADR query object, and sends it to
the ADR front-end using method T2 Frontend::submitQBatch.

We now discuss the three functions that the SVM front-end calls in greater detail. Note that
in most of the code segments listed in this section, codes for handling error conditions have been
omitted for clarity.

Figure 39 describes the implementation of svm inquire functions. The variable func results

is used to hold the results of the inquiry for user-de�ned functions. The SVM application assumes
that only one SVM projection function, one SVM accumulator meta-data object function, and one
SVM aggregation function have been implemented. Furthermore, it is assumed that the names
of these functions all start with the word, \t2-svm-example". These assumptions are made to
simplify the example code. Therefore, using the keyword as a pattern, a call to the method
T2 FrontEnd::inquireFunctionRegExp can retrieve all functions, whose names contain the key-
word \t2-svm-example". The argument T2 UDF Unknown retrieves any type of function registered
in the customized ADR, and the argument func fields speci�es that only the function id and the
function name are requested. The SVM front-end iterates through each entry in the results and
sets the function id to proper values, assuming that there is only one user-de�ned function for each
function type.

Figure 40 shows the implementation of svm inquire datasets function. The SVM application
assumes that all datasets names start with the keyword, \t2-svm-example". Therefore, using the
keyword as a pattern, a call to the method T2 FrontEnd::inquireDatasetRegExp retrieves all
datasets registered in ADR. The argument fields speci�es that for each dataset, the dataset id,
the dataset name, the dataset description, the dataset blob object, the size of the blob object, and

74

#include "t2_frontend.h"

T2_FrontEnd fe;

if (fe.connectT2FrontEndByHostname(hostname, port) == false)

// connection fails, handle error;

// inquire of ADR front-end about functions

const char svm_keyword[] = "t2-svm-example";

if (svm_inquire_functions(fe, svm_keyword, pid, accid, aggid)

== false)

// inquiry fails, handle error;

// inquire of ADR front-end about datasets (images)

svm_ImageInfoCollection images;

const char thumbnail_dir[] = "thumbnails"; // where to store thumbnails

if (svm_inquire_datasets(fe.svm_keyword, pid, accid, aggid, thumbnail_dir, images)

== false)

// inquiry fails, handle error;

// Interact with the SVM client, and create an ADR query object

// for image i, resolution z, and a query region starting from

// (x,y) of w pixels wide and h pixels high ...

GenerateQuery(fe, packno, packtype, x, y, w, h, z, hostname, backendport, images[i]);

fe.disconnectT2FrontEnd(); // disconnect from ADR front-end

Figure 38: Outline of the implementation for the SVM front-end.

75

#include "t2_frontend.h"

svm_inquire_functions(T2_FrontEnd& fe, const char* keyword,

u_int& pid, u_int& accid, u_int& aggid)

f
T2_FEFunctionInquiryResults func_results; // to hold results

const int func_fields = T2_FEInquiry::function_id_field |

T2_FEInquiry::function_name_field;

if (fe.inquireFunctionRegExp(keyword, T2_UDF_Unknown, func_fields, func_results)

== false)

// inquiry fails, handle error

for (u_int i=0; i<func_results.getNumberEntries(); i++) f
T2_FEFunctionEntry& entry = func_results[i];

switch (entry.getFunctionType()) f
case T2_UDF_AccMeta: // accumulator meta object

if (accid == 0) accid = entry.getFunctionID();

break;

case T2_UDF_Projection: // projection function

if (pid == 0) pid = entry.getFunctionID();

break;

case T2_UDF_Aggregation: // aggregation function

if (aggid == 0) aggid = entry.getFunctionID();

break;

g
g

g

Figure 39: The implementation of function svm inquire functions.

76

the id of the index is retrieved. These �elds are later used to formulate ADR queries. The SVM
front-end iterates through each entry in the result of the inquiry, stored in dataset results object.
The width and height of the image dataset are assumed to be stored in the dataset description.
The blob object, which is assumed to be the thumbnail of the dataset, is written to a �le in the
speci�ed directory, using the dataset name as the pre�x for the thumbnail �le.

Figure 41 shows the implementation of GenerateQuery that creates an ADR query. This
function �rst creates a query batch object of one single query, which only accesses one input
dataset. It then speci�es the aggregation function id. The variables packno and packtype are
two integers that the SVM client uses to identify the packets it receives from the ADR back-end.
They are sent as the user arguments to the SVM aggregation function, which would pass the two
integers to the SVM output object so that they can be embedded in the output result sent from the
ADR back-end to the SVM client. The SVM front-end then sets the accumulator meta-data object
function id, the dataset id, the dataset iterator id, the dataset index id and the projection function
id. It also speci�es the rectangular region of interest in the input dataset, and the extent of the
output image. Afterwards, the user arguments for the projection function and the accumulator
meta-object constructor are speci�ed. The former requires the coordinates of the top-left pixel of
the output image and the resolution along both dimensions, while the latter requires the width and
height of the output image, along with the number of bytes per output pixel. These values are
used by the constructor functions to correctly initialize the projection function and the accumulator
meta-data objects. Finally, the SVM front-end speci�es that the output should be returned through
UNIX sockets to the SVM client, and the hostname and the port number for socket connection.

B.2.2 The SVM Helper Classes

In this section, we brie
y describe three classes that will be used by the SVM customization code
to be described in the following sections.

� svm Image is a class that stores an image.

� svm ImagePixel is a class that represents a pixel.

� svm ImageIterator is a class that can be used to iterate over a given rectangular region of
pixels in an image.

Figure 42 shows the de�nitions of these helper classes. The svm Image stores an image with the
given width and height. The pointer bytes points to an array of bytes that correspond to the pixels,
stored in the row-major order. The svm ImagePixel represents a pixel with a given number of bytes,
which are pointed to by the pointer bytes. The svm ImageIterator is an iterator that iterates over
a given rectangular region of pixels in an image. The constructor function for svm ImageIterator,
as is shown in Figure 42, has eight arguments; w and h specify the width and height of the given
image, s speci�es the number of bytes per pixel, and b points to the pixels, stored in the row-major
order. The arguments x s, y s, x e and y e specify a rectangular region of pixels, relative to the
top-left corner of the image. In the constructor method of class svm ImageIterator, the class data
members x start, y start, x end, y end, pixelsize, and bytes are initialized accordingly, x next

and y next are initialized to the coordinates of the �rst pixel to return x s and y s, respectively,
and the address of the �rst pixel to be return is computed and assigned to pixel next. When
the method getNextPixel of class svm ImageIterator is called, it iterates through pixels in the
row-major order. The values of x next and y next are stored in the arguments x off and y off,
respectively, and the data member pixel.bytes is set to the current value of pixel next. The

77

svm_inquire_datasets(T2_FrontEnd& fe, const char* keyword,

u_int pid, u_int accid, u_int aggid, const char* thumbnail_dir,

svm_ImageInfoCollection& allimages)

f
T2_FEDatasetInquiryResults dataset_results;

const int fields = T2_FEInquiry::dataset_datasetid_field |

T2_FEInquiry::dataset_datasetname_field |

T2_FEInquiry::dataset_datasetdescription_field |

T2_FEInquiry::dataset_blobsize_field |

T2_FEInquiry::dataset_blobobj_field |

T2_FEInquiry::dataset_indexid_field;

if (fe.inquireDatasetRegExp(keyword, fields, 0, dataset_results) == false)

// inquiry fails, handle error

allimages.growSize(dataset_results.getNumberEntries());

for (u_int i=0; i<dataset_results.getNumberEntries(); i++) f
svm_ImageInfoEntry*& info_entry = allimages[i];

info_entry = new svm_ImageInfoEntry;

info_entry->getDatasetName() = inq_entry.getDatasetName();

inq_entry.getDatasetName() = NULL;

info_entry->getDatasetID() = inq_entry.getDatasetID();

info_entry->getIndexID() = inq_entry.getIndex(0).getIndexID();

info_entry->getProjectionID() = pid;

info_entry->getAccMetaID() = accid;

info_entry->getAggregationID() = aggid;

// extract width and height from the dataset description

sscanf(inq_entry.getDatasetDescription(), "%d %d",

&(info_entry->getImageWidth()), &(info_entry->getImageHeight()));

// get thumbnail

info_entry->getThumbnailFileSize() = inq_entry.getBlobDataSize();

write_thumbnail_file(thumbnail_dir, info_entry->getDatasetName(),

inq_entry.getBlobObject(), info_entry->getThumbnailFileSize());

g
g

Figure 40: The implementation of function svm inquire datasets.

