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The Computational Grid

Computer = ensemble of resources

“‘Computer” may
consist of

— computational sites
— dist. databases

— remote Iinstruments
— visualization
— distinct networks

T



Grid Programs

Grid programs

— may couple distributed and dissimilar
resources

— may Incorporate tasks with different
Implementations

— may adapt to dynamic resource load



Performance Models for Grid
Programs

« Grid applications may couple dissimilar resources

— models must accommodate heterogeneity

e Grid applications may incorporate tasks with
different implementations

— model must accommodate multiple task models

o Grid applications may adapt to dynamic resource
load

— models must allow for dynamic parameters



Compositional Models

e Grid programs can be represented as a
composition of tasks

o “Tasks” consist of relevant performance
activities

 Model parameters may reflect performance
variations of grid

— may be parameterized by time



Using Grid Performance
Models

« Compositional models particularly
useful for grid application scheduling

« Application schedulers use performance

prediction models to
— select resources

— estimate potential performance of candidate
schedules

— compare possible schedules



AppLeS = Application-Level
Scheduler

Grid V and
Infrastructure resources




Partitionings

« Block partitioning

o Compile-time non-

uniform strip
partitioning

e AppLeS dynamic
strip partitioning




Application Scheduling Jacobi2D

Dynamic information key to leveraging deliverable
performance from the Grid environment
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Performance Is Time-Dependent

Jacobi2D AppLeS (strip) vs. Block partitioning
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Schedulers and Performance
Models

 Predictions may be used at different levels of
accuracy

— predictions can be “engineered”

« Knowing something about a prediction can
make it more useful

— performance range of predictions may provide
additional information

— meta-information about predictions can improve
schedules



Performance Prediction
Engineering

 Performance Prediction Engineering
(PPE) System iIs a methodology for
modeling performance in dynamic Grid

environments

e 3 Components:
— Structural performance prediction models
— Quantitative meta-information
— Dynamic Forecasting



Structural Models

 Top-level Model =performance equation

— describes composition of application within a
specific time frame (performance grammar)

e Component models

— represent application performance activities
(nonterminals)

« Model parameters

— represent system or application values
(terminals)



Example: Modeling the
Performance of SOR

« Regular, iterative computation
e 5 point stencill

e Divided into a red phase and
a black phase

2D grid of data divided into
strips

e Targeted to WS cluster



SOR Structural Model

SOR performance equation

ExecTime(t,) = n Iter Time(t, )

Iter Time(t;) = Max { RComp(p,t;) + RComm(p,t; +A,)
+ BComp(p,t +A,) + BComm(p,t +A,)}

SOR component models
{ RComp(p,t), RComm(p,t), BComp(p,t), BComm(p,t)}



SOR Component Models

NumElts( p) LIBenchmark( p, Elt)

RComp(p,t) = :
P(P.Y) FracAvailCPU (p,t)
RComM(p. t) = Col umng ze 1S ze(Elt)
BWAvail (p, p +1,t)
N ColumnSze 1S ze( Elt)

BWAvail (p, p—1t’)

Dynamic Parameters
FracAvailCPU(p,t), BWAvail(x,y,t)



Single-User Experiments

e Question: How well does the SOR
model predict performance in a single-
user cluster?

e Platform

e heterogeneous Sparc cluster
e 10 Mbit ethernet connection
e quiescent machines and network

* Prediction within 3% before memory splll



Dedlcated Platform Experiments
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What happens when other users
share the system?



