
Delphi: Integrated, Language-Directed
Performance Prediction, Measurement, and

Analysis

Dan Reed (Illinois) David Padua (Illinois)
Ian Foster (Argonne) Dennis Gannon (Indiana)

Bart Miller (Wisconsin)

Presentation Outline

n Challenges and approaches
n Delphi design and components

– integrated prediction
– performance measurement
– resource performance models

n Computational grid directions

Performance Directed Design

n Integrated approach
– compiler-directed analysis and instrumentation
– performance measurement
– system component modeling
– scalability prediction

n Static and dynamic evolution
– static (repeatable behavior)
– dynamic (possibly non-repeatable behavior)

Performance Directed Design

Extant
HPCC
System

Proposed
HPCC
SystemIncremental

Instantiation

Incremental
Modeling

I/OScheduling

Memory
Management

Networks

Delphi Organizational Overview

Parameters

Applications Annotating
Compilers

Symbolic
Models

Analysis &
Visualization

Symbolic
Prediction

Resource
Reflectors

Resource
Reflectors

Dynamic
Instrumentation

Instrumented
Libraries

Leverage and Goals

n High leverage (or baggage :-)
– Polaris, Sage++, HPC++ and HPF
– Paradyn, Pablo, Autopilot and Virtue
– Nexus, Globus, I/O libraries and ORBs

n Research goals
– integrated measurement and modeling
– language-based analysis
– comparative system evaluation
– wide-area computational grid analysis

Integration Approach

n Initial pairwise integration
– Wisconsin/Argonne: Paradyn/Globus/Pablo
– Illinois: compiler/symbolic models and I/O
– Indiana/Argonne: ORB models

n Validation
– DSM and computational grids
– SFExpress and PACI DSM codes

n Complete integration

Paradyn/Globus Integration

n Thread instrumentation and measurement
– Paradyn dynamic instrumentation
– performance measurements

n Globus integration
– Paradyn wide area measurements

n Pablo integration
– SDDF support

Pablo/Polaris Integration

n Memory access time models
– stack distance estimates
– benchmark validation

n Symbolic scalability models
– Polaris operation counts with memory costs
– benchmark validation

n SvPablo integration
– source code performance prediction
– dynamic measurements (operations and I/O)

HPC++/Globus Integration

n Threading and scheduling
– thread package performance measurements
– comparative models

n Wide-area ORB behavior
– Nexus/Globus substrate measurements
– Java comparisons

Delphi Organizational Overview

Parameters

Applications Annotating
Compilers

Symbolic
Models

Analysis &
Visualization

Symbolic
Prediction

Resource
Reflectors

Resource
Reflectors

Dynamic
Instrumentation

Instrumented
Libraries

High-Level Language Integration

n Motivations
– emerging high-level languages (HPF and HPC++)
– aggressive code transformations for parallelism
– large semantic gap between user and code

n Goals
– relate dynamic performance data to source
– generate instrumented executable/simulated code
– support performance scalability predictions

High-Level Language Integration

HLL
Source Code

Performance
Specification

“Scalable” SMP

HPC++
Preprocessor

Other
Compilers Polaris

Instrumented
Executable

Symbolic
Models

Instrumented
Java VM/RMI

Instrumented
CORBA ORB

Nexus/Globus Substrate

ParadynPablo
Autopilot

Virtue

Symbolic Performance Prediction

n Rationale
– rapid assessment of design alternatives
– identification of performance bottlenecks

n Approach
– compile-time generation of cost expressions
– augmentation with selected measurements

n runtime behavior (benchmarks and applications)
n hardware counters (micro-benchmarks)

Polaris/Sage++ Integration

Polaris
Analysis

Instrumented
Source

Native
Compiler

Capture
Library

Symbolic
Expressions

Executable
Program

Data Set
Source

Program

Program

Execution

Merged
Model

Performance
Data

Hardware
Costs

SvPablo

Static Phase

Symbolic Performance Prediction

n Two phase prediction approach
– static traversal of compile-time AST
– dynamic integration of measured data

n Performance predictions
– instantiate array sizes (loop bounds)
– specify number of processors
– evaluate symbolic expression

0.00

0.10

0.20

0.30

0.40

0.50

MAIN_do100 MAIN_do120 MAIN_do130 MAIN_do60 MAIN_do80

Ex
ecu

tio
n T

im
e (

sec
)

Measured Execution Total Predicted Predicted Computation

TOMCATV Predictions

Delphi Organizational Overview

Parameters

Applications Annotating
Compilers

Symbolic
Models

Analysis &
Visualization

Symbolic
Prediction

Resource
Reflectors

Resource
Reflectors

Dynamic
Instrumentation

Instrumented
Libraries

Instrumentation Integration

n Leverage best toolkit features
– Paradyn

n dynamic object code patching
n standard software metrics
n hardware performance data support

– Pablo/Autopilot/Virtue
n real-time data analysis
n flexible data metaformat
n adaptive resource control
n performance visualization

• Multithreaded support rationale
– exploit multiprocessor hardware, application concurrency
– used heavily in parallel programming, UI’s, servers