78

GenerateQuery(T2_FrontEnd& fe, int packno, int packtype, int x, int y, int w, int h,

int z, char *hostname, int backendport, svm_ImageInfoEntry *ie)

f
T2_QBatch qbatch(1); // only one query per batch

T2_QSpec& qspec = qbatch.getQuerySpec(0);

qspec.setNumberDatasets(1); // only access one dataset

qspec.useBigEndianUserArg(); // use big endian

T2_UsrArgWriter write_arg; // user argument writer

T2_QSpecDataset& dataset_spec = qspec.getDatasetSpec(0);

qspec.getAggrID() = ie->getAggregationID();

qspec.getAggrConstructorArg().allocBuffer(sizeof(u_int)*2);

write_arg.open(qspec.getAggrConstructorArg());

write_arg << packno << packtype;

write_arg.close();

qspec.getAccID() = ie->getAccMetaID();

qspec.getAccNavigatorID() = 0; // assuming only 1 acc iterator

dataset_spec.getDatasetID() = ie->getDatasetID();

dataset_spec.getIteratorID() = 0; // assume only 1 dataset iterator

dataset_spec.getIndexID() = ie->getIndexID();

dataset_spec.getProjID() = ie->getProjectionID();

T2_Box& inbox = dataset_spec.getQueryBox(); // set the input query box

inbox.setNumberDimensions(2);

inbox.getLow()[0] = x; inbox.getLow()[1] = y;

inbox.getHigh()[0] = x+w; inbox.getHigh()[1] = y+h;

T2_Box& output_box = qspec.getOutputBox(); // set the output image extent

output_box.setNumberDimensions(2);

output_box.getLow()[0] = 0; output_box.getLow()[1] = 0;

output_box.getHigh()[0] = w/z; output_box.getHigh()[1] = h/z;

// set projection constructor user arg

dataset_spec.getProjConstructorArg().allocBuffer(sizeof(u_int)*4);

write_arg.open(dataset_spec.getProjConstructorArg());

write_arg << x << y << z << z;

write_arg.close();

// set accumulator constructor user arg

int pixelsize=3;

qspec.getAccConstructorArg().allocBuffer(sizeof(u_int)*3);

write_arg.open(qspec.getAccConstructorArg());

write_arg << w/z << h/z << pixelsize;

write_arg.close();

T2_QSpecOutput& outspec = qspec.getOutputSpec();

outspec.setOutputHandleType(t2_oSocket);

outspec.setHostName(hostname); // store the hostname of the client

outspec.getPortNumber() = backendport; // store the port number client listens to

outspec.useBigEndianOutput(); // use big endian for output for Java client

outspec.disableT2Protocol(); // do not use ADR standard protocol

g

Figure 41: The implementation of function GenerateQuery.

79

iterator advances to the next pixel by incrementing x next and increasing pixel next by pixelsize
bytes. However, in the case where the value of x next exceeds the value of x end, x next is reset
to x start, y next is incremented, and the pointer pixel next is advanced by skip bytes bytes,
which are computed by the constructor of svm ImageIterator.

B.2.3 Customization of Indexing Service

In this section, we describe the SVM customized indexing class derived from the T2 Index base
class. In the current implementation, each index �le is associated with exactly one data �le of a
dataset. That is, each index �le contains the necessary information about all clusters stored in the
associated data �le. For each cluster, an index �le keeps an entry with the following information.

� x pos, y pos: the coordinates of the top-left pixel of the cluster relative to the top-left pixel
of the entire input image,

� width, height: the width and height of the cluster

� pixelsize: the number of bytes per pixel,

� offset, size, fid: these values specify the location of the cluster in the data �le,

{ fid: speci�es the id of the data �le of the dataset; recall that this id corresponds to the
order that the data �le appears in the data registration �le (see Section 6.6),

{ offset: the o�set from the beginning of the data �le for the �rst byte of the cluster,

{ size: the size of the cluster in bytes.

The values x pos, y pos, width and height together de�ne the minimum bounding rectangle of
the cluster. For simplicity, all values are stored in the ASCII format, and each entry is stored as a
single line.

Figure 43 shows the de�nition of the customized index class, along with its constructor. When
a back-end node is assigned multiple data �les of a given dataset, it is also assigned all the index
�les associated with those data �les. The ADR back-end would pass the �le descriptors for those
index �les to the index constructor function.

Figure 44 shows the implementation of the two virtual functions that class svm ImageIndex

inherited from the base class, T2 Index. When class svm ImageIndex is asked to locate all the
clusters intersecting the query box, it needs to go through all entries in all the index �les it is
assigned to and returns the information of those clusters one-by-one. The class svm ImageIndex

therefore uses a counter, curfp, to keep track of the current index �le it is looking up. The method
svm ImageIndex::fetchInit simply initializes curfp to 0, and rewinds the �rst index �le to the
beginning of the �le. The method svm ImageIndex::fetch then simply resumes the search from
where it left o� before and for every cluster entry that it reads from the current index �le, using a
function called my read, it computes the minimum bounding rectangle for the query and checks if
it intersects with the query box.

B.2.4 Customization of Attribute Space Service

In this section, we describe the implementation of the user-de�ned projection function for the SVM
application. The projection function maps the coordinates of a pixel, de�ned in the full-resolution
input image, to the coordinates of the corresponding pixel in the lower-resolution output image.
The coordinate space of the full-resolution image forms the input attribute space, whereas the

80

class svm_Image f
u_int width, height, // width and height of an image

pixelsize; // number of bytes per pixel

u_char *bytes; // the byte array of the pixels

g;

class svm_ImagePixel f
u_int pixelsize; // number of bytes for this pixel

u_char* bytes; // bytes of this pixel

g;

class svm_ImageIterator f // an iterator for a portion of an image

u_int x_start, y_start, x_end, y_end, // the beginning and the end of

// the range of pixels to be

// iterated over

pixelsize; // number of bytes per pixel

u_char *bytes; // pointer to the first pixel to of the image

u_int x_next, y_next; // offset of the next pixel to return

u_char *pixel_next; // pointer to the next pixel to return

size_t skip_bytes; // number of bytes to skip when advancing

// the pointer pixel_next from pixel

// (x_end, i) to (x_start, i+1)

// return the next pixel

bool getNextPixel(u_int& x_off, u_int& y_off, svm_ImagePIxel& pixel);

g;

svm_ImageIterator::svm_ImageIterator(u_int w, u_int h, u_int s, u_char* b,

u_int x_s, u_int y_s, u_int x_e, u_int y_e)

: x_start(x_s), y_start(y_s), x_end(x_e), y_end(y_e), pixelsize(s), bytes(b),

x_next(x_s), y_next(y_s)

f
if (x_end >= w) x_end = w-1; // cut x_end back if x_end is out of range

if (y_end >= h) y_end = h-1; // cut y_end back if y_end is out of range

pixel_next = bytes + (x_start + width * y_start) * pixelsize;

skip_bytes = (width - x_end + x_start) * pixelsize;

g

Figure 42: Some SVM helper classes to be used by the customization code.

