Application Emulators and Simulation
Models

Tahsin M. Kurc

Computer Science Department,
University of Maryland,
College Park, MD



Our Target

e Large scale data-intensive parallel applications
— Flexible, accurate, scalable models of applications

e Large scale machines
— Fast and accurate ssimulation models

* Performance prediction in reasonable amount of time on workstations



Application Emulators

Exhibits computational and access patterns that resemble patterns
observed in the real application

Provides a parameterized model of the application, for scaling and
changing program details

A simplified version (of both program and data)

An executable (parallel or sequential) program



Why do we need application emulators?

e Problemswith using traces from actual runs

— Obtained for a single instance of application and machine
configuration

— Static, hard to represent dynamic nature of the program

— May become very large
e Problems with running full application on simulator

— May complicate the task of simulator unnecessarily

— Execution of real application requires real data

— Scaling real application for large scale machines may not be possible
o Application emulator

— Parameterized, not specific to a single instance of application/machine
configuration.

— Itisa program, so can model dynamic nature of application.
— Level of abstraction can be controlled, smplifying task of ssmulator
— Does not require real data, so can be scaled for large machines



Data-intensive Scientific Applications

Suite
e Titan
— Satellite data processing
— peer-to-peer
e Pathfinder

— Satellite data processing
— client-server (separate /O and Compute nodes)

o Virtual Microscope
— Light microscope image database server
— data server (multiple simultaneous queries), peer-to-peer



Titan: Input Data Structure

o Satellite Data
— Satellite orbits earth in polar orbit

— Each element (IFOV) is associated with a position (in longitude-
latitude) and time of recording

e Input datais partitioned into data-blocks
— Unit of 1/O and communication is a data-block
— Each block contains the same number of input elements
— Spatial extent of each block varies
— More overlapping blocks near the poles
o Dataisdistributed across disks for I/O parallelism
— Minimax algorithm (Moon et al. 1996) for declustering



Remotely Sensed Data

NOAA Tiros-N
w/ AVHRR sensor

AVHRR Levd 1 Data

» Asthe TIROS-N satellite orbits, the

Advanced Very High Resolution Radiometer (AVHRR)
sensor scans perpendicular to the satellite’ s track.

* At regular intervals along a scan line measurements
are gathered to form an instantaneous field of view
(IFQV).

 Scan lines are aggregated into Level 1 data sets.

A singlefile of Global Area

Coverage (GAC) data
represents:
» ~one full earth orbit.

e ~110 minutes.

» ~40 megabytes.

» ~15,000 scan lines.

Onescan lineis409 IFOV'’s




Spatia Irregularity
AVHRR Level 1B NOAA-7 Satellite 16x16 IFOV blocks.

B b 3 -

&0 =y -

40 _-' } _

L atitude

Al -

Eongﬁude%




Titan: Output Data Structure

2D image (latitude and longitude)
Partitioned into equal size rectangles among processors

Each processor is responsible for processing of blocks that map onto
Its region



Titan: Process

While (not done) do
| ssue reads
|Ssue receives
Poll reads
If (some reads completed) then
Map data-block to output data
If (mapped to other processors)
| ssue sends to those processors
If (mapped to myself)
Enqueue for processing
Poll recelves
If (data-block received)
Enqueue for processing
Poll sends
Process a data-block
end while

Ng Loop

not done when there are
* reads yet to be issued
* pending reads
* recelves yet to be issued
* pending receives
* pending sends
* blocks yet to be processed




Processing Loop

* All communication and /O are non-blocking operations
* There are dependencies between operations on a data-block

Life cycle of adata-block
MESSAGE SEND ———» MESSAGE RECEIVE—» COMPUTE
/4 MESSAGE SEND ———» MESSAGE RECEIVE—» COMPUTE

DISK READ

COMPUTE



An Emulator for Titan

e |nput Data Structure
— 1/O, Communication, Computation patterns

e Output Data Structure (Work load partitioning)
— Communication, Computation patterns

* Processing Loop
— 1/O, Communication, Computation patterns



An Emulator for Titan

e Description of the machine
— number of processors and disks
— machine description file

e |nput Data Structure
— A data-block isrepresented by a 2D rectangle
— Controlled generation of data-blocks using functions
— Parameterized generation of blocks
* number of blocks
» sizeof ablock
— Simple block-cyclic distribution of blocks to disks



An Emulator for Titan

Output Data Structure
— Represented by a 2D rectangle
— Parameterized 2D processor mesh
e number of processorsin x and y dimensions
Processing Loop
— Retain non-blocking nature of operations
— Retain dependencies between operations on a block
— Parameterization of some operations
e number of maximum pending reads, recelves
* number of blocks processed per iteration of loop
— Each block is assumed to take the same amount of time
« computation time of a block can be changed



number of operations

Comparison of Real Application and Emulator

(Maryland 16 processor IBM SP2)

Number of operations, 10-day data

16000
14000
12000
10000

8000 -
6000
4000 -
2000

0 A

O World
M B North America
O South America
I I O Africa
ReallO Emul. Real Emul Real Emul

10

Comm. Comm. Comp. Comp.

