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A Family of Simulators

e EXxplore accuracy vs. time trade-off
— Use simple static estimation of I/O and communication
— EXxploring adding stochastic variation

e Simplifying assumptions
— no network link contention

— predictable computation/communication interference
— Infinite memory
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DumbSim

e Very Fast, Optimistic Simulator
— assumes perfect overlap of /O and computation
— Ignores block producer-consumer relationship
e Epochs used for intra-node synchronization

e Is embarrassingly parallel
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FastSim: Fast Simulator

e Flexible event processing loop
— round-robin: process next event for each node
e most accurate when load is balanced

— discrete event: find earliest time of next event

Disk
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* more overhead than round-robin
e Uses Graph to update timing for each resource
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Titan Emulator (SDSC Machine)
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Pathfinder Emulator (SDSC Machine)
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Virtual Microscope (SDSC Machine)

25
) -
® 20 m B IBM SP2
2
> B Dumbsim
()
e 15 _
= O Fastsim
:003 10 & O Gigasim
[S]
g 5 1 B Petasim
a
0
16 32 64 100
# of processors simulated
10000
w
o
@ 1000 ]
E
()
E 100
c
o
IS
S 10 -
£
n
1
16 32 64 100

# of processors simulated

University of Maryland




Predicted time (secs)

160
140

s)

[N
N
o

100

SN
o

Predicted time (sec

N
o O
L

45000
40000
35000
30000
25000
20000
15000
10000

5000

Scaling up the number of Nodes
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Summary of I/0O Results

e Application Emulators
— can generate complex 1/O patterns quickly.
— enable efficient simulation of large systems.

e Family of Simulators
— permits cross checking results.
— allows trading simulation speed and accuracy.
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Critical Path Profiling

e Critical Path

— Longest path through a parallel program
— To speedup program, must reduce path

e Critical Path Profile
— Time each procedure is on the critical path

e CP Zeroing
— compute the CP as if the a procedure’s time is 0.
— use a variation of online CP algorithm
e CP, = CP - Share
 at receive, keep tuple with largest CP

net
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Program Activity Graph
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NAS IS Application

Procedure CP % CP CPU % CPU

nas Is ben 12.4 56.4 54.8 /4.1
create_seqg 9.2 42.0 9.2 12.4

do_rank 0.4 1.6 9.2 12.5

— create_seq is more important than CPU time indicates.

— do_rank is ranked higher than create_seq by CPU time.
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Load Balancing Factor

e Key Idea: what-if we move work
— length of activity remains the same
— where computation is performed changes

e Two Granularities Possible
— process level
e process placement or migration
— procedure level
« function shipping
e fine grained thread migration
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Process LBF

e \What-if we change processor assignment
— predict execution time on larger configurations
— try out different allocations

® |ssues:
— changes in communication cost
 |ocal vs. non-local communications
— Interaction with scheduling policy
 how are nodes shared?
e assume round robin
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Computing Load Balancing Factor

startRecv

P1 P2 P3
Program Activity Graph Group Activity Graph
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Using Paradyn to Implement Process LBF

v forward data from application to monitor

— Need to forward events to central point

— supports samples
— requires extensions to data collection system

v provides dynamic control of data collection
— only piggy pack instrumentation on demand

v need to correlate data from different nodes
— use $globalld MDL variable
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Results : Accuracy

O Measured Time on 16 Processors
B Predicted Time for 16 Processors on 16 Processors
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LBF Overhead (16 nodes)

O Measured Time W/o Instrumentation B Measured Time W/ Instrumentation
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Changing Network and Processes

Change: # of nodes (8->16)
network (10Mbps Ethernet -> 320Mbps HPS)

O Measured Time on 16 processors with HPS

B Predicted Time when run on 8 Processors with Ethernet
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Linger Longer

e Many Idle Cycles on Workstations

— Even when users are active, most processing power
not used

e |ldea: Fine-grained cycle stealing
— Run processes a very low priority
— Migration becomes an optimization not a necessity

® |ssues:
— How long to Linger?
— How much disruption of foreground users
 delay of local jobs: process switching
e virtual memory interactions
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Simulation of Policies

e Model workstation as
— foreground process (high priority)
* requests CPU, then blocks
 hybrid of trace-based data and model
— background process (low priority)
 always ready to run, and have a fixed CPU time
— context switches (each takes 100 micro-seconds)
e accounts for both direct state and cache re-load

e Study:
— What is the benefit of Lingering?
— How much will lingering slow foreground processes?
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Migration Policies

e Immediate Eviction (IE)
— when a user returns, migrate the job
— policy used by Berkeley NOW
— assumes free workstation or no penalty to stop job

e Pause and Migrate (PM)
— when a user returns, migrate the job
— used by Wisconsin condor
e Linger Longer (LL)
— when user returns, decrease priority and remain

e monitor situation to decide when to migrate
— permits fine grained cycle stealing

e Linger Forever (LF)
— like Linger Longer, but never migrate
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Simulation Results - Sequential Workload

— LF is fastest, but variation is higher than LL
— LL and LF have lower variation than IE or PM.
— Slowdown for foreground jobs is under 1%.
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— LF is a 60% improvement over the PM policy.

University of Maryland 23




Time (Billion cycles)
O Rr N W A OO N

Simulation Results - Parallel Applications

— Use DSM Applications on non-idle workstations

— Assumes 1.0 Gbps LAN

— Compare Lingering vs. reconfiguration
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— Lingering is often faster than reconfiguration!
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Future Directions

e \Wide Area Test Configuration
— simulate high latency/high bandwidth network
— a controlled testbed for wide area computing

e Parallel Computing on non-dedicated clusters
— current simulations show promise, but ...
e need to include data about memory hierarchy
e real test is to build the system

e Development of the Metric and Option Interface

— prototype applications that can adapt to change
— evaluate different adaptation policies
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