81

#include "t2_index.h"

class svm_ImageIndex: public T2_Index f
T2_Array<FILE*> fps;

u_int curfp;

g;

T2_UDFRet

svm_ImageIndexConstructor(const T2_System& system, T2_UsrArgReader& arg,

const T2_Array<int>& fd, const T2_Array<int>& dsfd,

const T2_Array<T2_DSFileID>& dsfid,

T2_Index*& idxp)

f // ignore system, arg

idxp = (T2_Index *) new svm_ImageIndex(fd);

return T2_UDFRet_OK;

g

svm_ImageIndex::svm_ImageIndex(T2_Array<int> fds)

f
// turn all the file descriptors into file streams and store them in fps[]

for (u_int i=0; i<fds.getNumberElements(); i++)

fps[i] = fdopen(fds[i], "r");

g

Figure 43: The customized index class and its constructor function for the SVM application. Only
the data member of the class are shown in the �gure.

82

T2_UDFRet

svm_ImageIndex::fetchInit(const T2_System& system, const T2_Box& qr)

f
curfp = 0; // reset counter to start from first index file

fseek(fps[curfp], 0, SEEK_SET); // rewind the file

return T2_UDFRet_OK;

g

T2_UDFRet

svm_ImageIndex::fetch(const T2_System& system, const T2_Box& qr,

bool& eod, T2_Box& mbr, T2_ClusterAuxInfoWriter& info,

T2_VArray<T2_BlockRequest>& chk)

f
mbr.setNumberDimensions(2); // each input is 2-dim

while (curfp < fps.getNumberElements()) f
u_int x_pos, y_pos, width, height, pixelsize, offset, size, fid;

while (!fps[curfp].eof()) f
// read from fps[curfp] all the stored information about this cluster

my_read(fps[curfp], x_pos, y_pos, width, height, pixelsize, offset, size, fid);

// compute mbr of the cluster

mbr.getLow()[0] = x_pos;

mbr.getLow()[1] = y_pos;

mbr.getHigh()[0] = x_pos + width - 1;

mbr.getHigh()[1] = y_pos + height - 1;

if (qr ^ mbr) f // cluster mbf intersects with query region

// store x_pos and y_pos in info, just for demonstration purpose

info.allocBuffer(sizeof(x_pos) + sizeof(y_pos)); // allocate buffer

info << x_pos << y_pos;

// set one block request for this cluster

chk << T2_BlockRequest(fid, offset, size);

eod = false; // set end-of-data to false

return T2_UDFRet_OK;

g
g // while my_read()

if (++curfp < fps.getNumberElements())

fseek(fps[curfp], 0, SEEK_SET); // rewind the file

g // while (curfp < fps.getNumberElements())

eod = true; // no more data

return T2_UDFRet_OK;

g

Figure 44: The fetchInit() and fetch() functions of the customized index for the SVM example.

83

#include "t2_prj.h"

class svm_ImageProjection: public T2_ProjectFuncObj f
u_int x_orig, y_orig, x_size, y_size;

g;

T2_UDFRet

svm_ImgPrjConstructor(const T2_System& system, T2_UsrArgReader& arg,

T2_ProjectFuncObj*& prjfunc)

f
arg >> xo >> yo >> xs >> ys;

prjfunc = (T2_ProjectFuncObj *) new svm_ImageProjection(xo, yo, xs, ys);

return T2_UDFRet_OK;

g

Figure 45: The customized class and its constructor function for attribute space service in the SVM
application. Only the data members of the class are shown in the �gure.

output attribute space is the coordinate space of lower-resolution image. In order to correctly
project a coordinate in the input attribute space into the coordinate in the output attribute space,
the user-de�ned projection function requires the coordinates of the top-left pixel of the output
image, de�ned in the input attribute space, and the zoom values in both dimensions. These values
come from the user argument, contained in the ADR query (see Figure 41). Figure 45 shows the
de�nition of svm ImageProjection, derived from the ADR base class T2 ProjectFuncObj. As is
seen in the �gure, svm ImageProjection contains four data members to store the coordinates of
the top-left pixel of the output image (x pos and y pos) and the zoom values; (x size and y size).
The constructor function reads the four values out of the user argument, and uses them to initialize
the projection function, svm ImageProjection.

Figure 46 shows the implementation of the two virtual methods that svm ImageProjection

inherits from the T2 ProjectFuncObj base class. The method svm ImageProjection::project

projects an input point in the input attribute space to an output point in the output attribute
space. This is done through the statements that assign values to output�[0] and output�[1], as is
shown in the �gure. The method svm ImageProjection::project sets the
ag succeed to true

only if the input point falls inside the given query box iqr and the output point it projects to falls
inside the tile region tilereg. In this case, project adds the output point to the list of regions,
speci�ed by the argument output rg. That is it e�ectively creates an output region that consists
of one single point. Otherwise, the method sets the
ag succeed to false, to indicate that either
the input point is clipped out or it does not project to a point inside the accumulator tile region.
The method svm ImageProjection::projectBox simply projects the two diagonal corners of the
input box, inbox, and uses the two resulting points as the corners of the output box, outbox.

B.2.5 Customization of Dataset Service

Figure 47 shows the customized classes for the dataset service. In particular, the SVM derived class
svm ImageDataset encapsulates a representation for an image by storing the width and height of
the image, the number of bytes per pixel, and the maximum value stored with each byte. The
SVM class svm ImageDatasetIterator is an iterator for a data cluster of the dataset, and uses

84

T2_UDFRet

svm_ImageProjection::project(const T2_System& system,

const T2_Box& iqr, const T2_Region& tilereg,

const T2_Point& input_pt,

bool& succeed, T2_Region& output_rg)

f
succeed = false;

if (!iqr.contains(input_pt)) // point not inside query window

return T2_UDFRet_OK;

T2_Point output_pt(2); // a point by projecting input_pt

output_pt[0] = (input_pt[0] - x_orig) / x_size;

output_pt[1] = (input_pt[1] - y_orig) / y_size;

if (tilereg.contains(output_pt) == true) f
output_rg.setNumberDimensions(2);

output_rg.growMaxSetSize(1); // grow region set to store one point

output_rg << output_pt;

succeed = true;

g
return T2_UDFRet_OK;

g;

T2_UDFRet

svm_ImageProjection::projectBox(const T2_System& system, const T2_Box& inbox,

bool& succeed, T2_Box& outbox)

f
outbox.setNumberDimensions(2);

outbox.getLow()[0] = (inbox.getLow()[0] - x_orig) / x_size;

outbox.getLow()[1] = (inbox.getLow()[1] - y_orig) / y_size;

outbox.getHigh()[0] = (inbox.getHigh()[0] - x_orig) / x_size;

outbox.getHigh()[1] = (inbox.getHigh()[1] - y_orig) / y_size;

succeed = true;

return T2_UDFRet_OK;

g

Figure 46: The project() and projectBox() functions of the customized attribute space service for
the SVM application.