Paradyn Instrumentation

Paradyn Measurements

SvPablo Performance Browser

n Instrumentation
– automatic

nPGI HPF

– interactive
nANSI C
nFortran 77/Fortran 90

n Data capture
– dynamic software statistics
– SGI R10000 counter values

SvPablo Code Browser

SvPablo Language Transparency

n Meta-metaformat for performance data
– language defined by line and byte offsets
– metrics defined by mapping to offsets
– SDDF records

n performance mapping information
n performance measurements

n Result
– language independent performance browser
– mechanism for scalability model integration

Model and Library Integration

n Rationale
– instrumented libraries for resource measurement
– models of resource use for proposed systems

n Four foci
– memory hierarchy (caches and remote memory)
– scheduling (threads and tasks)
– communication (network QoS and ORBs)
– input/output (MPI-IO and other APIs)

Multimodal Modeling

Program

Polaris

Instrumented
Program

Cache Model
Data

Computation
Model Data

Runtime
Library Data

Machine modelExtrapolation formulas
Program structure

Machine
 Parameters

Performance
Prediction

Input Data

...

Memory Hierarchy Models
n Rationale

– estimate memory access and operation costs
– validate and tune symbolic models

n Compile-time models
– iteration space analysis and restructuring
– cache size and replacement algorithms

n Runtime models
– hardware counter measurements
– probabilistic estimates

Scheduling Models

n Rationale
– understand irregular, adaptive computations

n complement to POEMS effort

– analyze memory/scheduler interactions
– enable distributed shared memory analysis

n Approach
– analytic, simulation, and stochastic models
– augmented by compile-time information

Communication Models

n Rationale
– analyze wide-area metacomputing systems
– estimate bandwidth and latency impacts
– understand Quality of Service (QoS) implications
– assess Object Request Broker (ORB) performance

n Approach
– exploit compile-time and runtime data
– build calibrated QoS and ORB models
– integrate with Globus metacomputing toolkit

Threads and Objects

n Consider
n an adaptive, multithreaded flow solver

– coupled to
n a remote, multithreaded tree-based N-Body code

– coupled to
n a visualization in a CAVE

n Optimization using performance models?

Some First Steps

n Demonstrate a simple, first order model for
thread behavior in HPC++ programs.

n Illustrate how distributed object remote
method invocation performance analysis is
not as easy as one might hope

n Next steps
– demonstrate distributed object tuning with

applications

UNIX/SIO

Application
Library

MPI-IO

HDF

M
ultilevel

Instrum
entation

I/O Characterization and Models

n Multilevel analysis
– correlation across levels
– policy mismatch studies
– extended SIO toolkit

n Rationale
– performance sensitivity
– library interface data sharing
– library optimization guide

I/O Characterization

n Approach
– statistical summaries (production codes)
– detailed event traces (exploratory analysis)

n Instrumentation toolkits
– HDF version 4 (operational and available)
– HDF version 5 (operational)

n evolving in collaboration with HDF 5 development

– MPI-IO (ROMIO)
n operational and now available

1

4

7

10

13

16

19

1

11

21

31
0

0.2
0.4
0.6
0.8

1
1.2

1.4

1.6

1.8

R
es

po
ns

e
Ti

m
e

 (
R

, s
)

Request Rate
(λ, req / s)

Stripe Width
(D, disks)

Unstable Region

Disk Striping Models

Striped disk access
• multiple disks increase transfer rate
•multiple disks decrease throughput

Grids and Delphi

n Grids are a “double whammy”
– complex architectures, dynamic behaviors
– complex applications, dynamic behaviors

n Accurate performance estimation
– resource selection, scheduling, configuration, and

adaptivity

n Delphi enables first steps in this area

Grids and Delphi

n Build on existing technology base
– Globus, Paradyn, Autopilot, HPC++

n Develop instrumentation for grid
environments via Globus

n Study application performance
n Basis for

– performance analysis
– characterization and estimation

SF-Express: Distributed
Interactive Simulation

P. Messina et al., Caltech

n Performance issues
– computational structure
– network requirements
– communication methods

scalability

NCSA
Origin

Caltech
Exemplar

Argonne
SP

Maui
SP

“200 GB memory,
 100 BIPs”

16 sites, 330 computers, 3600 nodes, 2 Teraflop/s, 10 application partners

Broader Grid Research Goals

 “Provide technologies allowing programmers
to develop applications that achieve high
performance in environments in constant
flux”

n Via an integrated treatment
– compilers, languages, libraries and algorithms
– problem solving environments
– runtime systems and scheduling
– performance and other tools

Grid Application Development

Grid Implications

n Dynamic optimization requires
– resource models
– scheduling
– real-time measurement and control
– wide-area infrastructure
– multiple execution modes

n Components from projects at this workshop

Decision
procedures
Interactive

steering

Autopilot Adaptive Infrastructure

Assertion &
classification

Sensors Actuators
Resource

policy

Application

Participants

n Fran Berman
n Keith Cooper
n Jack Dongarra
n Ian Foster
n Dennis Gannon

n Ken Kennedy
n Carl Kesselman
n Lennart Johnsson
n Dan Reed
n Linda Torczon

