
Cache Misses Prediction Using
Stack Distances

Calin Cascaval and David A. Padua
Department of computer science

University of Illinois at Urbana-Champaign
cascaval,padua@cs.uiuc.edu

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Outline

n Stack Distances as a Metric for Locality

n Run-time Instrumentation

n Compile-time Analysis

n Future Work

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Stack Algorithms

St-1(1)
St-1(2)

St-1(∆-1)
St-1(∆)

St-1(∆ +1)

St-1(γt-1)

...

...

xt

St(1)
St(2)

St(∆-1)
St(∆)

St(∆ +1)

St(γt)

...

...

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Stack Distances As Cache Misses

n compute the number
of cache hits and
misses as follows:

0

5000

10000

15000

20000

25000

1 2 3 4 Inf

Stack Distances

R

ef
er

en
ce

s

hits(C) = Σ s(∆)
C

∆=1

misses(C) = Σ s(∆)
Inf

∆=C+1

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Metric Validation

n Stack algorithm implemented as a library
n Polaris instrumented codes from the

SPEC95 and Perfect Club benchmarks
n measured actual number of cache misses

using the hardware counters on the R10K
processors (for both L1 and L2 caches)

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Experiments Serial

Prediction Accuracy

20%

20%56%

1%

3%

< 75% 75%-90% 90%-100% 100%-110% > 110%

August 27, 1998 Univ. of Illinois at Urbana-Champaign

HYDRO2D

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TIS
TE

P_
do

40
0

FIL
TE

R_d
o3

00

VPR
_d

o1
00

VPS
_d

o1
00

FC
T_

do
11

0

FC
T_

do
10

0

FC
T_

do
40

0

FC
T_

do
20

0

TR
ANS2

_d
o4

00

TR
ANS2

_d
o2

00

FIL
TE

R_d
o2

40

TR
ANS1

_d
o3

00

TR
ANS1

_d
o2

00

FIL
TE

R_d
o2

00

FIL
TE

R_d
o2

20

ARTD
IF_

do
10

0

T1
_d

o1
0

ARTD
IF_

do
20

0

TIS
TE

P_
do

20
0

FIL
TE

R_d
o4

20

TI
ST

EP
_d

o2
10

S1
_d

o1
00

T2
_d

o1
0

S2
_d

o1
00

SD
OT_

do
10

N
or

m
al

iz
ed

 L
1

M
is

se
s

Measured Predicted

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Ocean
299.64%

0%

20%

40%

60%

80%

100%

120%

ACAC_d
o4

0

OCEA
N_d

o4
50

OCEA
N_d

o3
30

RCS_
do

20

OCEA
N_d

o4
10

FT
RVM

T_
do

10
9

CSR
_d

o2
0

SH
UF_

do
10

TE
ST

DT_
do

20

TE
M

PH
Y_d

o4

ZE
TA

PH
_d

o4

UNSH
UF_

do
10

OCEA
N_d

o3
50

UVEL
PH

_d
o1

0

OCEA
N_d

o3
90

OCEA
N_d

o3
0

OCEA
N_d

o7
0

OCEA
N_d

o4
30

FT
RVM

T_
do

11
6

OCEA
N_d

o3
80

SC
SC

_d
o4

0

OCEA
N_d

o3
20

OCEA
N_d

o2
30

SC
SC

_d
o3

0

ACAC_d
o3

0

OCEA
N_d

o2
50

DATA
ST

_d
o2

0

N
or

m
al

iz
ed

 L
1

M
is

se
s

Measured Predicted

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Solution Advantages

n Accurate in most cases.
n One pass through the trace estimates misses

for any cache size
n Architecture independent (except for the

cache line size)
n Same model applicable to independent

loops as well as entire programs
n Easily applicable to parallel programs

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Run-time Solution Advantages

n Works in all cases

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Run-time Solution Disadvantages

n It is run-time, therefore consumes CPU time
n Cannot easily identify references with bad

locality
n Needs separate runs for different cache

sizes/processors
n Assumes a fully associative cache (to

reduce overhead)

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Compile-time Solution

n Integrated within the Polaris parallelizing
compiler

n Algorithm based on data dependence
distance vectors to compute the stack
distances for loops

n Computes symbolic expressions (based on
loop bounds) for stack distances and
number of references

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Compile-time Solution (cont.)

n Preserves the advantages given by the run-
time solution, adding
• misbehaving reference identification
• array size knowledge may improve accuracy
• flexibility and locality information readily

available in the compiler

n May need a run-time pass for unknown loop
bounds or data depending on the input

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Example

do j = 1, n
 do i = 1, n
 a(i,j) = b(i,1) + b(i+1,1)

a b1 b2

(0,1)

(1,0) (1,0)

Distance References
| δ Ri

1 + d - s| N-1
Inf 3N-(N-1)

Distance References
| δ Ri

1 + d - s| N(N-1)
| δ Rj

1 + d - s| (N-1)(N+1)
Inf N2+N+1

August 27, 1998 Univ. of Illinois at Urbana-Champaign

Future work

n Integrating the compile-time solution with
the run-time instrumentation

n Solve the false sharing integration within
the compiler approach

n Address some of the limitations: cache
associativity, multi-word cache lines