85

#include "t2_dataset.h"

class svm_ImageDataset: public T2_Dataset f
u_int width, height, pixelsize, maxval;

g

class svm_ImageDatasetIterator: public svm_ImageIterator, public T2_Iterator f
u_int x_pos, y_pos;

svm_ImagePixel pixel;

g;

T2_UDFRet

svm_ImageDatasetConstructor(const T2_System& system,

const T2_Array<int>& dfd, const T2_Array<int>& mdfd,

T2_Dataset*& dsp)

f
// assuming that the aux data file has the information needed

my_read(mdfd[0], width, height, pixelsize, maxval);

dsp = (T2_Dataset *) new svm_ImageDataset(width, height, pixelsize, maxval);

return T2_UDFRet_OK;

g

Figure 47: The customized dataset class, and its constructor function, and the dataset iterator
class for the SVM application. Only the data member of the classes are shown in the �gure.

the implementation from class svm ImageIterator described in Section B.2.2. The additional
information that class svm ImageDatasetIterator keeps are the coordinates of the top-left corner
of the entire image. The data member pixel of class svm ImageDatasetIterator is used to
represent the pixel the iterator returns.

Figure 48 shows the implementation of the method svm ImageDataset::genIterator. This
method computes the intersection between the minimum bounding rectangle of the cluster, mbr,
and the input query box, iqr. The coordinates of the resulting rectangle is calculated relative to
the �rst pixel of the cluster, and a svm ImageDatasetIterator object is created.

Figure 49 shows the implementation for the virtual method getNextElement of the SVM
class svm ImageDatasetIterator. The method calls the getNextElement of the helper class
svm ImageIterator. The eod, which is the end of data
ag, is set to true, if the method
svm ImageIterator::getNextElement returns false, to indicate that the last element has been
accessed. Otherwise, the coordinates of the current pixel are computed, and the eod is set to
false, to indicate that there may be more input elements (i.e. pixels) to be accessed in the data
cluster.

B.2.6 Customizing Data Aggregation Service

Figure 50 shows the de�nitions of the customized accumulator class, the customized accumulator
iterator class, and the customized accumulator meta-data object class. The accumulator meta-
data object class svm ImageAccMeta stores the width, height and the number of bytes per pixel
for the entire output image, while the accumulator class svm ImageAcc stores the image that cor-
responds to an output tile. The accumulator iterator class is implemented by the helper class

86

T2_UDFRet

svm_ImageDataset::genIterator(const T2_System& system, T2_IteratorID i,

const T2_Cluster& c,

const T2_Box& mbr, T2_ClusterAuxInfoReader& meta,

const T2_Box& iqr, const T2_Region& tilereg,

T2_ProjectFuncObj& prj, T2_Iterator*& iterp)

f
// get the coordinates of the cluster's mbr and the input query box

u_int mbr_x_low = (u_int) mbr.getLow()[0],

mbr_y_low = (u_int) mbr.getLow()[1],

mbr_x_high = (u_int) mbr.getHigh()[0],

mbr_y_high = (u_int) mbr.getHigh()[1];

u_int iqr_x_low = (u_int) iqr.getLow()[0],

iqr_y_low = (u_int) iqr.getLow()[1],

iqr_x_high = (u_int) iqr.getHigh()[0],

iqr_y_high = (u_int) iqr.getHigh()[1];

// find the set of pixels, relative to the first pixel of the cluster,

// that the iterator needs to iterate over

u_int x_start = (iqr_x_low > mbr_x_low)? (iqr_x_low - mbr_x_low) : 0,

y_start = (iqr_y_low > mbr_y_low)? (iqr_y_low - mbr_y_low) : 0,

x_end = (iqr_x_high > mbr_x_high)?

(mbr_x_high - mbr_x_low) : (iqr_x_high - mbr_x_low),

y_end = (iqr_y_high > mbr_y_high)?

(mbr_y_high - mbr_y_low) : (iqr_y_high - mbr_y_low);

iterp = (T2_Iterator *)

new svm_ImageDatasetIterator(mbr_x_low, mbr_y_low,

mbr_x_high - mbr_x_low + 1, mbr_y_high - mbr_y_low + 1,

pixelsize, (u_char *) c.getDataPointer(0),

x_start, y_start, x_end, y_end);

return T2_UDFRet_OK;

g

Figure 48: The customized genIterator() for the SVM application.

87

T2_UDFRet

svm_ImageDatasetIterator::getNextElement(const T2_System& system,

const T2_Cluster& c, bool& eod, const void*& e, T2_Point& coord)

f
if (svm_ImageIterator::getNextElement(x_off, y_off, pixel) == false) f

eod = true; // end of data

return T2_UDFRet_OK;

g

coord.setNumberDimensions(2); // compute coordinate of the pixel to return

coord[0] = x_pos + x_off;

coord[1] = y_pos + y_off;

e = (const void *) &pixel;

eod = false;

return T2_UDFRet_OK;

g

Figure 49: The customized getNextElement() for the SVM application.

svm ImageIterator, described in Section B.2.2.
The main purpose of the accumulator meta-data object is to partition the entire output image

into tiles, and allocate each output tile when needed. Figure 51 shows the implementation of its
two virtual methods, stripMin and allocAcc. The method stripMine partitions the entire output
image by rows such that each tile contains a slice of the output image that �ts in the memory space,
the size of which is given in the mem parameter. The minimum bounding rectangle for each output
tile is computed and added to the output argument tile mbrs. The method allocAcc creates an
image with the given minimum bounding rectangle tile mbr.

Figure 52 shows the implementation of the two virtual methods of the svm ImageAcc class.
The method navigateAll is called when ADR initializes all the pixels in the accumulator, and
therefore navigateAll simply returns an accumulator iterator that would iterate over all the
pixels in the accumulator. The method navigate is called for each pixel in a data cluster re-
trieved during query processing. The argument r is a region obtained by projecting (via the
project method implemented in the attribute space service) the coordinates of the pixel in the
data cluster (returned by svm ImageDatasetIterator::getNextElement) to the output attribute
space. The implementation of method navigate computes the intersection between r and the min-
imum bounding rectangle of the accumulator, and returns a svm ImageAccIterator that iterates
through all pixels inside the resulting rectangle. Figure 53 shows the implementation of the method
svm ImageAccIterator::getNextElement, which returns the pixel inside a given rectangular re-
gion of the accumulator. Note that the implementation of this method is very similar to that of
svm ImageDatasetIterator::getNextElement, since both an input cluster and an accumulator
region are basically 2-dimensional images.

Figure 54 shows the de�nition of the customized aggregation function, svm aggregation. The
two data members packno and packtype stores the packet type and the packet number to be used
by the SVM client, as is described in Section B.2.1. The other data members are used during the
global combine phase, and will be explained later. Figure 55 shows the two virtual methods that
are used during the local reduction phase. The method aifElem takes a pixel in the accumulator

88

#include "t2_acc.h"

class svm_ImageAcc: public svm_Image, public T2_Accumulator f
u_int x_res, y_res; // width and height of entire output image

u_int x_pos, y_pos; // coordinates of the top-left pixel in the tile

g;

class svm_ImageAccIterator: public svm_ImageIterator, public T2_AccIterator f
svm_ImagePixel pixel;

g;

class svm_ImageAccMeta: public T2_AccMetaObj f
u_int width, height, // size of the entire output image (in # pixels)

pixelsize; // number of bytes per pixel

g;

T2_UDFRet

svmImageAccMetaConstructor(const T2_QueryInfo& qinfo, const T2_Box& output_box,

T2_UsrArgReader& arg, T2_AccMetaObj*& acmp)

f
u_int w, h, psize;

arg >> w >> h >> psize;

acmp = (T2_AccMetaObj *) new svm_ImageAccMeta(w, h, psize);

return T2_UDFRet_OK;

g

Figure 50: The customized accumulator class, the accumulator iterator class, and the accumulator
meta-object class for the SVM application. Only the data members of the classes are shown.

