Towards Petaflop Architectures

Application Emulators and Simulation University of Maryland Syracuse University **Rutgers University** University of California, Santa Barbara

Architectural Design using Application Emulators

- Characterize performance of important applications on future architectures
 - Assumptions
 - application belongs to a targeted application class
 - behavior of processor architecture/compiler interaction has been characterized for application class
 - project behavior of processor pipeline, cache using empirical characterizations from current architectures
 - assume that programmer and compiler will use known optimizations
 - not interested in "dusty deck" performance predictions

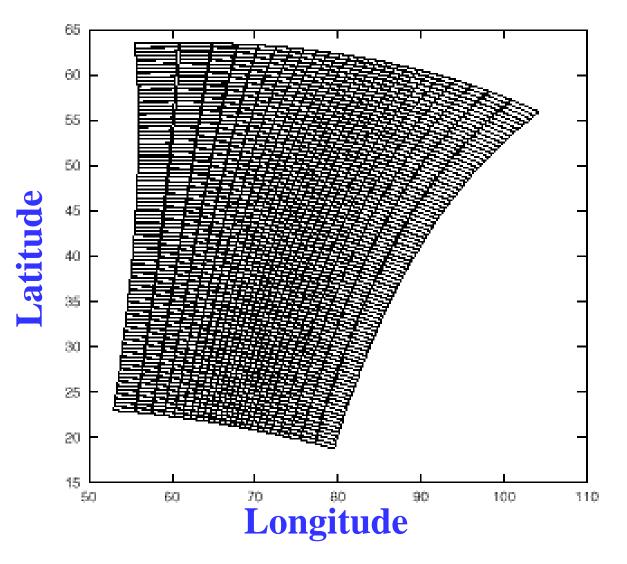
Driving Applications

- Sensor data and land cover characterization
- Visualization and analysis of very large microscopy datasets
- Bay and estuary simulation
- Circuit simulation
- Stealth aircraft design
- MSTAR
- Combustion simulation
- Data mining
- Data cube

Active Data Repository Design Objectives

- Integrate and overlap a wide range of user-defined operations, in particular, order-independent operations with the basic retrieval functions
- Support optimized associative access and processing of multiresolution and irregular persistent data structures
- Targets *parallel and distributed architectures* that have been configured to support high I/O rates
- Applications -- Titan: Satellite sensor data; Virtual Microscope Server, Bay and Estuary Simulation

Construction of Application Emulators


- Sensor data processing -- data intensive applications
 - Data products generated from disk based datasets
 - datasets are usually irregular
 - indexed by spatial location (position on earth, position of microscope stage)
 - Spatial query used to specify iterator
 - computation carried out on data obtained from spatial query
 - computation aggregates data resulting data product size significantly smaller than results of range query

Application Emulators

- Parameterized programs designed to mimic application computation and data movement patterns
- Focus is on memory hierarchy, computational details are abstracted
 - generally also abstract L1 and L2 cache
- Coarse grained, executable description of patterns of data movement and computation
- Generates type of dynamic task graph

Spatial Irregularity

AVHRR Level 1B NOAA-7 Satellite 16x16 IFOV blocks.

Example Projection Query

Output grid onto which interpolation is carried out

Specify portion of raw sensor data corresponding to some search criterion

Application Emulators

- Computation and data movement can be decomposed into a sequence of phases or *epochs* (loosely synchronous computational pattern)
- Demand driven generation (POEMS terms)
 - iterator specifies a number of independent computations
 - dependencies can exist within each iteration and between phases

Application Emulators

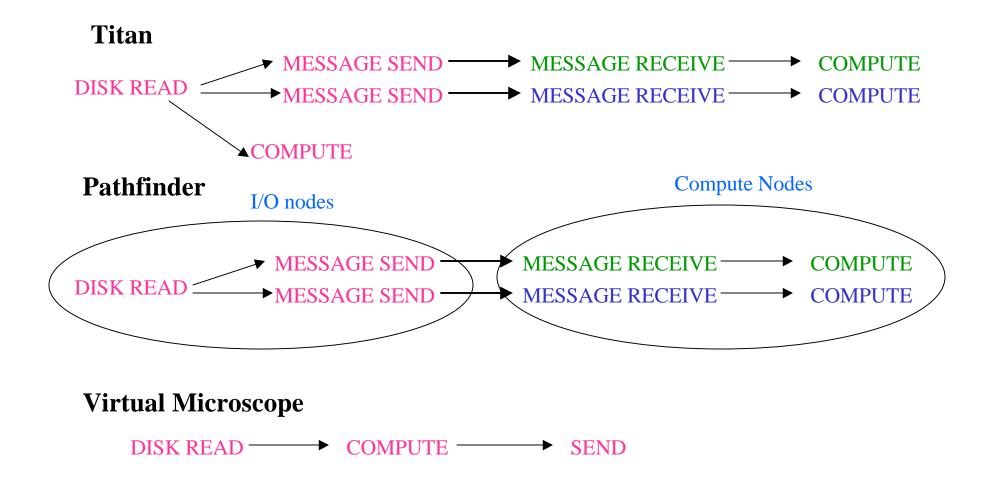
- Data product may itself be used or may be used as part of a more complex calculation
 - land cover classification
 - data assimilation
 - bay and estuary simulation
 - virtual microscope -- morphometry, 3D reconstruction

