
Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller

Delphi Tools Update:
Instrumenting Threaded Programs

Barton P. Miller
bart@cs.wisc.edu

Computer Science Department
University of Wisconsin

1210 W. Dayton St.
Madison, WI 53706-1685

USA

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 2

Outline

• Motivation
• Design Issues
• Implementation Highlights
• Current Status
• Future Work

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 3

Motivation
• Why support multithreaded applications?

– Exploit multiprocessor hardware, application concurrency
– Used heavily in transaction processing, UI’s, servers

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 4

Motivation

• Metric computation. What is new?
– For single or few threads:

“cpu time for thread 1 / process 2”
“cpu time for thread 2 / process 2”

– For all threads, individually

– For all threads, cumulative

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 5

Previous Paradyn Program
Instrumentation

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 6

Program Instrumentation w/Threads

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 7

Design issues

• Every thread shares the same program
instrumentation

• Vector of counters or timers per thread
– More memory usage, but better speed
– More straight forward implementation

• Two base applications scenarios
– Few threads, few LWPs: exploiting parallelism
– Many threads, dynamic (e.g. servers)

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 8

Design for Instrumenting Threads

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 9

Design for Instrumenting Threads

• Whole process vs. Threads
– Important performance issue!
– Whole process metrics are computed per

process ⇒ no need to aggregate threads
– “thr_1” is equivalent to whole process
– Aggregation is done for processes, not for

threads

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 10

Original Base Trampoline

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 11

Modified Base Trampoline

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 12

Current Design - Issues

• Thread Table indexed by thread id’s, points
to vector of counters or timers

• Separate sets of counters/timers per thread
• Creation of vectors of counters/timers on

demand, never removed, but re-used!
• Counters/timers allocated by blocks
• Virtual CPU timer for each thread

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 13

Current Design - Key Operations

• Add thread
– Update thread table entry
– Create same counter/timers as for other threads
– Enable only counter/timers that apply to new

thread

• Delete thread
– De-allocate all counter/timers + all vectors for

this thread
– Update thread table entry

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 14

Current Design - Key Operations

• Add counter/timer
– Common case: there is space in vector of

counter/timers and we just add new entry
– Special case: there is no space available and we

create a new vector for all threads and add new
entry

• Delete counter/timer
– Tag counter/timer as invalid. It does not de-

allocate memory

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 15

Current Design - Comments

• Advantages
– Reasonable memory usage
– Fast execution of mini-trampoline code

• Disadvantage
– Only de-allocates memory for counter/timers

and vectors when a thread is deleted

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 16

Current Design - Resources

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 17

Example Measurements

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 18

Example Measurements

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 19

Current Design - Comments

• Must instrument thread context switch
– Identify appropriate functions in thread package

• For Solaris threads
– “_onproc_deq”: stop timer, thr context switch
– “_resume_ret”: start timer, thread is about to

resume execution

• A little messy: requires internal knowledge
– Only done once per thread package

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 20

Current Design - CPU metric

resourceList stopThread is procedure {
items {"_onproc_deq"};
flavor { unix };
library true;

}

resourceList resumeThread is procedure {
items {"_resume_ret"};
flavor { unix };
library true;

}

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 21

Current Design - CPU metric
metric cpuTime {
…
base is processTimer {
 foreach func in stopThread {
 append preInsn func.entry (* stopProcessTimer(cpuTime); *)
 }
 foreach func in resumeThread {
 append preInsn func.entry (* startProcessTimer(cpuTime); *)
 }
 append preInsn $start.entry constrained
 (* startProcessTimer(cpuTime); *)
 prepend preInsn $start.return constrained
 (* stopProcessTimer(cpuTime); *)
 append preInsn $exit.entry constrained
 (* stopProcessTimer(cpuTime); *)
 }
}

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 22

Current Design - Cost
Base-Trampoline Section. MT Version (SPARC Architecture)

// Instrumentation code - Part of the Base Trampoline
// MT Preamble
basetramp: sethi %hi(0x12400), %o5
basetramp+4: call %o5 + 0x3dc ! 0x127dc<DYNINSTthreadPos>
basetramp+8: nop
basetramp+12: sll %o0, 2, %l0
basetramp+16: sethi %hi(0x42b400), %l1
basetramp+20: or %l1, 0x130, %l1
basetramp+24: add %l0, %l1, %l0
basetramp+28: mov %l0, %l7
basetramp+32: nop

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 23

Current Design - Cost
Mini-trampoline (SPARC architecture)

// Instrumentation code ("add counter" primitive)
// Load counter
minitramp: sethi %hi(0x61800),%l0
minitramp+4: ld [%l0+0x3e0],%l0 ! 0x61be0
<DYNINSTdata+1760>
// Increment counter
minitramp+8: inc %l0
// Store counter
minitramp+12: sethi %hi(0x61800),%l1
minitramp+16: st %l0, [%l1+0x3e0] ! 0x61be0
<DYNINSTdata+1760>
// Branch to base trampoline or next mini-trampoline
minitramp+20: b,a basetramp
minitramp+24: nop

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 24

Current Design - Cost
Mini-trampoline. MT Version (SPARC Architecture)

// Instrumentation code ("add counter" primitive)
// Load CT Vector Address
minitramp: ld [%l7], %l2
// Compute offset for this counter
minitramp+4: mov 0x12b, %l3
minitramp+8: sll %l3, 0x42, %l3
minitramp+12:add %l2, %l3, %l2
// Load counter address and value
minitramp+16:ld [%l2], %l1
minitramp+20:ld [%l1], %l0
// Increment and store counter
minitramp+24:inc %l0
minitramp+28:st %l0, [%l1]
// Branch to base trampoline or next mini-trampoline
minitramp+32:b,a basetramp
minitramp+36:nop

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 25

Current Status

• Solaris threads support

• Thread low-level instrumentation in place
and working

• Measurements can be gathered for a
multiple threads using new structure

Delphi: Instrumenting Threaded Programs August 27, 1998 © 1998 B.P. Miller
Page 26

What is next?

• Testing small multithreaded applications
running on multiprocessors
– Exploit relationship threads/LWPs/CPUs

• Evaluate and tune performance
• Test large-scale application: Oracle on

Solaris is initial target.