89

T2_UDFRet

svm_ImageAccMeta::stripMine(const T2_QueryInfo& qinfo, size_t mem,

const T2_ClusterInfoList& infolist, T2_VArray<T2_Region>& tile_mbrs)

f
mem -= sizeof(svm_ImageAcc); // reserve space for an svm_ImageAcc obj

// for simplicity, we are just showing the code that partition the image by rows

size_t rowsize = width * pixelsize;

u_int y_mem = mem / rowsize, // # rows that fit inside memory

ntiles = height / y_mem;

for (u_int i=0, y_start=0; i<ntiles; i++) f
T2_Box mbr(2);

T2_Point& low = mbr.getLow();

T2_Point& high = mbr.getHigh();

mbr.getLow()[0] = 0;

mbr.getLow()[1] = (T2_ShapeCoord_t) y_start;

mbr.getHigh()[0] = (T2_ShapeCoord_t) (width - 1);

u_int y_end = y_start + y_mem - 1;

if (y_end >= height)

mbr.getHigh()[1] = (T2_ShapeCoord_t) (height - 1);

else

mbr.getHigh()[1] = (T2_ShapeCoord_t) y_end;

tile_mbrs << mbr;

y_start = y_end + 1;

g
return T2_UDFRet_OK;

g

T2_UDFRet

svm_ImageAccMeta::allocAcc(const T2_QueryInfo& qinfo, T2_Iteration i,

const T2_Region& tile_mbr, T2_Accumulator*& accp)

f
const T2_Box& mbr = tile_mbr[0];

u_int tile_width = (u_int) mbr.getHigh()[0] - (u_int) mbr.getLow()[0] + 1,

tile_height = (u_int) mbr.getHigh()[1] - (u_int) mbr.getLow()[1] + 1;

// always use rgb (3 bytes) per pixel, and max value per color component is 255

const u_int pixelsize = 3,

maxval = 255;

accp = (T2_Accumulator *)

new svm_ImageAcc(width, height,

(u_int) mbr.getLow()[0], (u_int) mbr.getLow()[1],

tile_width, tile_height, pixelsize, maxval);

return T2_UDFRet_OK;

g

Figure 51: The implementation of allocAcc() and stripMine() for the customized accumulator
meta-object class.

90

T2_UDFRet

svm_ImageAcc::navigateAll(const T2_QueryInfo& qinfo, T2_AccIterator*& aitp)

f
aitp = (T2_AccIterator *)

new svm_ImageAccIterator(getWidth(), getHeight(),

getPixelSize(), getBytes(),

0, 0, getWidth()-1, getHeight()-1);

return T2_UDFRet_OK;

g

T2_UDFRet

svm_ImageAcc::navigate(const T2_QueryInfo& qinfo, T2_IteratorID i,

const T2_Region& r, T2_AccIterator*& aitp)

f
const T2_Box& box = r[0];

u_int x_low = (u_int) box.getLow()[0],

y_low = (u_int) box.getLow()[1],

x_high = (u_int) box.getHigh()[0],

y_high = (u_int) box.getHigh()[1];

t2_Assert (x_high >= x_pos);

t2_Assert (y_high >= y_pos);

// find the overlapping rectangle between box and the minimum bounding

// rectangle of the accumulator

u_int x_start = (x_low > x_pos)? (x_low - x_pos) : 0,

y_start = (y_low > y_pos)? (y_low - y_pos) : 0,

x_end = x_high - x_pos,

y_end = y_high - y_pos;

aitp = (T2_AccIterator *)

new svm_ImageAccIterator(getWidth(), getHeight(),

getPixelSize(), getBytes(),

x_start, y_start, x_end, y_end);

return T2_UDFRet_OK;

g

Figure 52: The implementation of navigateAll() and navigate() for the customized accumulator
class.

91

T2_UDFRet

svm_ImageAccIterator::getNextElement(const T2_QueryInfo& qinfo,

T2_Accumulator& acc,

bool& eod, void*& elem)

f
u_int x_off, y_off; // offsets for pixel to return

if (svm_ImageIterator::getNextElement(x_off, y_off, pixel) == false) f
// end-of-data is true

eod = true;

return T2_UDFRet_OK;

g

elem = (void *) &pixel;

eod = false;

return T2_UDFRet_OK;

g

Figure 53: The implementation for the getNextElement() for the customized accumulator iterator
class.

tile and initializes all its bytes to zero. The dafElem method e�ectively performs a max operation.
It takes an input pixel and an accumulator pixel, and sets the value of the accumulator pixel to
the larger of the two values.

Figure 56 and Figure 57 show the implementation for the three virtual methods of the SVM
class svm aggregation for the global combine phase. Note that each ADR back-end node has a
copy of the replicated accumulator, which is a part of the entire output image. The overall strategy
in the global combine phase is to further partition the accumulator into sub-images by rows among
the ADR back-end nodes, and have each ADR back-end node send the corresponding sub-images
of the local copy of the accumulator to the corresponding ADR back-end nodes. Upon receiving
a message, each ADR back-end node updates the pixels in the local subregion of the accumulator
with the larger of the received and the local values.

The method needGlobalCombine returns true when there is more than one ADR back-end
node running. In the case where there is only one ADR back-end node, the method simply assigns
the entire accumulator to itself and returns false to end the global combine phase. If there are
more than one ADR back-end node running, fillAccMsgBuffer partitions the accumulator into
sub-regions (or sub-images), assign a sub-image to an ADR back-end node, and generates the
messages that send the sub-images from the local copy of the accumulator to the corresponding
ADR back-end nodes. The data members of class svm aggregation are used to describe the sub-
image assigned to the local processor. The data member my bytes points into the accumulator
pixel array assigned to the local node, my nbytes speci�es the size of the array in bytes. The data
member my x pos and my y pos stores the coordinates of the top-left corner of the local sub-image,
and data member my width and my height keep the width and the height. The processAccMsg

method is called when a message arrives to aggregate (i.e., perform a max operation) the received
pixel values with the pixel values stored in the local sub-image.

Figure 58 shows the implementation of the method finalize, which is responsible for gener-
ating an output object that would create the �nal image from the accumulator array in the local

92

#include "t2_aggr.h"

class svm_aggregation: public T2_AggregateFuncObj f
u_int packno, packtype; // packet number and type used by the SVM client

u_char *my_bytes; // the assigned bytes to combine on local proc

size_t my_nbytes; // the number of bytes assigned to local proc

u_int my_x_pos, my_y_pos, // the position of the 1st assigned pixel

// in the entire output image

my_width, // width of local assigned sub-image

my_height; // height of local assigned sub-image

g;

T2_UDFRet

svm_aggregationConstructor(const T2_QueryInfo& qinfo, T2_UsrArgReader& arg,

T2_AggregateFuncObj*& afp)

f
u_int packet_no, packet_type;

arg >> packet_no >> packet_type;

afp = (T2_AggregateFuncObj *) new svm_aggregation(packet_no, packet_type);

return T2_UDFRet_OK;

g

Figure 54: The customized aggregation function object and its constructor for the SVM application.
Only the data members of the class are shown.