Current Application Emulators

• Scientific I/O intensive (Application Domains Supported by Active Data Repository)

– Titan

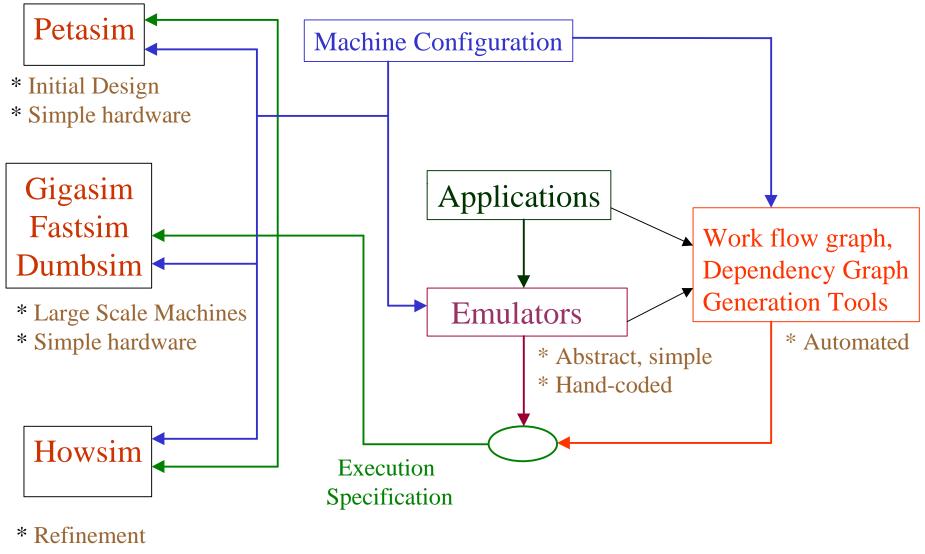
- Satellite data processing
- Pathfinder
 - Satellite data processing
- Virtual Microscope
 - Microscope image database server
 - data server (multiple simultaneous queries)


Current Applications Emulators

- Scientific irregular
 - Sparse Gaussian
 - Fast multipole method (Vortex dynamics)
- Database
 - Data Cube
 - Data Mining
 - External Sort

Simulators

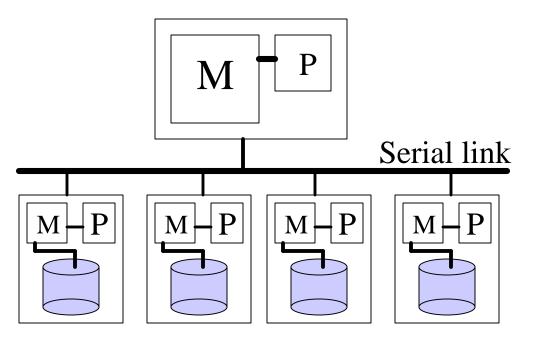
- Suite of simulators -varying degrees of fidelity
- All simulators abstract pipelining
- Howsim detailed architectural simulation using empirical and published device characteristics
- Petasim rough analysis to account for costs of moving data between memory hierarchy levels
- Block level data driven simulators -
 - Data driven simulators -- Fastsim, Gigasim,
 Dumbsim -- trace chunks of data through retrieval,
 data movements, processing and storage (or output to network)
- Emulators coupled to simulators by incremental generation and consumption of work flow graphs


Coupling to Simulators (Work flow Graphs)

Compiler Support for Generating Application Emulators

- Used to generate work flow description used in petasim and in block level simulators
- Programmer uses knowledge of application domain to write computational component of application emulator
 - Compiler generates code that, at runtime produces work flow description
 - estimate computational costs and amount of data communicated between nodes in workflow graphs
 - High level directives used to control granularity of work flow description

General Overview of Performance Prediction Framework



* Detailed Hardware

Evaluation of Candidate Architecture: Active Disks

- Disks with embedded CPU and memory
- Application-specific code executes on disk
- Processing partitioned: disk and host
 - Active disk performs bulk of the processing
 - Host coordinates/schedules/combines
- #CPUs increase with #Disks
- Processing power evolves with disks

Active Disk Architecture

- Restructure apps
- Disk-resident code
 - bulk processing
 - disklet
- Host-resident code
 - coordination
 - communication
 - combination
- Processing power scales naturally with storage capacity
- Processing power evolves with storage

Experiments

- Compared algorithm-architecture combinations
 - current and future configurations
- Evaluated scalability
 - configuration: 4-32 disks
 - dataset size
- Evaluated impact of host upgrades