Non-dedicated SOR Experiments
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Improving Predictions

 Many parameters represent values which
vary over time

 Range of behavior of time-dependent
parameters represented by distributions

e Structural models can be extended to
accommodate stochastic parameters and
render stochastic predictions



Stochastic Predictions

Stochastic predictions capture
range of possible behavior
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Stochastic Structural Models

stochastic
and point-valued
parameters

component
models

c D
Structural
Model
“quality” of / \[ .............
performance .
prediction Stochastic
(lifetime, accuracy, predictions

overhead)



Stochastic SOR Performance
Model

* FracAvallCPU, BWAvail given by
stochastic parameters

 Network Weather Service improved to
provide better performance information

* First cut: consider stochastic parameters
which can adequately be represented by
normal distributions

— normal distributions make math tractable



Experiments with Multi-user
Systems

e Platform
— Sun workstation cluster
— 10Mbit ethernet

— experiments run in lab environment with
additional generated load

* Experiments run back-to-back for
multiple trials



SOR Stochastic Parameters
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Fraction of CPU Available

Data stays within Data changes modes
single mode
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“Single-mode” Experiments

« All values captured by stochastic predictions

e Maximum absolute error between means and actual
values i1s 10%
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“Multiple Mode” Experiments

80% of actual values captured by stochastic prediction

Max discrepancy between stochastic prediction and actual
values is 14%

Max absolute error between means and actual values is 39%
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The Next Step

What If performance range of
parameters cannot be adequately
represented by normal distributions?

— Can we identify distributions for model
parameters?

— Can we combine non-normal distributions
efficiently? Is the math tractable?

— Can we use empirical data to determine
performance ranges Iif distributions cannot be
identified?



Using PPE for Application
Scheduling

Basic Strategy:

e Develop structural model for application

e Use stochastic parameters to provide
iInformation about performance range

» Use profiling to determine desired level of
accuracy for component models

e Use stochastic prediction and meta-information
to develop application schedule



Scheduling with Meta-Information

« Stochastic predictions provide information
about range of behavior

e Stochastic predictions and meta-information
provide additional information for schedulers

>

Execution Time




Quality of Information

Meta-information = Quality of Information

SOR stochastic predictions provide a measure of
accuracy

Other qualitative measures are possible
— lifetime
—overhead
— complexity

Quality of Information attributes can be used to
Improve scheduling



Preliminary Experiments:
Application Scheduling with PPE

Simple scheduling scenario:
e SOR with strip decomposition

e Scheduling strategies adjust strip size to
minimize execution time

 Multl-user cluster

—machines connected by 10 Mbit ethernet

—available CPU on at least half of the machines
IS multi-modal with data changing between
modes frequently



Adjusting Strip Size

 Time balancing used to determine strip size

o Set all T(p,t) equal and solve for NumElts(p,t’)

T(p,t) = RComp(p,t) + RComm(p,t +A,)
+ BComp(p,t +A,) + BComm(p,t +A,)
= A(p,t) UNumElts( p) + B(p,t)

Z NumElts( p) = n’
P



Scheduling Strategies

 Mean

— data assignments determined using mean
(point-valued) application execution
estimates

e Conservative

— data adjusted so that machines with high-
variance application execution estimates
receive less work (u+20)

— goal Is to reduce penalty of being wrong



Preliminary Scheduling Results

e Conservative scheduling strategy misses big spikes,
but is sometimes too conservative.
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Research Directions

o Quality of Information (Qoln)

— How can we develop useful mechanisms for
obtaining and quantifying performance meta-
Information?

— How do we combine different Qoln measures?

— How can Qoln measures enhance scheduling?

e Contingency Scheduling

— Can we develop schedules which adapt
dynamically during execution?



More Research Directions

e Performance-enhanced Tools

— Netsolve enhanced with NWS and AppLeS
scheduling methodology

e Performance contracts

— How should performance information be
exchanged and brokered in grid systems?

— How can we develop “grid-aware” programs?



Project Information

 Thanks to Dr. Darema and DARPA for support
and very useful feedback.

 Performance Prediction Engineering Home
Page:

http://www-cse.ucsd.edu/groups/hpcl/
apples/PPE/index.html

« PPE team: Jennifer Schopf, Nell Spring, Alan
Su, Fran Berman, Rich Wolski



Up Next: Rich Wolski

Dynamic Forecasting for Performance
Prediction Engineering with the
Network Weather Service