93

T2_UDFRet

svm_aggregation::aifElem(const T2_QueryInfo& qinfo, void* accElem)

f
t2_Assert (accElem != NULL);

svm_ImagePixel& pixel = *((svm_ImagePixel *) accElem);

for (u_int i=0; i<pixel.getNumberBytes(); i++)

pixel[i] = 0;

return T2_UDFRet_OK;

g

T2_UDFRet

svm_aggregation::dafElem(const T2_QueryInfo& qinfo, T2_DSID i, const void* dataElem,

void* accElem)

f
const svm_ImagePixel& input_pixel = *((const svm_ImagePixel *) dataElem);

svm_ImagePixel& output_pixel = *((svm_ImagePixel *) accElem);

for (u_int i=0; i<input_pixel.getNumberBytes(); i++)

if (input_pixel[i] > output_pixel[i])

output_pixel[i] = input_pixel[i];

return T2_UDFRet_OK;

g

Figure 55: The implementation for the functions of svm aggregation to be used during the local
reduction phase.

94

bool

svm_aggregation::needGlobalCombine(const T2_QueryInfo& qinfo, T2_Accumulator& acc)

f
if (qinfo.getNumberNodes() > 1)

return true;

// only one processor, so no need to do global combine,

// however, need to initialize the variables that describe the sub-image

// since they were supposed to be set during fillAccMsgBuffer() if a global

// combine phase was needed

svm_ImageAcc *image = (svm_ImageAcc *) & acc;

my_bytes = image->getBytes();

my_nbytes = image->getNumberPixels() * image->getPixelSize();

my_x_pos = image->getXPosition();

my_y_pos = image->getYPosition();

my_width = image->getWidth();

my_height = image->getHeight();

return false;

g

T2_UDFRet

svm_aggregation::processAccMsg(const T2_QueryInfo& qinfo, T2_ProcID sender,

T2_AccMsgBufferReader& msgbuf, T2_Accumulator& acc)

f
for (u_int i=0; i<my_nbytes; i++) f

u_char v;

msgbuf >> v;

if (my_bytes[i] < v)

my_bytes[i] = v;

g

return T2_UDFRet_OK;

g

Figure 56: The implementation for the functions of svm aggregation to be used during the global
combine phase.

95

T2_UDFRet

svm_aggregation::fillAccMsgBuffer(const T2_QueryInfo& qinfo,

T2_Accumulator& acc,

T2_Array<T2_AccMsgBufferWriter>& msgbuf)

f
u_int numnodes = qinfo.getNumberNodes();

T2_ProcID mynode = qinfo.getMyNode();

t2_Assert (numnodes > 1);

t2_Assert (numnodes == msgbuf.getNumberElements());

svm_ImageAcc *image = (svm_ImageAcc *) & acc;

u_int width = image->getWidth(),

height = image->getHeight(),

pixelsize = image->getPixelSize();

u_char* bytes = image->getBytes();

u_int y_part = height / numnodes, // # rows per partition

y_excess = height % numnodes; // # excess rows

u_int npixels_part = y_part * width; // # pixels per partition

size_t nbytes_part = npixels_part * pixelsize; // # bytes per partition

u_char* cur_bytes = bytes;

for (u_int p=0, y=0; p<numnodes; p++) f
u_int cur_y_part = y_part,

cur_nbytes_part = nbytes_part;

if (p == numnodes-1) f // last processor gets all y_access rows

cur_y_part += y_excess;

cur_nbytes_part += y_excess * image->getPixelSize();

g

if (p == (u_int) mynode) f // no msg to myself, but remember

// my assigned bytes

my_bytes = cur_bytes;

my_nbytes = cur_nbytes_part;

my_x_pos = image->getXPosition();

my_y_pos = y + image->getYPosition();

my_width = width;

my_height = cur_y_part;

cur_bytes += cur_nbytes_part;

g
else f // send a msg to remote proc p

msgbuf[p].setUserDataBuffer((const char*) cur_bytes, cur_nbytes_part);

cur_bytes += cur_nbytes_part;

g // if (p == mynode) else

y += cur_y_part;

g // for (u_int p=0, y=0; p<numnodes; p++)

return T2_UDFRet_OK;

g

Figure 57: The customized �llAccMsgBu�er() of svm aggregation for the SVM application.

96

T2_UDFRet

svm_aggregation::finalize(const T2_QueryInfo& qinfo, T2_Accumulator& acc,

T2_Output*& outp)

f
svm_ImageAcc *acc_image = (svm_ImageAcc *) &acc;

// create the output sub-image object

outp = (T2_Output *) new

svm_OutputSubImage(packet_no, packet_type,

qinfo.getNumberNodes(), qinfo.getNumberTiles(),

my_x_pos, my_y_pos, my_width, my_height, my_bytes,

acc_image->getPixelSize(), acc_image->getMaxValue(),

acc_image->getTotalOutputImageWidth(),

acc_image->getTotalOutputImageHeight());

return T2_UDFRet_OK;

g

Figure 58: The implementation for the functions of svm aggregation to be used during the output-
handling phase.

processor, and put the �nal image into bu�ers to be sent to the client. Figure 58 shows the de�ni-
tion of the svm OuputSubImage class, which is derived from the ADR base class T2 Output. The
svm OuputSubImage class contains the following information:

� packet no and packet type: a packet number and a packet type, which will be used by the
SVM client,

� nprocs: the number of ADR back-end nodes,

� ntiles: the number of output tiles,

� x res, y res: the width and height of the entire output image,

� x pos, y pos: the position of the sub-image in the entire output image,

� nprocs: the number of ADR back-end nodes,

� sub x res, sub y res: the width and height of the sub-image,

� pixelsize: the number of bytes per pixel,

� maxval: the maximum value of a byte for a pixel,

� bytes: the pixels of the sub-image.

These values are sent from the ADR back-end nodes to the SVM client, as shown in Figure 59. The
number of processors and the number tiles tell the SVM client how many sub-images in total it
should expect from the ADR back-end nodes. The position, the width and height of the sub-image
allow the SVM client to stitch the various sub-images into one output image.

97

#include "t2_output.h"

class svm_OutputSubImage: public T2_Output f
u_int packet_no, // packet number from aggregation func

packet_type; // packet type from aggregation func

u_int nprocs, // # back-end nodes

ntiles, // # output tiles

x_pos, y_pos, // position of the sub-image in the

// entire output image

sub_x_res, sub_y_res; // width and height of sub-image

u_char* bytes; // pointer to bytes of the sub-image

// pixels (the bytes are owned by

// another object, so no need to

// delete them here)

u_int pixelsize, // number of bytes per pixel

maxval; // max value for each component byte

u_int x_res, y_res; // width and height of entire output

g;

Figure 59: The customized output class and its constructor for the SVM application. Only the
data members of the class are shown.

B.3 Running the SVM Application

The ADR installation process (see Section 6.2) compiles the SVM customization code, and generates
the following executables in the directory example/svm/bin/.

� pbe, the parallel ADR back-end program with the SVM customization code,

� sbe, the sequential ADR back-end program with the SVM customization code, and

� svm-front-end, the SVM application front-end.

The installation process also generates the following �les.

� catalogs/dataset-catalog, the dataset catalog for the ADR back-end,

� catalogs/index-catalog, the index catalog for the ADR back-end,

� front-end/constructor-catalog, the constructor function catalog for the ADR front-end,

� front-end/dataset-info, the dataset information �le for the ADR front-end,

� chunkify-ppm, a SVM utility program to partition a given PPM �le into data chunks and
load those data chunks into a ADR dataset,

� gen-svm-qbatch, a SVM utility program to create sample query �les,

� qbatch/qbatch*, a set of sample SVM queries, generated by the SVM utility program
gen-svm-qbatch.

