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Outline

n Stack Distances as a Metric for Locality

n Run-time Instrumentation

n Compile-time Analysis

n Future Work
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Stack Algorithms
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Stack Distances As Cache Misses

n compute the number
of cache hits and
misses as follows:
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Metric Validation

n Stack algorithm implemented as a library
n Polaris instrumented codes from the

SPEC95 and Perfect Club benchmarks
n measured actual number of cache misses

using the hardware counters on the R10K
processors (for both L1 and L2 caches)
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Experiments Serial

Prediction Accuracy
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Solution Advantages

n Accurate in most cases.
n One pass through the trace estimates misses

for any cache size
n Architecture independent (except for the

cache line size)
n Same model applicable to independent

loops as well as entire programs
n Easily applicable to parallel programs
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Run-time Solution Advantages

n Works in all cases
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Run-time Solution Disadvantages

n It is run-time, therefore consumes CPU time
n Cannot easily identify references with bad

locality
n Needs separate runs for different cache

sizes/processors
n Assumes a fully associative cache (to

reduce overhead)
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Compile-time Solution

n Integrated within the Polaris parallelizing
compiler

n Algorithm based on data dependence
distance vectors to compute the stack
distances for loops

n Computes symbolic expressions (based on
loop bounds) for stack distances and
number of references
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Compile-time Solution (cont.)

n Preserves the advantages given by the run-
time solution, adding
• misbehaving reference identification
• array size knowledge may improve accuracy
• flexibility and locality information readily

available in the compiler

n May need a run-time pass for unknown loop
bounds or data depending on the input
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Example

do j = 1, n
   do i = 1, n
      a(i,j) = b(i,1) + b(i+1,1)

a b1 b2

(0,1)

(1,0) (1,0)

Distance References
| δ Ri

1 + d - s| N-1
Inf 3N-(N-1)

Distance References
| δ Ri

1 + d - s| N(N-1)
| δ Rj

1 + d - s| (N-1)(N+1)
Inf N2+N+1
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Future work

n Integrating the compile-time solution with
the run-time instrumentation

n Solve the false sharing integration within
the compiler approach

n Address some of the limitations: cache
associativity, multi-word cache lines


