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Presentation Outline

n Challenges and approaches
n Delphi design and components

– integrated prediction
– performance measurement
– resource performance models

n Computational grid directions



Performance Directed Design

n Integrated approach
– compiler-directed analysis and instrumentation
– performance measurement
– system component modeling
– scalability prediction

n Static and dynamic evolution
– static (repeatable behavior)
– dynamic (possibly non-repeatable behavior)
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Leverage and  Goals

n High leverage (or baggage :-)
– Polaris, Sage++, HPC++ and HPF
– Paradyn, Pablo, Autopilot and Virtue
– Nexus, Globus, I/O libraries and ORBs

n Research goals
– integrated measurement and modeling
– language-based analysis
– comparative system evaluation
– wide-area computational grid analysis



Integration Approach

n Initial pairwise integration
– Wisconsin/Argonne: Paradyn/Globus/Pablo
– Illinois: compiler/symbolic models and I/O
– Indiana/Argonne: ORB models

n Validation
– DSM and computational grids
– SFExpress and PACI DSM codes

n Complete integration



Paradyn/Globus Integration

n Thread instrumentation and measurement
– Paradyn dynamic instrumentation
– performance measurements

n Globus integration
– Paradyn wide area measurements

n Pablo integration
– SDDF support



Pablo/Polaris Integration

n Memory access time models
– stack distance estimates
– benchmark validation

n Symbolic scalability models
– Polaris operation counts with memory costs
– benchmark validation

n SvPablo integration
– source code performance prediction
– dynamic measurements (operations and I/O)



HPC++/Globus Integration

n Threading and scheduling
– thread package performance measurements
– comparative models

n Wide-area ORB behavior
– Nexus/Globus substrate measurements
– Java comparisons
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High-Level Language Integration

n Motivations
– emerging high-level languages (HPF and HPC++)
– aggressive code transformations for parallelism
– large semantic gap between user and code

n Goals
– relate dynamic performance data to source
– generate instrumented executable/simulated code
– support performance scalability predictions



High-Level Language Integration
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Symbolic Performance Prediction

n Rationale
– rapid assessment of design alternatives
– identification of performance bottlenecks

n Approach
– compile-time generation of cost expressions
– augmentation with selected measurements

n runtime behavior (benchmarks and applications)
n hardware counters (micro-benchmarks)



Polaris/Sage++ Integration
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Symbolic Performance Prediction

n Two phase prediction approach
– static traversal of compile-time AST
– dynamic integration of measured data

n Performance predictions
– instantiate array sizes (loop bounds)
– specify number of processors
– evaluate symbolic expression
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Instrumentation Integration

n Leverage best toolkit features
– Paradyn

n dynamic object code patching
n standard software metrics
n hardware performance data support

– Pablo/Autopilot/Virtue
n real-time data analysis
n flexible data metaformat
n adaptive resource control
n performance visualization



• Multithreaded support rationale
– exploit multiprocessor hardware, application concurrency
– used heavily in parallel programming, UI’s, servers

Paradyn Instrumentation



Paradyn Measurements



SvPablo Performance Browser

n Instrumentation
– automatic

nPGI HPF

– interactive
nANSI C
nFortran 77/Fortran 90

n Data capture
– dynamic software statistics
– SGI R10000 counter values



SvPablo Code Browser



SvPablo Language Transparency

n Meta-metaformat for performance data
– language defined by line and byte offsets
– metrics defined by mapping to offsets
– SDDF records

n performance mapping information
n performance measurements

n Result
– language independent performance browser
– mechanism for scalability model integration



Model and Library Integration

n Rationale
– instrumented libraries for resource measurement
– models of resource use for proposed systems

n Four foci
– memory hierarchy (caches and remote memory)
– scheduling (threads and tasks)
– communication (network QoS and ORBs)
– input/output (MPI-IO and other APIs)
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Memory Hierarchy Models
n Rationale

– estimate memory access and operation costs
– validate and tune symbolic models

n Compile-time models
– iteration space analysis and restructuring
– cache size and replacement algorithms

n Runtime models
– hardware counter measurements
– probabilistic estimates



Scheduling Models

n Rationale
– understand irregular, adaptive computations

n complement to POEMS effort

– analyze memory/scheduler interactions
– enable distributed shared memory analysis

n Approach
– analytic, simulation, and stochastic models
– augmented by compile-time information



Communication Models

n Rationale
– analyze wide-area metacomputing systems
– estimate bandwidth and latency impacts
– understand Quality of Service (QoS) implications
– assess Object Request Broker (ORB) performance

n Approach
– exploit compile-time and runtime data
– build calibrated QoS and ORB models
– integrate with Globus metacomputing toolkit



Threads and Objects

n Consider
n an adaptive, multithreaded flow solver

– coupled to
n a remote, multithreaded tree-based N-Body code

– coupled to
n a visualization in a CAVE

n Optimization using performance models?



Some First Steps

n Demonstrate a simple, first order model for
thread behavior in HPC++ programs.

n Illustrate how distributed object remote
method invocation performance analysis is
not as easy as one might hope

n Next steps
– demonstrate distributed object tuning with

applications
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n Multilevel analysis
– correlation across levels
– policy mismatch studies
– extended SIO toolkit

n Rationale
– performance sensitivity
– library interface data sharing
– library optimization guide



I/O Characterization

n Approach
– statistical summaries (production codes)
– detailed event traces (exploratory analysis)

n Instrumentation toolkits
– HDF version 4 (operational and available)
– HDF version 5 (operational)

n evolving in collaboration with HDF 5 development

– MPI-IO (ROMIO)
n operational and now available
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Grids and Delphi

n Grids are a “double whammy”
– complex architectures, dynamic behaviors
– complex applications, dynamic behaviors

n Accurate performance estimation
– resource selection, scheduling, configuration, and

adaptivity

n Delphi enables first steps in this area



Grids and Delphi

n Build on existing technology base
– Globus, Paradyn, Autopilot, HPC++

n Develop instrumentation for grid
environments via Globus

n Study application performance
n Basis for

– performance analysis
– characterization and estimation



SF-Express: Distributed
Interactive Simulation

P. Messina et al., Caltech

n Performance issues
– computational structure
– network requirements
– communication methods

scalability
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“200 GB memory,
  100 BIPs”



16 sites, 330 computers, 3600 nodes, 2 Teraflop/s, 10 application partners



Broader Grid Research Goals

 “Provide technologies allowing programmers
to develop applications that achieve high
performance in environments in constant
flux”

n Via an integrated treatment
– compilers, languages, libraries and algorithms
– problem solving environments
– runtime systems and scheduling
– performance and other tools



Grid Application Development



Grid Implications

n Dynamic optimization requires
– resource models
– scheduling
– real-time measurement and control
– wide-area infrastructure
– multiple execution modes

n Components from projects at this workshop
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