98

size_t

svm_OutputSubImage::getOutputBufferSize(const T2_QueryInfo& qinfo)

f
// need to allocate buffer for the header

return sizeof(packet_no) + sizeof(packet_type)

+ sizeof(nprocs) + sizeof(ntiles)

+ sizeof(x_res) + sizeof(y_res)

+ sizeof(x_pos) + sizeof(y_pos)

+ sizeof(sub_x_res) + sizeof(sub_y_res);

g

T2_UDFRet

svm_OutputSubImage::flushOutput(const T2_QueryInfo& qinfo, T2_OutputBuffer& buf,

T2_OutputDataPtrList& ptr)

f
const char *p1 = buf.getCurrentPosition(), // pointer to header

*p2; // a temp pointer

// generate header of the output sub-image

buf << nprocs << ntiles << x_res << y_res << x_pos << y_pos

<< sub_x_res << sub_y_res;

p2 = buf.getCurrentPosition();

ptr.insertDataPointer(p1, p2 - p1); // insert pointer to header

u_int npixels = sub_x_res*sub_y_res;

if (npixels > 0) // insert pointer to the pixels

ptr.insertDataPointer((const char*) bytes, npixels * pixelsize);

return T2_UDFRet_OK;

g

Figure 60: The implementations of methods in the customized output class for the SVM application.

99

The SVM application is provided with three ADR datasets, stored in the directory bin/datasets/.
Each dataset �le of a dataset simulates a disk of a ADR back-end node. At run-time, each dataset
�le is assigned to a back-end node, and for a given query, all back-end nodes cooperate to read the
appropriate chunks from the dataset �les and process those chunks to generate the desired output
image. We assume that the disk that contains the directory bin/datasets/ is cross-mounted on
all the machines that the parallel ADR back-end nodes run on. If this is not the case, then data
�les in bin/datasets/*/ must be copied to the appropriate disks and the dataset registration �le
must be updated accordingly to specify the new paths to the dataset �les and index �les.

The SVM application can run in two ways.

� Run a sample query with the parallel ADR back-end alone.
In this mode, the ADR back-end nodes would read a query from a given �le, and each
node would write its output into a �le. A set of sample queries are created in the directory
bin/qbatch/ during the setup process. Each �le in bin/qbatch/ contains one single query
about a particular dataset stored in bin/datasets/. At the end, each back-end node would
generate a ppm �le, and the users can view the �les using their favorite image browser.

To run the parallel ADR back-end with a sample query, do the following.

% pbe -r -d catalogs/dataset-catalog -i catalogs/index-catalog \

-q <sample query file> -o ooo

Here is a quick explanation of the various options.

-r assigns the logical processor id's assumed in the back-end con�guration to the actual
ADR back-end nodes in a round- robin fashion; that is, assuming that there are in total
<numnodes> back-end nodes, then logical processor id k is assigned to the back-end
node with rank k % <numnodes>; this means that all data �les assigned to logical
processor id k in the dataset registration �le are assigned to the back-end node with
rank k

-d speci�es the dataset catalog �le

-i speci�es the index catalog �le

-q speci�es the sample query �le (replace <sample query �le> with a �le in qbatch/)

-o forces the back-end nodes to write output into �les with the given pre�x; the actual output
�le would be named as

<prefix>-<query number>-<tile number>.<processor rank>

where <query number> is a running count of the number of queries that the back-end
has processed so far, and <tile number> speci�es the tile that the output corresponds
to

Note that some other parameters may be needed for MPI to start the parallel back-end
appropriately, for example the number of MPI processes to run and the set of machines to
run those processes on. If MPI-ch is used for the inter-processor communication layer, then
the script program bin/run-pbe-sample-query can be used to start the parallel back-end.
This script uses mpirun from MPI-ch to start up the parallel back-end, running over a given
set of machines. Note that how the MPI processes are mapped to the give machines is entirely
decided by MPI-ch.

100

% run-pbe-sample-query <sample query file> <number procs> \

[<host name 1> <host name 2> ...]

One could also run the sequential version in a similar way.

% run-sbe-sample-query <sample query file> <number procs>

� Run the full SVM application, which consists of a parallel back-end, a ADR front-end, an
SVM application front-end, and an SVM client1.

This is a more realistic scenario for a customized ADR application. In this scenario, a ADR
front-end process starts up �rst and awaits the connection of the parallel ADR back-end
nodes. After all the back-end nodes have connected to the ADR front-end, the ADR front-
end waits for the connection from an SVM application front-end. After connecting to the
ADR front-end, the SVM application front-end inquires the ADR front-end for the datasets
and functions registered for the svm application. The SVM application front-end then waits
for the connection from an SVM client. An SVM client is the interface that users use to select
regions of interest in an image and the desired resolution, as well as the browser that displays
output images from queries. A selected region of an image and a resolution is transmitted
from the client to the SVM application front-end, which converts the request into a ADR
query and sends it to the ADR front-end. The ADR front-end forwards the query to the
back-end nodes, which process the query and send the results back to the client for display.

To run the full SVM application therefore requires one to start up four programs in the
following order.

1. Start the ADR front-end.

% run-t2fe <number app front-ends> <back-end port> \

<app front-end port>

where <back-end port> is the port that the parallel ADR back-end nodes connect to,
and <app front-end port> is the port that the SVM application front-end connects to.
Though in practice the ADR front-end is intended to run all the time, in this simple
example, the ADR front-end would terminate as soon as after <number app front-ends>
SVM application front-ends have connected and disconnected from the ADR front-end.

The ADR front-end uses the �les in bin/front-end/ to answer inquiries from the con-
nected SVM application front-ends. It can interact with multiple SVM application
front-ends at the same time.

2. Start the parallel ADR back-end.

% pbe -r -d catalogs/dataset-catalog -i catalogs/index-catalog \

-f <ADR front-end host name> <back-end port>

1The example SVM client uses the Java Swing library and is implemented in Java 2. Therefore, Java 2 should

already be installed to run the SVM client.

101

where -f speci�es the host and the port number that the ADR front-end listens to for
the back-end nodes. Again, more parameters may be needed to start up the parallel
back-end program properly.

If MPI-ch is used, then the script bin/run-pbe-with-t2fe can be used to start the
parallel ADR back-end node.

% run-pbe-with-t2fe <number procs> \

<ADR front-end host name> <back-end port> \

[<host name 1> <host name 2> ...]

The argument <ADR front-end host name> speci�es the machine that the ADR front-
end runs on, and <back-end port> is the port that the ADR front-end listens to. Note
that <back-end port> should be the same <back-end port> used when the ADR front-
end was started. If a list of host names are provided, then these names are passed to
MPI-ch as the set of machines to run the parallel back-end processes on. MPI-ch decides
how the back-end processes are assigned to the given set of machines.

Under MPI-ch an alternative way to specify the set of parallel ADR back-end processes is
done via a \host �le". The �le bin/sample-MPI-ch-hostfile is a sample host �le, which
assigns four MPI processes to four machines, with the �rst one being processor 0, and
specify for each MPI process the path to the executable. This gives the users more control
over how MPI processes are assigned to processors. The script bin/run-pbe-with-t2fe
can also pass such a host �le to MPI-ch.

% run-pbe-with-t2fe <hostfile> \

<ADR front-end host name> <back-end port>

3. Start the SVM application front-end.

% svm-front-end -f <ADR front-end host name> <ADR front-end port> \

-a <client port number>

or

% run-svm-front-end <ADR front-end host name> <ADR front-end port> \

<client port number>

where <ADR front-end host name> speci�es the machine that the ADR front-end runs
on, and <ADR front-end port> is the port that the ADR front-end listens to for the
application front-end. Note that <ADR front-end port> should be the same <app
front-end port> used when the ADR front-end was started. The argument <client port
number> is the port number that an svm client should connect to. In the current
implementation, each svm application front-end process can only serve one SVM client.