(]
<

operatio

of

o)
o
IS
S

<

Number of operations, 60-day data

90000
80000
70000
60000

50000

30000 +H
20000

[

10000
0

I

O World
@ North America
0O South America
0O Africa

il

Real IO Emul.
I0 Comm.Comm. Comp. Comp.

Real Emul Real Emul




Time (secs)

Comparison of Real Application and Emulator

Execution Times, 10-day data Execution Times, 60-day data
180 1200
160 = 1000

140 +

120 + __ 800 77_‘

100 +— O Real § O Real

» 600 + )

80 +— B Emulation © @ Emulation
60 + E 400 4]

40 15 200 +—

20 +—

0 ‘ _. i 0 ‘ _. i
World North South Africa World North South Africa

America America America America



Simulation Models
(Interaction between Emulators and Simulators)

o Tightly-coupled Simulation
— Similar to running on real machine
o athread is created for each application emulator process
o emulator performs callsto smulator API for

— Initiating 1/0O, communication, and computation operations
(events)

— checking their completion

— Simulator schedules emulator threads to ensure correct logical order of
operations

— Emulator and simulator interacts for each event (e.g., disk read
request)

— Emulator keeps track of dependencies between operations



Simulation Models

Tightly-coupled ssmulation is not suitable for ssimulating large scale

machines

Number of emulator threads increases with increasing number of
[processors

— Scheduling these threads becomes very costly

Message and 1/O tables for outstanding non-blocking operations
become very large

— Need for large memory to store these tables
— Very costly to manage these tables
Each emulator thread has to keep track of non-blocking operations
— Needs itslocal data structures (tables) for these operations
— Replicates the work of ssmulator.



Tightly-coupled Simulation

Predicted execution time and simulation time for tightly-coupled
simulation

M easurements done on Digital Alpha 2100 4/275 workstations
All results are in seconds
Machine parameters for simulator are the same as Maryland IBM SP2

Emulaor Dataset P Predicted Application Execution Time
Execution Time of Smulator
27K blocks | 32 211 3426
Titen 55K blocks | 64 285 13154
110K blocks |128 604 116224
55K blocks | 32 551 11595
Pethfinder 110K blocks | 64 718 30446
220K blocks 128 1020 97992
500 K blocks | 32 135 7155
Virtua Microscope 1000K blocks| 64 145 14097

2000K blocks| 128 158 37534



Simulation Models

L oosely-coupled Simulation
— ldea: Embed application processing loop into simulator

» Dependency information of processing loop is embedded in the
simulator

— A Modd of the application processing structure

* Work flow graphs
— Two separate processes - one for emulator, one for simulator
— Emulator and simulator interact in distinct phases

» Epoch-based interaction



Simulation Models
(Modeling Dependencies. \Work Flow Graphs)

Describes the dependencies between operations performed on a data-
block

— Nodes are the operations performed on the data-block
— Directed edges are the dependencies between these operations
— Imposes a partial order of events.

Basic skeleton of the work flow graph depends on the characteristics
of the application

Parameterized by the emulator to reflect specific instance of
— input data
— output data
— machine configuration



Simulation Models
(Work Flow Graphs for Current Applications Suite)

Titan
MESSAGE SEND —» MESSAGE RECEIVE— COMPUTE

DISK READ —» \ESSAGE SEND — > MESSAGE RECEIVE——* COMPUTE

\COM PUTE

Pathfinder Compute Nodes
I/O nodes

MESSAGE SEND
DISK READ —» \/ESSAGE SEND

MESSAGE RECEIVE—» COMPUTE
MESSAGE RECEIVE—» COMPUTE

Virtual Microscope

DISK READ — COMPUTE —* SEND



Simulation Models
(Epoch-based interaction)

 Theemulator and the ssmulator interact in distinct phases
— Emulator sends a set of events (for a set of blocks) to the simulator
— Simulator processes these events
— Simulator asks for another set of events from emulator
» For each block in aset for each processor, emulator passes to simulator
— diskid
 indicates aread operation from that disk
— length of the block
 used to estimate I/O and communication time
— list of consumers
* indicates communication (sends and receives)
— computation time of the block



Conclusions and Future Work

 Emulatorsfor Data-intensive scientific applications
— Simpleand parameterized model of applications

— Enables performance prediction studies for large scale applications
on large scale machines

e Loosealy-coupled smulation
— Enables ssimulation of large scale machines

« Wewereableto
— model application datasets up to 384 terabytesin size

— run simulations for machines up to 8K processors and 32K disks on
workstations



Conclusions and Future Work

e Ongoing and Future Work
— Different smulators
 Howsim, Gigasim (Mustafa Uysal, University of Maryland)

 Dumbsim, Fastsim (Jeff Hollingsworth and Hyeonsang Eom,
University of Maryland)

» Petasim (Geoffrey Fox and Y uhong Wen, Syracuse University)
— Generaizing Work Flow Graphs
« Application emulators for different classes of applications

— Automated generation of application emulators/work flow graphs
(Apostolos Gerasoulis, Rutgers University)