4. Start the SVM client.

% run-java-client <SVM front-end host name> <client port number>

The client is implemented in Java, and the compiled byte code is stored in directory
java-client/client.jar. Therefore, the users must have java in their search path.

102

Also, the Java run-time system must support Swing. The argument <SVM front-end
host name> speci�es the machine that the SVM application front-end runs on, and
<client port number> is the port that the SVM application front-end listens to. Note
that <client port number> must be the same <client port number> used when the SVM
front-end was started.

Once the four programs start and connect to each other, the users can select an image from
the Java client, choose a region of interest in a thumbnail, select the desired resolution, and
submit the query to ADR. The result of the query would then be displayed by the Java client
in its display panel on the left.

B.4 Adding Datasets to the SVM Application

More datasets (ie images) can be added to the SVM application through the following steps. These
images must be in the PPM format.

1. Partition the PPM image into multiple chunks, assign those chunks to multiple data �les,
and create an index for the dataset, using the SVM utility program bin/chunkify-ppm.

% chunkify-ppm <ppm file> \

<number of x partitions> <number of y partitions> \

<output type> \

<number of dataset files> <dataset file prefix> \

<index file prefix> <aux file prefix>

This utility program partitions the PPM image into <number of x partitions> � <number of
y partitions> rectangular chunks, creates <number of dataset �les> data �les, and assign the
chunks to those �les in a round-robin fashion. The data �les will have �lenames in the format
of <dataset �le pre�x>.n, when n ranges from 0 to <number of dataset �les>-1. These data
�les can be distributed to all the disks available in the system where the parallel T2 back-end
runs. An auxiliary �le, <dataset �le pre�x>.aux is also created to store the PPM header
information, which includes the total image width, height, number of bytes per pixel, and the
max byte value. Furthermore, One index �le is created for each dataset �le, and they have
the �lenames in the format of <index �le pre�x>.n, where n also ranges from 0 to <number
of dataset �les>-1. The index �les should be assigned to the disks that their corresponding
data �les are assigned to. Store these �les in a sub-directory under datasets/.

2. Create a thumbnail in the PPM format, using a program such as xv. Put the thumbnail into
the same sub-directory that the data �les live ine.

3. Pick an image name for the new dataset and add an entry to the dataset registration �le,
bin/dataset-registration.txt. The entry should contain the following �elds:

t2-svm-example:<image nam>

t2-svm-example:image-dataset-constructor

<path to the thumbnail>

<image total width> <image total height>

d <path to data file 0> 0

d <path to data file 1> 1

103

:

t2-svm-example:image-dataset-index

t2-svm-example:image-dataset-index-constructor

<some description or a blank line>

i <path to index file 0> 0 -1

i <path to index file 1> 1 -1

:

===

4. Re-run the SVM setup process to update various catalogs.

% make setup

104

References

[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth, J. Saltz, and A. Suss-
man. Tuning the performance of I/O-intensive parallel applications. In Proceedings of the Fourth ACM
Workshop on I/O in Parallel and Distributed Systems, May 1996.

[2] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo, R. Ferreira, R. Miller, M. Silberman, J. Saltz,
A. Sussman, and H. Tsang. Digital dynamic telepathology - the Virtual Microscope. In Proceedings of
the 1998 AMIA Annual Fall Symposium. American Medical Informatics Association, Nov. 1998.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R�-tree: An e�cient and robust access
method for points and rectangles. In Proceedings of the 1990 ACM-SIGMOD Conference, pages 322{331,
Atlantic City, NJ, May 1990.

[4] C. F. Cerco and T. Cole. User's guide to the CE-QUAL-ICM three-dimensional eutrophication model,
release version 1.0. Technical Report EL-95-15, US Army Corps of Engineers Water Experiment Station,
Vicksburg, MS, 1995.

[5] C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Infrastructure for building parallel database systems for
multi-dimensional data. In Proceedings of the Second Merged IPPS/SPDP Symposiums. IEEE Computer
Society Press, Apr. 1999.

[6] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. Saltz. Titan: A high performance
remote-sensing database. In Proceedings of the 1997 International Conference on Data Engineering,
pages 375{384. IEEE Computer Society Press, Apr. 1997.

[7] S. Chippada, C. N. Dawson, M. L. Mart��nez, and M. F. Wheeler. A Godunov-type �nite volume method
for the system of shallow water equations. Computer Methods in Applied Mechanics and Engineering,
1997. Also a TICAM Report 96-57, University of Texas, Austin.

[8] G. Edjlali, A. Sussman, and J. Saltz. Interoperability of data parallel runtime libraries. In Proceedings
of the 11th International Parallel Processing Symposium. IEEE Computer Society Press, Apr. 1997.

[9] C. Faloutsos and P. Bhagwat. Declustering using fractals. In Proccedings of the 2nd International
Conference on Parallel and Distributed Information Systems, pages 18{25, San Diego, CA, Jan. 1993.

[10] R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R. Miller, and A. Demarzo. The Virtual
Microscope. In Proceedings of the 1997 AMIA Annual Fall Symposium, pages 449{453. American
Medical Informatics Association, Hanley and Belfus, Inc., Oct. 1997.

[11] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. In Proceedings of the International Conference on
Data Engineering, pages 152{159, New Orleans, Louisiana, Feb. 1996.

[12] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Proceedings of the 1984
ACM-SIGMOD Conference, pages 47{57, Boston, MA, June 1984.

[13] T. M. Kurc, A. Sussman, and J. Saltz. Coupling multiple simulations via a high performance cus-
tomizable database system. In Proceedings of the Ninth SIAM Conference on Parallel Processing for
Scienti�c Computing. SIAM, Mar. 1999.

[14] R. A. Luettich, J. J. Westerink, and N. W. Sche�ner. ADCIRC: An advanced three-dimensional cir-
culation model for shelves, coasts, and estuaries. Technical Report 1, Department of the Army, U.S.
Army Corps of Engineers, Washington, D.C. 20314-1000, December 1991.

[15] K.-L. Ma and Z. Zheng. 3D visualization of unsteady 2D airplane wake vortices. In Proceedings of
Visualization'94, pages 124{31, Oct 1994.

[16] The Moderate Resolution Imaging Spectrometer. http://ltpwww.gsfc.nasa.gov/MODIS/MODIS.html.

[17] NASA Goddard Distributed Active Archive Center (DAAC).
Advanced Very High Resolution Radiometer Global Area Coverage (AVHRR GAC) data. Available
at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/LAND BIO/origins.html.

105

[18] G. Patnaik, K. Kailasnath, and E. Oran. E�ect of gravity on
ame instabilities in premixed gases.
AIAA Journal, 29(12):2141{8, Dec 1991.

[19] C. T. Shock, C. Chang, B. Moon, A. Acharya, L. Davis, J. Saltz, and A. Sussman. The design and
evaluation of a high-performance earth science database. Parallel Computing, 24(1):65{90, Jan. 1998.

[20] T. Tanaka. Con�gurations of the solar wind
ow and magnetic �eld around the planets with no magnetic
�eld: calculation by a new MHD. Jounal of Geophysical Research, 98(A10):17251{62, Oct 1993.

[21] The University of California, Berkeley. The Gist C++ library, version 1.0, 1996.

[22] U.S. Geological Survey. Land satellite (LANDSAT) thematic mapper (TM). Available at
http://edcwww.cr.usgs.gov/nsdi/html/landsat tm/landsat tm.

[23] The USGS General Cartographic Transformation Package, version 2.0.2. ftp://mapping.usgs.gov/
pub/software/current software/gctp/, 1997.

106

